
Compositional Timing Analysis: Power Plant Protection
System Case Study ∗

Simon Bliudze
CEA, LIST, Embedded Real Time System Foundations Laboratory

Boîte Courrier 94, Gif-sur-Yvette, F-91191 France
Simon.Bliudze@cea.fr

ABSTRACT
We introduce a method for studying temporal behaviour of
the so-called Globally Asynchronous, Locally Synchronous
(GALS) systems, that is systems consisting of synchronous
computing elements communicating over asynchronous chan-
nels. Our method is based on the combined use of transi-
tional logics and timed automata. The former is used to
compute, by abstract interpretation, an over-approximation
of the shape of the output signal, whereas the latter provide
the time-stamps for the edges. Both are applied iteratively
to a hierarchical model of the system in order to avoid state
space explosion. We use the IF/TCA tool-chain developed
at Verimag to apply this method to a case study based on
the software protection system of a P4 nuclear reactor.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]; C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time
and embedded systems

General Terms
Reliability

1. INTRODUCTION
In the context of the nuclear power plant control, certi-

fication authorities have to analyse third-party protection
systems in order to validate a number of safety properties.
CEA LIST is involved in the development of tools to assist
such analysis. This paper presents a case study performed
in view of the development of a tool for static analysis of
the temporal behaviour of asynchronous circuits built from
synchronous components.

Timing analysis of embedded systems is a rather broad
domain. A number of methods and tools have been de-
veloped based on different techniques, such as, for example,

∗This work was carried out as part of a CEA LIST–IRSN
project DSR/SAMS/BASEC/CDC GALS 2010 V1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCTT ’11, November 29 2011, Vienna, UNK, Austria
Copyright 2011 ACM 978-1-4503-1008-6/11/11 ...$10.00.

the Real-Time Calculus for performance analysis [3] and ab-
stract interpretation for worst- and best-case execution time
analysis [5]. Timed automata [1] are used in several tools [2,
6, 11] for modelling of timed systems.

We have applied the compositional approach implemented
in the TCA (Timed Circuits Analyzer) extension of the IF
tool-chain [8]. In addition to the compositional approach,
TCA implements an advanced forward reachability algo-
rithm that allows to considerably reduce the exploration
space, as well as several behaviour preserving abstractions
reducing the number of clocks used in the model. The TCA
circuit specification language is well suited for the systems
such as the case study presented in this paper.

Timed automata allow us to model the system with pre-
cision sufficient to obtain exploitable results. The main ob-
stacle for the timing analysis is the state space explosion,
where the notion of “state” comprises both control locations
and time-stamps (cf. Sect. 4.1). On the other hand, in the
context of highly-critical systems—such as nuclear power
plants—the basic safety rule of thumb is to keep things sim-
ple. This applies to the control system, but also (and by
consequence) to the properties involved, which are, in fact,
properties of the signal produced by the circuit, given a pulse
signal as an input (cf. Sect. 2). We use transitional logics
[9] in order to precompute an estimation of the logical shape
of the output signal before analysing the timed automaton
computed by TCA to time-stamp its edges. This allows us
to deduce certain key properties, such as the minimal du-
ration the alarm signal has to be maintained to guarantee
that the appropriate reaction is triggered.

The above methodology consists in decomposing the sys-
tem under analysis into a hierarchy of components, then
applying the following procedure in a bottom-up manner:

1. Model each constituent component as an IF process.
The IF process is either obtained by modelling the
component as a TCA circuit element or generated by
TCA at a previous stage of the hierarchical analysis.

2. Using TCA, generate the IF interconnection model of
the composed component and insert the models of the
constituent components obtained in the previous steps.

3. Using TCA, generate the reduced product timed au-
tomaton for the composed component. (The abstrac-
tion techniques used for the reduction in TCA are
briefly presented in Sect. 4.2.)

4. Using transitional logics, compute the shape of the out-
put signal and time-stamp the key edges with the data
from the automaton generated in the previous step.

Network NetworkOR

CU1,2

CU1,1 CU2,1

CU2,2

Figure 1: Architecture of the case study system

The rest of the paper is structured as follows. In Sect. 2,
we present the case study system and the properties that
we wish to analyse. In Sect. 3 and Sect. 4, we briefly recall
the necessary background notions. Finally, we present the
analysis results in Sect. 5 and conclusions in Sect. 6.

