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1 Introduction

In the modern world, complex industrial systems are just everywhere even if they are so fa-
miliar for us that we usually forgot their underlying technological complexity. Transportation
systems (such as airplanes, cars or trains), industrial equipments (such as microelectronic or
telecommunication systems) and information systems are for instance typical examples of com-
plex industrial systems that we are using or dealing with in the everyday life.

”Complex” refers here to the fact that the engineering of these industrial systems relies on
incredibly complex technical and managerial processes. Such systems are indeed characterized
by the intrinsic difficulty of their design, due both to an important technological heterogeneity
and to the large number of sub-systems they involve. To face this huge complexity, engineers de-
veloped a number of methodological tools, popularized in the industry under the name of system
engineering (see [22, 23] for general systems or [30, 34] for software systems), that fundamentally
rely on the fact that complex industrial systems can be always recursively decomposed in a series
of coupled sub-systems, up to arriving to totally elementary systems which can be completely
handled. In such a framework, system engineering provides then methods for helping both the
design, the architecture, the progressive integration and the final validation and qualification
steps that structure the construction of an industrial complex system.

This methodological environment is however not a fully satisfactory answer to the problems
that engineers must permanently solve in practice to handle this complexity. This empirical and
operational engineering approach indeed hides the fact that there are basically no theoretical
tools for dealing with systems at a global level. The key problem comes here in particular from
the fact that the notion of an industrial system in its whole is not very well defined and rather
subjective, even if it clearly corresponds to a strong industrial reality. Due to this lack of global
formalism, lots of different approaches were developed – without any unified point of view –
to take into account different (important, but partial) aspects of complex industrial systems.
The direct practical consequence of this situation is the tremendous diversity and heterogeneity
of the modelling and simuling tools that the system engineers are using in practice. These
tools indeed depend first whether one is dealing with a pure software system (where UML –
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see [6] or [28] – is for instance still one of the core modelling technique), an embedded (real-
time) system (where synchronous languages – see [4] for a comprehensive introduction and a
rather complete bibliography – are the typical good design tools ; see however also [19, 20]
for different types of approaches to the same subject), a physical system (where Mathlab and
Simulink – see [21] – are probably the key modelling and simuling standards) or an hybrid system
(different kinds of existing models for this other important class of mixed systems can be found
in [2, 13, 15, 25, 29, 37]). Independently of the type of system which is modelled, engineers also
use different specification tools according to the part of the life cycle of a system they are dealing
with: the initial informal global specification tools (such as Doors – see [35]) are for instance
totally disconnected from the more formal tools that can support verification techniques (see
[1, 5, 7, 31, 36] for details), but that are only used for specifying the most critical sub-systems,
which are themselves altogether totally independent from the IVVQ 1 tools that can be found
at the very end of the design and construction cycle of a complex industrial system.

The purpose of this paper is to try to reconnect all these (more or less disconnected) streams
by going back to the very fundamentals, that is to say by looking for an unified definition of
an industrial system from which all these different models could be deduced. Observe that such
an approach is clearly in rupture with the usual one which is in fact more oriented to the local
fixing of the connection problems existing between the different tools that are used for designing
and managing an industrial system (by transforming them into interface design questions). We
think however that the key problem is much deeper and comes directly from the fact that there
does not really exist any mathematically consistent global point of view on industrial systems
(even if some interesting approaches are to be noticed – see for instance [8, 33, 38]). This paper
should therefore be seen as a – modest – attempt in this direction.

We indeed propose here a formal definition of a system which intends to capture both conti-
nuous and discrete systems which are the two major types of technical sub-systems that compose
a given industrial system 2 (see Section 3). The key point on which our approach relies is a
common (discrete) modelling of time based on the use of a non standard model of real numbers
(see Section 2). Making this (very strong) change allows indeed to take into account in the same
way both conservative physical systems and computer systems (see again Section 3 for several
examples). Moreover our systemic models are always causal (see Section 3.1): non causality
appears indeed in our approach as the consequence either of abstraction (i.e. simplifying our
model) or standardization (i.e. going back to the usual model of time). Observe also finally that
large classes of classical systems such as synchronous, Hamiltonian or dynamical systems can
also be recovered within our approach (see Section 4 for some insights on these questions).