2. CASE STUDY DESCRIPTION
The case study system considered in this paper is based on

the power plant control system used in the P4 reactors [10],
it implements a redundancy protection mechanism aiming
to filter out false alerts in the alarm activation circuit. The
system consists of two groups of two computing units (CUi,j

with i, j = 1, 2) connected as shown in Fig. 1.
CUs within the same group (e.g., CUi,1 for i = 1, 2)

communicate through a cabled connection (black arrows)
with negligible latency (less than 1 ms). CUs from differ-
ent groups (e.g., CU1,j for j = 1, 2) communicate over the
network (thick green arrows) with the latency bounded by
a given interval [Lm, LM].

CUs receive on input boolean signals from sensors mon-
itoring a certain physical process in the reactor. When an
abnormal behaviour is detected the signal is raised to 1.

Figure 2 shows a more detailed architecture of the com-
puting units. For each CU, the input signal is first processed
by a switch (Sect. 5.1), which produces the corresponding
Partial Trigger signals PTi,j (for i, j = 1, 2). The computing
time of each switch is bounded by a given interval [Tm, TM].

In each CU, the Partial Trigger signal is disjunctively com-
bined with the Partial Trigger produced by the correspond-
ing CU of the other group. Subsequently, primary CUs of
each group (CU1,j for j = 1, 2) compute the respective Par-
tial Activator signals PAj by taking the conjunction of the
results computed in both CUs of the group. Finally, the
Activator signal produced by the circuit is the disjunction of
the two Partial Activators (see again Fig. 1).

In the general case, the input signals of the computing
units (arrows with bars) correspond to different sensor units
and, therefore, need not necessarily be synchronised. How-
ever, for the sake of clarity, we will assume that these input
signals are synchronised. This hypothesis is not necessary
for the application of the techniques in this paper, but con-
siderably simplifies presentation.

As mentioned above, the input signals are boolean alarms
produced by physical sensors. By introducing redundancy

OROR

AND

CU2,2CU1,2

PT1,2
PT1,1

PA2

PT2,2
PT2,1

Figure 2: Architecture of the computing units

tδ + λδ0

0

1

Figure 3: Pulse signal on the input of the circuit

and voting, the circuit architecture reduces the number of
false alarms due to sensor malfunctions. The high-level
system specification consists then in triggering an emer-
gency action whenever the Activator signal is raised. Due to
the asynchronous nature of the circuit behaviour, when the
alarm is raised for a short duration, it can be propagated
to different computing units at different moments in time
and, for example, lost when two such propagated signals are
combined by conjunction. Hence, it is not a priori guaran-
teed that the Activator signal is raised even if all sensors
raise their respective alarms, but for a duration that is not
sufficiently long. Hence, we have to answer two essential
questions:

1. What is the minimal duration, for which the alarm
signals must be maintained by the sensors, that guar-
antees that the Activator signal is raised by the circuit?

2. Provided the alarms are maintained sufficiently long,
what is the worst case response time of the circuit?1

More generally, we are interested in exhibiting the time-
stamped shape of the Activator signal in response to a pulse
of duration λ and phase shift δ (Fig. 3).

Below we assume the bounds on the network latency to
be Lm = 24 ms and LM = 52 ms and the bounds on the
computing time of the switches, respectively, Tm1 = 27 ms
and TM1 = 33 ms, for the primary CUs of each group (CU1,j

for j = 1, 2), and Tm2 = 72 ms and TM2 = 81 ms, for the
secondary CUs of each group (CU2,j for j = 1, 2).

3. SIGNALS
Several formal definitions of the notion signal can be given,

depending on the particularities of the physical context and
the amount of the detail that has to be captured.

Definition 1. A timed signal over a value domain D is
piece-wise constant function s : R+ → D.

The pulse signal in Fig. 3 is then defined by the function
p(t) : R+ → {0, 1}, such that

p(t) =

{
1 for t ∈ (δ, δ + λ] ,
0 otherwise.

(1)

1Notice that the worst case response time is necessarily
greater than or equal to the minimal duration in question 1.

s1 s2 sn
. . .

0 t1 t2 tn−1 +∞

Figure 4: Graphical representation of a signal

In order to guide our analysis, we will also perform com-
putations on abstract models of signals, only representing
the sequence of values taken by the signal and omitting the
temporal information.

Definition 2. An untimed signal over a value domain D is
a sequence s : N→ D.

An untimed pulse signal of Fig. 3 is then the sequence
0→ 1→ 0.

Signals (timed or untimed) over the value domain D =
{0, 1} are called boolean.

In the following, we will represent signals graphically as
shown in Fig. 4. This graphical representation shows the
consequent values s1, s2, . . . , sn ∈ D of the signal along with
the dates t1, t2, . . . , tn−1 of the corresponding edges. For
untimed signals, it is sufficient to omit the dates. This rep-
resentation has an advantage over the function-style one in
Fig. 3, since it allows a compact representation of signals
over non-boolean domains.