2 Time

In order to model all industrial systems in an unified way, the first key problem – as already
mentioned above – is to develop a common functional 3 framework that takes both into account
continuous and discrete systems (typically physical and computer systems), that is to say systems
whose time evolution behavior is represented either continuously or discretely. At this point,
two directions can be chosen to construct an unified theory, depending whether one prefers to
develop a continuous or a discrete point of view on time. In this paper, we decided to develop

1 Integration, Verification, Validation, Qualification.
2 We will in particular not try to integrate human systems – such as company organizations – in our modelling

even if such systems are also fundamental for some type of applications (typically information systems).
3 “Functional” refers to the fact that systems will only be considered here as input/output functions. We will

in particular not try to model the architecture on which relies a system (which would bring us too far . . .).
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the discrete approach since we wanted to keep the usual intuitions on computer systems. The
price to pay is then the change of model of real numbers on which time rely in order to capture
also continuous systems in a same global framework. Note however that one could also do the
converse and deal always with the usual continuous modelling of time which will then lead us to
develop a distribution point of view (see [32]) on computer systems, using for instance typically
Dirac combs for modelling the discrete entries of a given software system.

2.1 Non standard analysis

To develop a global (discrete) unified framework for dealing both with continuous and discrete
industrial systems, we will therefore go back to the 18th century representation of real numbers
(see [10, 17, 18]), that is to say to the so-called non-standard model of R. In other words, we
will consider in all the sequel that real numbers are given by the set ∗

R of non-standard reals 4

as initially formalized by Robinson [27] (for a comprehensive introduction to non standard reals
see the paper of Lindström in [9]). This set (see Figure 1) is a real-closed field that contains all
usual real numbers, but also the infinitesimal reals (i.e. the non zero non standard real numbers
that have their absolute value strictly less than any r ∈ R

+
∗ ) – whose set will be denoted by I in

the sequel – and their inverses which are the infinitely great reals (i.e. whose with an absolute
value strictly greater than any usual real number r ∈ R).

0
R

positive infinitely
great numbers

negative infinitely
great numbers �
 �	infinitesimals

Figure 1: Graphical representation of non-standard real numbers.

Note in particular that one can prove that the field ∗
R is elementarily equivalent to R, which

means that the first order logical properties of R and ∗
R (expressed in the logical theory of

ordered fields) are exactly the same (see [3] and [14] for more model theoretical fundamentals
of non standard analysis). Observe also that, among all non-standard real numbers, one can of
course consider the set ∗

Z of non-standard integers that, on top of standard integers, contains
infinitely great ones, having absolute value greater than any n ∈ N.

Note finally that two non-standard real numbers x and y are said to be infinitely close (which
is denoted by x ≈ y) if and only if x− y is infinitesimal. This last notion allows, for instance, to
recover the usual concept of continuity. Indeed, the standard image f : R → R of a non standard
function ∗f : ∗

R → ∗
R is continuous in a standard point x0 ∈ R if and only if one has

∀ δ ∈ ∗
R, δ ≈ 0 ⇒ ∗f(x0 + δ) ≈ ∗f(x0) .

More details about non standard analysis can be found in [11] and [9].

2.2 Time scales

From now on, we will suppose that the time is modelled by ∗
R throughout all this paper. Let

us therefore give the following first fundamental definition.

4 A star on the left of a symbol as in ∗
R stands always for ”non-standard”, whereas on the right, it means

either that zero is not included, as in R
∗ or ∗

R
∗ (which denote respectively the usual and the non standard sets

of non zero real numbers) or that we speak of the set of words over a given alphabet, as in A∗.
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Definition 2.1 Let τ ∈ ∗
R

+
∗ be a strictly positive non-standard real number. The set Tτ = ∗

Z τ
will then be called the time scale of step τ > 0. Any element t ∈ Tτ will said to be a moment on
this last time scale.

A time scale can therefore be seen as a discrete series of clock ticks occuring at times n · τ ,
with n ∈ ∗

Z being a non-standard integer eventually infinitely great.

p p p p p p−Nτ −2τ −τ 0 τ 2τ Nτ = ∞

The following lemma shows then we can recover usual continuous time within this model by
considering time scales with infinitesimal steps (i.e. with τ ≈ 0).

Lemma 2.2 Let Tτ be a time scale with an infinitesimal step τ and let r ∈ R be any standard
real number. Then there always exists a moment t ∈ Tτ which is infinitely close to r.