For untimed boolean signals, Thompson and Mycroft [9]
have proposed a number of transitional logics that provide
further abstractions of signals. For example, one can notice
that, for a boolean signal, it is sufficient to know its initial
value and the total number of oscillations: the signal starting
with the value 0 and making n oscillations before stabilising
at 1 is denoted ↑n= 0 → 1 → 0 → · · · → 1 → 0 → 1
(where the “1 → 0” pair is repeated n times). Similarly
↓n= 1 → 0 → 1 · · · → 0 → 1 → 0 denotes the signal that
starts at 1 and stabilises at 0 after n oscillations; Fn and
Tn denote the signals that start respectively at 0 or 1 then
make n oscillations before going back to the initial value.2

The circuits considered in [9] are constructed from four
basic building blocks: (perfect—zero delay) AND-gates (∧),
(perfect) NOT-gates (¬), transmission line (2) and inertial
(4) delays. The difference between transmission line and
inertial delays is that, in the former, the number of tran-
sitions on its input and output are equal, whereas, in the
latter, a short-duration pulse may be removed entirely from
the output. Corresponding operations are defined by truth
tables, e.g.,

∧ F0 Fn T0 Tn . . .
F0 F0 F0 F0 F0 . . .
Fm F0 F0...m+n−1 Fm F0...m+n . . .
T0 F0 Fn T0 Tn . . .
Tm F0 F0...m+n Tm T1...m+n . . .
...

...
...

...
...

. . .

Here, Fa...b = Fa|Fa+1| . . . |Fb, with ’|’ denoting the non-
deterministic choice, is similar to Fn, except that it oscillates
2For the sake of coherence with our sources, Tm will denote
either the minimal computation duration in the case study
or a value of a transitional logic. The exact meaning will
always be clear from the context.

any number of times between a and b. Complete presenta-
tion of the transitional logics is out of the scope of this paper.
In [9], the authors provide a hierarchy of such logics linked
by Galois connections and therefore allowing static analysis
by abstract interpretation [4] for the detection of glitches.
Such logics can also be used as signal value domains, where
the precise shape of a signal is irrelevant on a given seg-
ment of its domain (that is R+ for timed and N for untimed
signals).

4. TIMED CIRCUITS ANALYZER
Timed Circuits Analyzer (TCA) toolbox [7] is an exten-

sion of the IF tool-chain [2] with the two following main
contributions:

• A language and the associated IF model generator for
modelling of asynchronous circuits;

• An integrated engine with an efficient forward reacha-
bility algorithm implementing a technique for merging
of clock valuation zones.

The latter contribution is particularly important, since
it allows a considerable reduction of the state space to be
explored at analysis stages.

The underlying formalism for the IF/TCA tool-chain is
that of the timed automata extended with signal variables.
In the following section, we briefly present the basic timed
automata formalism. The extension with signal variables is
rather straightforward.

4.1 Timed Automata
Timed automata were introduced in [1]. An extended pre-

sentation is also available in [7] as the background for the
TCA extension of IF. Here, we only provide a brief overview.

Definition 3. Let C be a finite set of clocks. Let ΨC and
ΓC be the sets of respectively constraints and update oper-
ations (resetting, deactivation and copying) on clocks from
C.

A timed automaton is a tuple (Q, q0, C,Σ, I,∆), where

• Q is a finite set of control states,

• q0 ∈ Q is the initial state,

• Σ is a finite set of labels,

• I : Q→ ΨC is a function mapping each state to a state
invariant (the automaton is only allowed to stay in a
state q as long as the invariant I(Q) is satisfied),

• ∆ ⊆ Q×ΨC × Σ× ΓC ×Q is a transition relation.

A transition (q, g, a, γ, q′) ∈ ∆ consists of the source and
target states (q and q′ respectively), a label a, a guard g
(a condition on clocks that must be satisfied for the tran-
sition to be enabled) and a function γ associating update
operations to each clock.

We speak of control states in order to distinguish them
from the the global states or configurations of the automa-
ton. Configurations are pairs (q, v), where q ∈ Q is a control

state and v : C → (R+ ∪ {⊥})|C| is a valuation of clocks. In
the initial configuration (q0, 0), all active clocks are set to
zero.

The semantics of timed automata is given in terms of runs,
that is sequences of steps from one configuration to another.

Definition 4. Let A = (Q, q0, C,Σ, I,∆) be a timed au-
tomaton.

• A discrete step of A is a transition of the form (q, v)
a→

(q′, v′), with (q, g, a, γ, q′) ∈ ∆ such that v |= g (the
guard condition is satisfied) and v′ = γ(v).