Proof — Let τ ≈ 0 be an infinitesimal non standard real number and let r be a usual standard
real number. The non standard version of Archimedes’ axiom (see Chapter A.6 of [3] or use the
transfer principle as explained in [11]) shows that there exists a non standard integer N ∈ ∗

N

(here necessarily infinitely great) such that N < r/τ ≤ N +1. Hence we have Nτ < r ≤ (N +1)τ
and consequently 0 < r − Nτ ≤ τ ≈ 0. Thus putting t = Nτ , we have t ≈ r.

More generally, we can classify possible all time scales Tτ into the following three groups
according to the nature of their step τ :

• continuous time scales when their time step is infinitesimal, i.e. when one has τ ≈ 0,

• discrete time scales when their time step is a non infinitesimal bounded non standard real
number, i.e. when one has τ ≈ r for some strictly positive usual real number r ∈ R

+
∗ ,

• infinite time scales when their time step is an infinitely great non standard real number.

Note that the latter case is not of practical interest as there are essentially only three “standard”
moments on an infinite time scale, that is to say −∞, 0, and +∞. Therefore we will concentrate
in the sequel of this paper uniquely on the time scales of the first two types.

Let us finally give the following three definitions that we will use for dealing with systems.

Definition 2.3 A time scale Tτ is said to refine another time scale Tτ ′ – which is denoted by
Tτ ′ � Tτ – if and only if one of the two following equivalent properties holds:

• Tτ ′ ⊂ Tτ

• ∃ N ∈ ∗
N, τ ′ = Nτ

Definition 2.4 Given two time scales Tτ and Tτ ′ , we shall call synchronization points all the
moments that belong both to the two time scales, i.e. to Tτ ∩ Tτ ′.

Observe that, if Tτ refines Tτ ′ , any moment on Tτ ′ is a synchronization point.

Definition 2.5 A temporal filter is a set of time scales F = {Tτ}τ∈T such that � is a total
order on F . In other words, Tτ and Tτ ′ are always comparable by � for any τ, τ ′ ∈ T .
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3 Systems

3.1 Definition

In this section, we give a formal definition of the notion of system which tries to capture the
realness of industrial complex systems. Most systems – be that industrial scale technological
systems or networks of information processing machines (and probably also certain biological
systems) – are too complex to be modelled or analyzed as a whole, but can be treated as the
result of the integration of several components. These components tend to be simpler systems
that can in their turn be decomposed in the same way. We arrive eventually at the level where all
such components are elementary systems, i.e. sufficiently simple to be considered independently
of their structure. The following key definition is an attempt to capture this as yet intuitive and
informal process (on which however relies system engineering in the industry).

Definition 3.1 A system S is recursively defined as the union of the following elements:

• an input/output mechanism that consists respectively in:

– an input channel x which is capable of receiving – only at moments that belong to a
given time scale Tτi

called the input time scale – data that belong to a given set I,
called the input domain of S (and also denoted by In(S)),

– an output channel y which is capable of emitting – only at moments that belong to a
given time scale Tτo called the output time scale – data that belong to a given set O,
called the output domain of S (and also denoted by Out(S)),

• two internal storage mechanisms that consist respectively in:

– an internal memory given by a tape indexed by ∗
N – with a window that can take any

value within ∗
N – which may contain any (non standard) finite number 5 of values in

a given set M (also denoted by Mem(S)), called the memory domain,

– an internal state set which is just an arbitrary (non standard) finite set Q (that is
also denoted by State(S)),

• an internal time behavior which is given by

– an internal time scale Tτs that refines both the input and the output time scales, i.e.
which satisfies to Tτs � Tτi

and Tτs � Tτo,

– an internal state evolution function q(t) which maps each element t ∈ Tτs onto some
element q(t) ∈ Q (called the value of the internal state at moment t),

– an internal memory evolution function m(t) which maps each element t ∈ Tτs onto
some element m(t) ∈ M f (called the value of the internal memory at moment t) 6 ,

• three transition mechanisms that consist respectively in:

– a function read : Q × I → Q × M f that can read a given value on the input channel
and write correspondingly a series of values – depending on the status of a state q ∈ Q
(updated after the operation) – onto the internal memory,