• A time step of A is a transition of the form (q, v)
d→

(q, v + d), with d ∈ R+ such that ∀d′ ∈ [0, d], v + d′ |=
I(q) (the state invariant in the state q is satisfied).

• A compound step is a transition of the form (q, v)
(a,d)→

(q′, v′ + d)
def
= (q, v)

a→ (q′, v′)
d→ (q′, v′ + d).

Notice that, during a discrete transition, time “does not
advance”, that is the only possible clock operations are re-
setting, deactivation and copying.

Any run of a timed automaton is equivalent to a run con-
sisting only of compound steps, except potentially a first
time step. In the following, we will only consider runs of
this form.

The original decidability proof for verification of timed
automata [1] was based on partitioning the space of clock
valuations into a finite number of equivalence classes called
regions. TCA relies on a more advanced notion of zones,
which are convex polytopes composed of a number of re-
gions. The more clocks there are in the system, the higher
is the dimension of the clock valuation space. Hence, it is
crucial for efficient analysis of timed automata to keep the
number of clocks involved to the minimum.

4.2 Abstraction techniques in TCA
In this section, we present the abstraction techniques im-

plemented in TCA [7, Section 7.1.2], on which we rely in
step 3 of the procedure described in the introduction.

The abstraction starts with an automaton AX operating
on the set X of signals and involves the following steps:

AX ; A+Ĉ
X ; Ar

X ; AĈ
X ; AXio ; Am

Xio
, which are

explained below.

1. AX ; A+Ĉ
X : the AX automaton is extended with a

set Ĉ of auxiliary clocks that do not participate in
transition guards, nor in the state invariants. These
clocks only observe the behaviour of the obtained au-

tomaton A+Ĉ
X and measure the time elapsed since the

corresponding input events.

2. A+Ĉ
X ; Ar

X : the forward reachability algorithm is ap-
plied to obtain an equivalent timed automaton Ar

X ,
where all paths correspond to a realizable qualitative
behaviour.

3. Ar
X ; AĈ

X : timing constraints in Ar
X are projected on

auxiliary clocks Ĉ.

4. AĈ
X ; AXio : the automaton is projected on the in-

put and output signal variables thus rendering some
transitions unobservable.

5. AXio ; Am
Xio

: the automaton is reduced by merging
bisimilar states that produced by the previous step.

4.3 Propagation Waves
The auxiliary clocks Ĉ added to the automaton AX in

the first step of transformation in the previous section cor-
respond to input events. Each input event triggers a prop-
agation wave that consists of the set of ports in an excited
state caused by this event. When an input event occurs,
a clock in Ĉ is initialised. This clock is deactivated when
the wave triggered by the corresponding event disappears,
that is the last port is removed from the wave. Thus, aux-
iliary clocks measure the time elapsed since the occurrence
of the corresponding input event. Furthermore, auxiliary
clocks and waves are in a one-to-one correspondence. Waves
are modelled in TCA by dedicated IF processes and can be
reused once the triggering event has disappeared from the
system. When the number of events present in the system is
bounded—which is the case in the context of this paper—a
finite number of waves and auxiliary clocks is sufficient to
analyse the temporal behaviour of the system.

In TCA models, identifiers of the wave processes are com-
municated among the processes modelling the ports along
with the signal values. Thus, when a port reacts to an event,
it is automatically removed from the corresponding wave and
replaced by ports that take on input the corresponding pro-
duced signal. Each port of the circuit can only be part of one
wave at a time. When an excited port receives a signal asso-
ciated to a different wave, one speaks of the wave covering,
modelled in the generated product automaton by a transi-
tion to the state “COVERING”. In the following sections,
we will show how we exploit the information associated to
such transitions.

4.4 TCA output
TCA takes on input a .tc file with the circuit description

consisting of three parts:

1. declaration of input signals,

2. declaration of output signals,

3. a list of gate declarations, each comprising the name
of the signal computed by the gate, the lower and the
upper delay bounds and the boolean expression the
input signals of the gate.

Based on the .tc file, the TCA front-end generates a .if

file with the IF model of the circuit comprising one IF pro-
cess for each input signal and each gate of the circuit, as well
as a generic IF process modelling the propagation waves.
This model is then used to generate C code for the model
exploration with the IF/TCA engine. Finally, this simula-
tor generates a number of automata representing the entire
circuit and corresponding to the abstractions presented in
Sect. 4.2. For each automaton, several files can be gener-
ated, among which we use the following four:

.states — this file provides information about all states
of the automaton: values of input and output signals,
active waves and the state invariant;

.trans — this file provides information about all transitions
of the automaton: associated event (signal edge), wave
operations and the guard;

.pdf — the graphical representation of the automaton;

.pif — a template IF process that can be used as a com-
ponent in the IF models of higher hierarchical levels of
the circuit.