5 Note that “finite” should be taken in the non standard meaning. We recall that a set is said to be finite in
this way if and only if it can be put in bijection with a set of the type [0, N ] where N stands for any (either usual
or infinitely great) non standard positive integer in ∗

N.
6 We denote here by Mf the set consisting of all non standard finite (in the non standard meaning) sequences

over a set M (i.e. partial functions ∗
N → M with non standard finite support).
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– a controller function δ : Q × M × ∗
N → Q × M × ∗

N that allows – as we will see –
to replace an element of the internal memory by another one 7 ,

– a function write : Q × M f → Q × O that can read a set of values on the internal
memory and write correspondingly a value – that may depend on the status of a state
q ∈ Q (updated after the operation) – onto the output channel,

• a finite (in the usual standard meaning) set of systems Sub(S) = {S1, . . . , Sn}, which are
called the sub-systems of S that are equipped with:

– for each k = 1, . . . , n, a function ρk : Q × Out(Sk) → Q × M f that reads the output
of Sk, writes it into the internal memory and changes possibly of internal state,

– for each k = 1, . . . , n, a function Gk : Q × Mf ×
⊗n

i=1 Out(Si) → Q × In(Sk) that
defines the interactions between the sub-systems,

and such that moreover the output and input time scales of all these sub-systems are always
refined by the internal time scale of S 8 .

The previous definition is however purely statical and does in particular not give any insight
on the time behavior of a given system. To progress in this last direction, we first introduce the
notion of instantaneous description of a system.

Definition 3.2 Let S be a system. An instantaneous description of S is then any quadruple of
the type d = (t, q, m, i) ∈ Tτs × Q × Mf × ∗

N such that one has

• t ∈ Tτs is a moment of the internal time scale Tτs of S,

• q ∈ Q is the value q(t) of the internal state evolution function of S at moment t,

• m ∈ Mf is the value m(t) of the internal memory evolution function of S at moment t,

• i ∈ ∗
N is the position of the window of the internal memory of S at moment t 9 .

We are now in position to define the time behavior of a system which just appears as a series
of instantaneous descriptions (completed by the time evolutions of the values of the input and
output channels that we did not integrated in these descriptions) indexed by its internal time
scale and submitted to some natural transition constraints.

Definition 3.3 Let S be a given system. A time behavior associated with S is then any family
d(t) = (t, m(t), q(t), i(t)) of instantaneous descriptions of S where t describes the internal time
scale Tτs of S and where one always pass from d(t) to d(t+ τs) by executing one of the following
possible transition actions:

1. for any k = 1, . . . , n and at every synchronization point t + τs between all concerned time
scales, update the input of Sk and the current internal state of S by setting

(q(t + τs), xk(t + τs)) = Gk

(

q(t); m(t); y1(t), . . . , yn(t)
)

, (1)

where xk denotes the input channel of the sub-system Sk and where each yi stands for the
output channel of Si correspondingly,

7 Depending on the value of a given state of Q which can be also changed by the action of δ.
8 Forming therefore altogether a temporal filter.
9 Whose value is given by m(t).
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2. for any k = 1, . . . , n and at each synchronization point t between the internal time scale
Tτs of S and the output time scale of Sk, read the output of Sk and update both the internal
memory of S – beginning at the current position of its associated window – and the current
value of its internal state by setting

(q(t + τs), m(t + τs)i≥i(t)) = ρk

(

q(t); yk(t)
)

, (2)

3. at each synchronization point t with the input time scale, perform a read operation –
depending on the value of the internal state of the system – and update both the internal
memory of S beginning at the current position of its window and this internal state:

(q(t + τs), m(t + τs)i≥i(t)) = read
(

q(t); x(t)
)

, (3)

4. at each synchronization point t with the output time scale, perform a write operation by
taking into account both the internal state of the system (that is updated after the operation)
and the values of the internal memory that begin at the current position of its window:

(q(t), y(t)) = write
(

q(t); m(t − τs)i≥i(t−τs)

)

, (4)

5. at any other moment t on Tτs, update the internal state, the value of the current position
of the internal memory of S and the current position of its associated window:

(q(t + τs), m(t + τs)i(t), i(t + τs)) = δ
(

q(t), m(t)i(t), i(t)
)

. (5)

Time behaviors may however not be unique. This remark leads us to the following definition
(observe that we will mainly consider deterministic systems in the examples of this paper).

Definition 3.4 A system S is said to be deterministic if and only S possesses exactly one single
time behavior. If it is not the case, the system is said to be non-deterministic.

The previous definitions are illustrated by the diagram in Figure 2. For the sake of simplicity
and clarity, we will occasionally vary this representation. In particular, we will sometimes omit
domains of variables or their names, if the omitted part is clear from the context.

S : - -x
Tτi

I

'-read
m∈Mf

Tτs

?δ

y

Tτo

O

$
?

write

S1

S2

q∈Q

Sn

?

G1
?6

�-
G2

-

�
��Gn

��

ρn

Figure 2: Graphical representation of a system S.

Note 3.5 One can also consider systems with more than one tape, that is to say with several
internal memory variables, which corresponds to saying that M is a direct product of different
independent sets. In this case, there has to be a window as above per tape.
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Note 3.6 The sub-system graph of S is the graph which is formed by taking Sub(S) as vertices
and with edges defined by (Gi)i=1,...,n, i.e. such that there is an edge going from Si to Sj if and
only if xj depends on yi according to Equation (1). This last graph can contain cycles and does
not necessarily have to be connected. Cycles in the sub-system graph represent feedback loops
common to the sub-systems that are involved in such cycles.

Note 3.7 Note that we suppose that each time scale T of an input or an output channel of a
sub-system of a given system S is always refined by the internal time scale Tτs of this system,
i.e. that one has Tτs ≺ T, even if such a time scale is free for interaction which means that the
corresponding channel is never implied in one of the relations (1).

In order to classify the level of complexity of a system, we now introduce the notion of order
of a system. A system shall said to be of order N if it is constructed using only sub-systems of
order N−1 and less. Systems of zero-th order are called elementary systems.

Definition 3.8 We define the order of a system S by setting

ord(S) =

{

0 if Sub(S) = ∅ ,

1 + max{ord(S ′) |S′ ∈ Sub(S)} otherwise .

We are now in position to introduce the notion of well defined system (which will in fact be
the only kind of systems that we shall consider in the sequel).

Definition 3.9 A system S is said to be well defined if there exists a positive standard integer
N ∈ N such that N = ord(S).

Note that each time behavior of a system implicitly defines an input/output relation of the
following type (where we took here all the notations of the previous definitions):

y(t0 + τo) = F
(

x(u), m(t), q(t)
∣
∣
∣ u, t ∈ [t0, t0 + τo[

)

, (6)

where t0 describes the output time scale Tτ0 of the system and where u, t ∈ [t0, t0 + τo[ signifies
that each of these variables is taken between t0 and t0 + τo (without reaching this last upper
limit) respectively on the time scale Tτi

and Tτs . For more simplicity, we will rewrite equivalently
the input/output relation (6) in the following simplified functional form

y = F(x; q, m) . (7)

It is easy to see that the function F is uniquely associated with a given system S if and only if
S is a deterministic system. Observe also that F must obviously (by construction) always be a
causal function, i.e. each value y(t) depends only on the values x(t′) with t′ < t.

Note 3.10 In several classical models of systems – such as dynamical systems (see [12]) or
synchronous systems (see [4]) – non causality is however a real problem that can eventually
occur. Such a situation is indeed always the direct consequence of the collapse between system
feedbacks and the hypothesis – which is implicit in usual continuous modelling (and corresponds
to standardization with respect to our approach), but totally explicit in synchronous modelling
– that no time is required to realize the internal treatments of a given system.
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Two main and complementary approaches to system design, namely specification and engi-
neering, can be distinguished. While the latter is interested in full details in the effective way a
system can be constructed, the former only deals with formal requirements on the input/output
relation of a system. In other words, the system specification approach considers a system as a
“black box” with a precise functional behavior, but without trying to know how such a behavior
is obtained. This approach is fundamental in the industry: a computer manufacturer will for
instance be able to give the specification of a given wireless interface to different suppliers that
may realize different wireless computer interfaces from their structural point of view, as soon as
the input/output relations specified by the manufacturer are exactly the same. Such situations
are modelled by the following definition for equivalent systems.

Definition 3.11 Two systems S1 and S2 are said to be equivalent if and only if one both has
In(S1) = In(S2), Out(S1) = Out(S2) and the following conditions, i.e.