5. CASE STUDY ANALYSIS
In this section, we present two examples: first, we model

and analyse the temporal behaviour of a switch—a basic el-
ement of the circuits in the context of this paper—; then we
proceed to the analysis of a case-study based on the protec-
tion system of the P4 reactors.3

5.1 Switch
The switch is a circuit element with the following cyclic

behaviour:

1. The current value of the input signal is consulted;

2. A processing with the duration bounded by a given
interval [Tm, TM] is performed;

3. The value is propagated to the output.

For circuits, this type of behaviour, is called synchronous,
since subsequent computation cycles are clearly separated.
Although strictly speaking, it cannot be called periodic, since
the duration of each cycle can vary, it can be considered
periodic with jitter, for example by taking the period to be
Tm and the jitter (TM − Tm).

Whenever the input signal of a switch changes, the prop-
agation of the new value is subject to two delays:

1. The new value is perceived by the switch when the
previous processing cycle terminates. This delay is
bounded by [0, TM].

2. Once the new value is perceived, its propagation is
further delayed for the duration of the processing. This
delay is bounded by [Tm, TM].

When a second change of the input signal occurs while the
previous one is not yet perceived by the switch, the previous
value is lost. We have to compute the possible shapes of the
output signal of the switch in response to a pulse of duration
λ (Fig. 3).

In TCA, we model the switch by specifying explicitly the
two delays:

input {x0}

output {z0}

y0 : [0, T_M] x0;

z0 : [T_m, T_M] y0;

An internal signal y0 models the perception delay, whereas
the delay associated to the output signal z0 models the pro-
cessing delay in the switch. TCA does not implement sym-
bolic parameter manipulation. In this example we will use
values from the P4 case study: Tm = 27 ms and TM =
33 ms.

Figure 5 shows a view of the automaton generated by
TCA. This view does not contain time information. For each
control state, it shows values of the signals x0 and z0 and the
list of active clocks. For each transition, this view shows the

3For the obvious confidentiality reasons, this example does
not represent the actual reactor protection system, but is
only inspired by it.

0

{0 - 0}

2

{1 - 0}

(x0.0)

x 0 +

St{ (x0 .0) }

3

COVERING

x0-

Rm{ (x0.0) }

4

{0 - 0}

(x0.0)(x0.1)

x0-

St{ (x0 .1) }

5

{1 - 1}

z 0 +

Rm{ (x0.0) }

y0*

Rm{ (x0.0) (x0.1) }

6

{0 - 1}

(x0.0)

z 0 +

Rm{ (x0.1) }

x0-

St{ (x0 .0) }

1

{0 - 0}

z0 -

Rm{ (x0.0) }

Figure 5: Switch model generated by TCA

event (signal edge) and the associated clock operations. For
example, the transition 0→ 2 is associated with the raising
edge of the input signal x0 (denoted x0+ in the diagram)
and starts the clock x0.0. Transition 2 → 3 (resp. 4 → 3)
models wave covering (see Sect. 4.3) when two edges of the
signal x0 (resp. y0) occur before the corresponding reaction
has been produced. The event y0∗ denotes a sequence of a
raising edge of y0 followed a falling one—this information is
abstracted away, since y0 is an internal signal (cf. Sect. 4.2).

The transition 2 → 3 models the phenomenon discussed
above: the loss of the input signal value when a second
change occurs while the previous one is not yet perceived
by the switch. The transition 4→ 3 is a modelling artefact:
a change of the internal signal y0 models the perception of
the input signal by the switch and can only occur at the end
of the processing cycle, when the previous change of y0 is
propagated to the output. In other words, the first delay
in the switch model is inertial, whereas the second one is a
transmission line delay. Although TCA does not make this
distinction, knowledge of the system allows one to system-
atically ignore artefacts as above during system analysis.

Before proceeding with the timing analysis of the switch,
we compute the shape of the output using transitional log-

ics. The transitional logic value for the pulse signal is F1; as
discussed above, the switch can be modelled by a composi-
tion of an inertial delay 2 and a transmission line delay 4.
Thus the switch response to the pulse signal is

4(2(F1)) = 4(F0,1) = F0,1 ,

that is either a constant zero signal F0 or a pulse F1.
As mentioned above, the loss of the input signal (output

F0) is modelled by the transition 2→ 3 (Fig. 5). TCA pro-
vides the following temporal annotation for this transition:

TRANSITION : 2 -> 3

Event : x0-

Waves killed : (x0.0)

Time : (x0.0)[0,33]

The last line represents the guard, that is the transition
is enabled only when the value of the clock x0.0 is in the
interval [0, 33]. The clock x0.0, here, is started on the oc-
currence of the raising edge x0+, which happens at the time
δ (Fig. 3). The date of falling edge is δ + λ. We conclude
that the input signal cannot be lost provided δ+λ > δ+ 33,
i.e. λ > 33.4

Assuming that the signal is not lost, the response of the
switch is necessarily the pulse F1. However, we cannot pre-
cisely time-stamp its edges, therefore we consider an equiv-
alent signal over a larger domain

0 0 → 1 1 1 → 0 0

t1 t2 t3 t4 +∞0 .