∀ t ∈ Tτi
, x1(t) = x2(t) ⇒ ∀ t ∈ Tτo , y1(t) = y2(t) ,

where (x1, y1) and (x2, y2) stand respectively for the input and output channels of S1 and S2.

Note 3.12 The previous definition has mainly a meaning when S1 and S2 are deterministic.

3.2 Elementary systems

We will now study more in details some important classes of elementary systems, i.e. of systems
of order 0. We will in particular show that our framework allows already to capture at this level
different classical interesting classes of systems of very different nature. Note finally that we will
concentrate in this subsection on elementary systems of the following three types (using here a
general terminology which is not specially reserved to elementary systems):

1. software systems model phenomena observed mostly in information technologies: they are
characterized by the fact that their three defining time scales are all discrete,

2. physical systems are characterized by the fact that their three defining time scales are all
continuous: they are generally used to model real-life physical systems,

3. hybrid systems mix finally – by definition – both discrete and continuous time scales.

3.2.1 Elementary software systems

Elementary software systems have only discrete time scales. Their input and output spaces will
be called alphabets (which refers to the notion of set of letters or symbols). We assume that an
elementary software system is equipped with a tape and a corresponding window that indicates
the position of its head (this definition can be generalized to take into account several tapes).

As depicted on Figure 3, elementary software systems are receiving – on an input channel –
data within some input alphabet I at a rate given by the input time scale Tτi

. They are also
emitting – on an output channel – data that belong to some output alphabet O at a rate given
by the output time scale Tτo . Moreover any elementary software system has also the right to
perform – at a rate given by its internal time scale Tτs – a number of internal actions controlled
by the value of an internal state q ∈ Q, that is to say:

• read an input data x, transform it into a word (depending only on x) on the tape alphabet
and write it finally on the tape beginning at the current position of its window,
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• change the value of the element of the tape that is obtained by looking on the current
position of its window (that can be updated after the operation),

• write an output data y by taking a word w on the tape beginning at the current position
of its window and transforming it (depending only on w) into y.

S : - -x
Tτi

I

'-read
m∈Mf

Tτs

δ
y

Tτo

O

$
?

write

�
�
��

@
@

@I

q ∈Q
?

6

Figure 3: Graphical representation of an elementary software system S.

As we can see, elementary software systems are therefore just a slight generalization of usual
Turing machines which is obtained by adding to this classical model a permanent input/output
temporal behavior. The reader can indeed easily check that Turing machines (or equivalently
recursive functions if one prefers to stay within a functional approach) correspond to the degene-
rated case of our model where one considers elementary software systems that can only perform a
unique read action (or whose input channel will only receive a single input data during all possible
moments of time). Note also that as an immediate consequence of this simple observation, we
got the undecidability of the existence of a system’s output !

Example 3.13 (One element buffer) Let us now present an example of elementary deter-
ministic software system that we will use in the sequel (as a sub-system of an higher order
system). Our example consists in a buffer capable of storing only – at each moment of time –
one single message out of a message set A. We assume that this buffer has two input channels.
On the first input channel, the buffer can only receive either a message m ∈ A or a distinguished
empty message ε. On the second one, it can receive either a write request, that we will denote
by ’↑’, or again the distinguished empty message ε. The buffer stores each message it receives on
the first channel in a fixed memory cell which is overwritten each time a new non-empty message
arrives on the same channel. When the buffer receives a write request, it sends the currently
stored message on its output channel. A representation of such a buffer is shown in Figure 4.

Buf : - -q q�

�
?

m

w

x y

Figure 4: Graphical representation of a one-element buffer.

Let us now describe how to model this simple buffering mechanism by an elementary deter-
ministic software system, denoted by Buf . The input, internal and output time scales of such
a system are all discrete with respective time steps τi = τ and τs = τo = τ/2. In other words,
we require the buffer to operate internally on a rate which is twice as fast as its input rate. The
input domain of Buf is clearly modelled by (A∪ {ε})× {ε, ↑} in order to take into account the
two entry channels, when the output domain is just equal to A∪ {ε}. The memory domain will
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be equal to A. Finally the internal state set of Buf is defined as {r, ε, ↑} (the first state models
the reading of the input channel, when the two last ones correspond to the two possible writing
decisions on the output channel). Therefore we have:

In(Buf) = (A ∪ {ε}) × {ε, ↑} , Mem(Buf) = A , Out(Buf) = A ∪ {ε} , State(Buf) = {r, ε, ↑} ,

The control mechanisms of Buf are now given by the following transition functions:

δ = − , read(r; (x, w)) =

{

(w; x) if x 6= ε ,
(w;−) otherwise ,

write(q; y) =

{

(r; y) if q = ↑ ,
(r; ε) if q = ε ,

(8)

where − means not defined or no action (depending on the situation). Observe that the choice
of δ just reflects the fact that the input message is stored in a single cell of the internal memory
on which no action can be made. The unique possible time behavior of the buffer consists then
just in alternating a read and a write action at each moment of its internal time scale.

3.2.2 Elementary physical systems

Before presenting the notion of elementary physical system, let us first introduce the general
framework on which rely this concept. We will indeed suppose that each instance p of a given
physical parameter ϕ (such as mass, distance, kinetic energy, potential energy, torsion energy,
temperature, kinetic momentum, etc.) with whom we will deal, can always be both

1. measured using a measure function mϕ, which means that one can associate to each such
physical quantity p of type ϕ its measure mϕ(p) ∈ ∗

R,

2. decomposed into a (non standard) finite sum of infinitesimal quantities, i.e. a sum of phy-
sical quantities p of type ϕ that have an infinitely small measure mϕ(p) ≈ 0.

The set of all physical quantities of a given type ϕ is then called the physical domain associated
with ϕ and denoted by Pϕ. In the same way, the physical infinitesimal domain of type ϕ – which
is denoted by Iϕ – consists of all infinitesimal physical quantities of type ϕ.

Elementary physical systems can now be described exactly in the same way than elementary
software systems, i.e. by a mechanism similar to the one given by Figure 3, the only (but funda-
mental) difference being here that such systems manipulate physical quantities using continuous
time scales. An elementary physical system is indeed characterized by the fact that it has

1. continuous input, internal and output time scales,

2. input and output domains that are both equal to the same finite (in the usual meaning)
product of physical domains, i.e. both equal to ⊗ n

i=1 Pi for some finite (standard) positive
integer n ∈ N, where each Pi stands for a physical domain of a given type,

3. an internal domain which is necessarily equal to ⊗ n
i=1 Ii where each Ii stands for the infi-

nitesimal physical domain associated with the physical domain Pi which is involved both
in the corresponding input and the output domain.

For the sake of simplicity, we can of course consider – without any extension of the representation
power of our model – that an elementary physical system has a finite (in the usual sense) number
of tapes, each of them devoted to some particular infinitesimal physical domain.

Such elementary systems are intended to model real physical systems, considered as trans-
formers of infinitesimal physical quantities. The behavior of an elementary physical system S –
in our framework – has indeed to be physically interpreted as follows:
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• S receives at each moment of its input time scale (hence infinitely often) a vector x that
consists of different physical quantities of given types, i.e. a vector x ∈ ⊗ n

i=1 Pi where each
Pi stands for some physical domain; it transforms then each component xi ∈ Pi of x into
a (non standard) finite sequence (xj

i )j=1...N – written on a specific tape of the internal
memory of S – of infinitesimal physical quantities within Ii (i.e. of the same type than Pi)
whose sum has the same measure than xi, i.e. such that

N∑

j=1

mi(x
j
i ) = mi(xi) , (9)

where mi stands for the measure function associated with the physical domain Pi,

• S can transform infinitely often, at the rate given by its internal time scale, any infinitesi-
mal physical quantity of a given type written on one of its tapes into another infinitesimal
physical quantity of another given type (that can also be stored on another tape),

• S emits at each moment of its output time scale (hence again infinitely often) a vector y ∈
⊗n

i=1 Pi whose components are obtained by “gluing” altogether sequences of infinitesimal
physical quantities (of compatible types) coming from the internal memory of S, by using
the reverse process of the initial writing mechanism as described above.

Observe that we can only model in such a way non dissipative physical systems since the internal
controller of an elementary physical system – modelled by the function δ – is only able to change
an elementary physical quantity of known type into another elementary physical quantity of
known type (“elementary” being modelled by “infinitesimal” in our approach). Conversely one
can also prove that large classical classes of conservative physical systems – such as Hamiltonian
systems (cf. [24]) – can be recovered (as higher order systems) inside our model. We will however
not prove here this last result which is quite technical, but rather illustrate on a simple example
how to analyze a classical mechanical system as an elementary deterministic physical system.