Here, the raising (resp. falling) edge of the switch response
signal is in the interval [t1, t2] (resp. [t3, t4]). In particular,
the signal is guaranteed to be true in the interval [t2, t3].

In order to determine t1 and t2, we consider transitions
2→ 5 and 4→ 6 associated to the rising edge of the signal
z0. TCA provides the following information:

TRANSITION : 2 -> 5

Event : z0+

Waves killed : (x0.0)

Time : (x0.0)[27,66]

TRANSITION : 4 -> 6

Event : z0+

Waves killed : (x0.1)

Time : (x0.0)[27,66] (x0.1)[0,33] ...

The guards of both transitions have the same interval [27, 66]
for the clock x0.0.5 Hence, z0 cannot rise before t1 = δ+ 27
and must have risen after t2 = δ + 66.

Before continuing with the analysis, one should observe
the following. In order to maintain a finite number of aux-
iliary clocks, TCA normalises the clock usage when a wave
disappears from the circuit. For example, in the transition
4 → 6, the rising edge of z0 triggers the end of the wave
started by the rising edge of x0. The associated clock x0.0
is deactivated. However, in the state 4, the clock x0.1, ac-
tivated by the transition 2→ 4, is active. Hence, this clock
is copied x0.0 := x0.1 and deactivated. Thus, in the state

4In this simple example, we can conclude that the sufficient
condition for the signal to be preserved is λ > TM .
5Again, this can be translated as Tm ≤ x0.0 ≤ 2TM .

6, the clock x0.0 measures the time elapsed since the falling
edge of x0.

In order to determine t3 and t4, we consider the transition
6 → 1 associated to the falling edge of z0. TCA provides
the information below, which allows us to conclude t3 =
δ + λ+ 27 and t4 = δ + λ+ 66.6

TRANSITION : 6 -> 1

Event : z0-

Waves killed : (x0.0)

Time : (x0.0)[27,66]

Finally, notice that t2 ≤ t3 is equivalent to λ ≥ 39.
Summarising the above discussion, we conclude that three

possibilities exist for the response of the switch to the pulse
signal in Fig. 3:

If 39 ≤ λ, the switch response is a pulse with known
bounds for the interval where the value 1 is maintained

0 0 → 1 1 1 → 0 0

δ + 27 δ + λ+ 27 +∞
0 δ + 66 δ + λ+ 66

, (2)

if 33 < λ < 39, the switch response is a pulse, but our
approach does not provide any guarantees with respect to
the interval where the value 1 is maintained

0 0 → 1 → 0 0

0 δ + 27 δ + λ+ 66 +∞ ,

if λ ≤ 33, the input signal can be lost

0 00 | 0 → 1 → 0

0 δ + 27 δ + λ+ 66 +∞ .

Notice that a simple manual analysis shows that, due to
the synchronous nature of the switch, whenever the input
signal is not lost, it is maintained on the output for at least
Tm = 27. Since TCA does not distinguish between trans-
mission line and inertial delays, this information cannot be
included in the model.

5.2 Analysis of the P4 Protection System
In this section, we present an overview of the analysis of

the P4 protection system focusing mainly on the composi-
tional aspect rather than on the completeness of the analysis.

5.2.1 Partial Triggers
Each partial trigger signal is used twice in the CUs: once

in the CU where it is produced and once in the correspond-
ing CU of the other group, after the transmission over the
network.

In the first case, partial trigger signals of the primary CUs
(PT1,j with j = 1, 2) are modelled exactly as in Sect. 5.1,
whereas, for the secondary CUs (PT2,j with j = 1, 2), the
appropriate values of Tm and TM must be substituted. As-
suming λ ≥ 90, we obtain the signal in (2) for the primary

6Idem, t3 = δ + λ+ Tm and t4 = δ + λ+ 2TM .

CUs, and

0 0 → 1 1 1 → 0 0

δ + 72 δ + λ+ 72 +∞
0 δ + 162 δ + λ+ 162

(3)

for the secondary CUs.
In the second case, we have to consider three additional

delays: a transmission line delay for the network latency
and a pair of delays to model a switch at the reception by
the target CU. Transitional logic analysis gives the following
shape of the received signal:

4(2(4(4(2(F1))))) = 4(2(F0,1)) = F0,1 .

Analysis, similar to that of Sect. 5.1, of PT1,j (j = 1, 2)
shows that the signal cannot be lost provided that λ > 100.
Furthermore, when λ ≥ 106, the following bounds can be
computed for the edge time-stamps:

0 0 → 1 1 1 → 0 0

δ + 78 δ + λ+ 78 +∞
0 δ + 184 δ + λ+ 184

.

Similarly, for PT2,j (j = 1, 2), the signal cannot be lost
provided that λ > 199 and, when λ ≥ 208, the following
bounds can be computed for the edge time-stamps:

0 0 → 1 1 1 → 0 0

δ + 168 δ + λ+ 168 +∞
0 δ + 376 δ + λ+ 376

.

5.2.2 Disjunction of two partial triggers
Before moving on with the analysis, one has to observe

that for a given circuit TCA generates, firstly, an IF system
with one process for each signal (input, output and internal)
and one process for the waves. Secondly, the toolbox gen-
erates a single IF process encoding the product automaton
modelling the entire system. For the compositional analy-
sis, we use this latter process to replace one of the processes
generated by TCA before the analysis of the compound sys-
tem.7

More specifically, we start by modelling the structure of
the compound system (a disjunction of two partial triggers
within a CU) in TCA as follows:

input {x0}

output {z0}

y0 : [0,0] x0;

y1 : [0,0] x0;

z0 : [0,0] (y0+y1);

Here the delay between x0 and y0 (resp. x0 and y1) is a
placeholder for the partial trigger generated within the CU
(resp. received over the network). TCA generates two pro-
cesses for each of the signals y0 and y1, which we manually
replace by the process generated for the partial triggers at
the previous analysis stage (Sect. 5.2.1). Hence, the associ-
ated delays are irrelevant and taken to be zero without loss

7These substitutions have been realised manually for the
presented case study, but can be automated in the future.

of generality. Notice that we use the same input signal for
both y0 and y1. This reflects the simplifying hypothesis that
the input signals are synchronised (Sect. 2). The signal z0
models the ideal OR port (associated delay in the system is
considered to be negligible).

For the transitional logic analysis, we combine the results
obtained for the partial triggers—both F0,1—with an ideal
OR operator to obtain:

F0,1 ∨ F0,1 = (F0|F1) ∨ (F0|F1)

= (F0 ∨ F0)|(F0 ∨ F1)|(F1 ∨ F1)

= F0|F1|F1,2 = F0...2 ,

that is a constant zero signal, a pulse or a double pulse.
Since we are only interested in answering the two ques-

tions in Sect. 2, we only have to consider the situation where
the input signal is not lost. For the disjunction of two sig-
nals, this is true provided that the input signal is not lost in
at least one of them, which is the case when λ > 33 (resp.
λ > 82) for the primary (resp. secondary) CUs. Thus the
output signal is limited to F1,2. Assuming stronger condi-
tions λ ≥ 39 (resp. λ ≥ 90) for the primary (resp. sec-
ondary) CUs (see Sect. 5.2.1), the output signal can be rep-
resented as follows:

0 0 → 1 T0,1 1 → 0 0

t1 t2 t3 t40 +∞ .

By considering the guards in the generated automata as
in the previous sections, we obtain the following signals for
primary and secondary CUs respectively:

0 0 → 1 T0,1 1 → 0 0

δ + 27 δ + λ+ 78 +∞
0 δ + 66 δ + λ+ 184

,

0 0 → 1 1 → 0 0

δ + 72 δ + λ+ 168 +∞
0 δ + 162 δ + λ+ 376

T0,1

.

5.2.3 Partial activators and activator
The rest of the analysis of the case study consists in re-

peating iteratively the steps described in the previous sec-
tions. A partial activator is computed by taking the con-
junction of the signals obtained in Sect. 5.2.2 for primary
and secondary CUs of the corresponding group. Observe
that the two groups are completely symmetrical, hence it is
sufficient to analyse only one of them.

The transitional logic analysis provides us the shape of
the resulting signal:

F0...2 ∧ F0...2

= (F0|F1|F2) ∧ (F0|F1|F2)

= (F0 ∧ F0...2)|(F1 ∧ F1)|(F1 ∧ F2)|(F2 ∧ F2)

= F0|F0,1|F0...2|F0...3 = F0...3 ,

which can be represented as follows:

0 0 → 1 T0...2 1 → 0 0

t1 t2 t3 t40 +∞ .

Similarly to Sect. 5.2.2, we start by modelling the struc-
ture of the compound system by the following TCA circuit:

input {x0}

output {z0}

y0 : [0,0] x0;

y1 : [0,0] x0;

z0 : [0,0] (y0*y1);

We generate the IF model with the TCA parser, replace the
IF processes generated for the intermediate signals y0 and
y1 by those generated following the analysis in the previous
phase, and run the TCA forward reachability engine on the
obtained model.

The wave covering analysis as in Sect. 5.1 shows that the
input signal cannot be lost, provided λ > 162, whereas the
analysis of the other relevant transitions results in the out-
put signal

0 0 → 1 1 → 0 0

δ + 72 δ + λ+ 78 +∞
0 δ + 162 δ + λ+ 184

T0..2

.

Finally, the Activator signal is the disjunction of the two
Partial Activators. The transitional logic analysis provides
us with the untimed signal shape F0...3∨F0...3 = F0...6. As in
Sect. 5.2.2, we conclude that the input signal cannot be lost
provided λ > 162, since this guarantees that it is not lost in
either of the components of the disjunction, and, assuming
that the signal is not lost, the output Activator signal is

0 0 → 1 1 → 0 0

δ + 72 δ + λ+ 78 +∞
0 δ + 162 δ + λ+ 184

T0..5

.

Among others, this result provides the answers to the two
questions of Sect. 2:

1. The Activator signal is guaranteed to be raised, pro-
vided that the alarm signal is maintained by the sen-
sors for at least 162 ms.

2. Whenever the Activator signal is raised by the circuit,
this happens no longer than 162 ms after the alarm is
raised by the sensors.

6. CONCLUSION
In this paper, we have applied a combination of two exist-

ing techniques, that is abstract interpretation with transi-
tional logics [9] and compositional timing analysis with the
IF/TCA tool chain, to a case study inspired by the soft-
ware protection system of a P4 nuclear reactor. This case
study belongs to the class of asynchronous circuits with syn-
chronous components, a subclass of the so-called Globally
Asynchronous, Locally Synchronous (GALS) systems. We

have shown that the proposed methodology allows one to an-
swer essential questions about temporal behaviour of such
systems while avoiding the combinatorial explosion of the
state space of the analysed systems.

The proposed methodology can be authomated and im-
plemented as an applicative extension of the IF/TCA tool
chain. Furthermore, this study allowed us to exhibit some
improvements to the TCA tool chain, such as a possibility to
explicitly distinguish inertial and transmission line delays in
the TCA models. Future work will have to include a compar-
ison with other analysis tools and techniques, particularly,
UPPAAL and Real-Time Calculus.

Acknowledgements
The author would like to thank Ramzi Ben Salah, Marius
Bozga and Oded Maler for their help with understanding
the inner workings of both IF and TCA tools, as well as the
anonymous reviewers for their comments and suggestions,
even though some of these could not be implemented in the
present version of the paper for technical reasons.

7. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical Computer Science, 126(2):183–235, 1994.

[2] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis.
The if toolset. In Formal Methods for the Design of
Real-Time Systems, volume 3185 of LNCS, pages
237–267. Springer, 2004.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in
platform-based embedded system designs. In DATE
2003, pages 190–195. IEEE Computer Society, 2003.

[4] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc. of
the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’77,
pages 238–252, New York, NY, USA, 1977. ACM.

[5] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm. Reliable and precise WCET
determination for a real-life processor. In Embedded
Software Workshop, volume 2211, pages 469–485, Lake
Tahoe, USA, October 2001.

[6] K. G. Larsen, P. Pettersson, and W. Yi.
Model-Checking for Real-Time Systems. In Proc. of
Fundamentals of Computation Theory, LNCS 965,
pages 62–88, Aug. 1995.

[7] R. B. Salah. On Timing Analysis of Large Systems.
PhD thesis, INPG, Grenoble, 2007.

[8] R. B. Salah, M. Bozga, and O. Maler. Compositional
timing analysis. In S. Chakraborty and N. Halbwachs,
editors, EMSOFT, pages 39–48. ACM, 2009.

[9] S. Thompson and A. Mycroft. Abstract interpretation
of combinational asynchronous circuits. Science of
Computer Programming, 64(1):166–183, 2007.

[10] Wikipedia. Nuclear power in France — Wikipedia, the
free encyclopedia, 2011. [Accessed 29-July-2011].

[11] S. Yovine. KRONOS: A verification tool for real-time
systems. International Journal on Software Tools for
Technology Transfer (STTT), 1:123–133, 1997.
10.1007/s100090050009.