Example 3.14 (Simple pendulum) Let us now consider a simple pendulum as shown in Fi-
gure 5-a. The pendulum consists of a point mass m attached to the point (0, L) by a rigid string
of negligible mass and of length L (when hanging freely the pendulum touches the ground).
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?
δ
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-EP
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�
�
�
�

-

-write

(a) (b)

Figure 5: Simple pendulum: mechanical (a) and systemic (b) representations

Its motion can be classically described by applying the fundamental principle of dynamics which
leads immediately to the following differential equation

m L ϕ̇ = −m g sin θ , (10)
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where θ and ϕ = θ̇ stand respectively for the angle formed by the string and the y axis and for
the corresponding angular speed. In its turn, Equation (10) is clearly equivalent to the following
energy preservation equation (obtained by integrating this last equation)

1

2
m(Lϕ)2 + mgL cos θ = C , (11)

where the first and the second summand in the left hand side represents respectively the kinetic
and the potential energy of the pendulum and where C stands for the initial potential energy of
the pendulum, when it is in the point farthest from the y axis with zero angular speed.

An elementary deterministic physical system Pend modelling such a pendulum is shown in
Figure 5−b. This system takes no input and provides on the output channel a pair of physical
quantities that consists respectively in the pendulum’s current kinetic and potential energy. Its
internal and output time scales are supposed to be the same continuous time scale (with dt as
common infinitesimal time step). We define finally the output domain, the memory domain and
the internal state set of the system to be respectively equal to

Out(Pend) = EK×EP , Mem(Pend) = {0, deK}×{0, deP } , State(Pend) = {x, s}×{↑, ↓} ,

where EK and EP denote respectively the two physical domains which are associated with ki-
netic and potential energy, where deK and deP stand respectively for two infinitesimal quanta
of kinetic and potential energy – with a common measure mK(deK) = mP (deP ) = de ∈ I –
and where the x, s and the arrow states should respectively be interpreted as the two possible
internal actions of the pendulum (exchanging energy on its two tapes – see below – or sending
physical quantities to the output channel) and as the two possible directions of the pendulum’s
motion. This system has therefore two tapes K and P , each of them containing a (non standard)
finite number of copies of the corresponding infinitesimal quantum of energy (the other parts
of the two tapes being equal to 0). Moreover the memory of our system evolves in such a way
that it always contains the same global number (necessarily infinitely great) N ∈ ∗

N of energy
quanta (which satisfy to the energy conservation condition N de = C). The system’s behavior
consists then essentially in taking at each moment of time one quantum of energy from one tape,
depending on the direction the pendulum is moving, and putting it on the other one, until the
working tape is empty. The corresponding controller function δ is given below.

δ((x, ↑), (k, p), (iK , iP )) =







(

(s, ↑), (0, deP ), (iK−1, iP +1)
)

if (k, p)=(deK , 0) and iK >1,
(

(s, ↓), (0, deP ), (0, iP +1)
)

if (k, p)=(deK , 0) and iK =1,

δ((x, ↓), (k, p), (iK , iP )) =







(

(s, ↓), (deK , 0), (iK +1, iP −1)
)

if (k, p)=(0, deP ) and iP >1,
(

(s, ↑), (deK , 0), (iK +1, 0)
)

if (k, p)=(0, deP ) and iP =1,

where iK and iP are the cursors of tapes K and P . The write function is then defined as the
constructer of the two global physical quantities (i.e. kinetic and potential energy) that can be
obtained by summing all infinitesimal quanta that respectively exist on tapes K and P 10 . This
last function works only in state (s, l) and ends in state (x, l) (where l stands for any type of
arrow). The unique possible time behavior of our (deterministic) system consists hence just in
alternating permanently a tape exchange operation with a write operation.

10 We can easily assume that the cardinality of these two families of infinitesimal quanta is respectively given
by iK and iP . Under this hypothesis, the write function can be more precisely defined – independently of the
value of the current internal state of the system – by setting write(K, P ) = (iK deK , iP deP ).
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It is then immediate to see that the elementary physical system that we just defined, always
satisfies – by construction – to the energy conservation equation

EK + EP = C , (12)

where EK and EC stand for the measures of the kinetic and the potential energy of the pendulum,
that is exactly equivalent to Equation (11). Note however that our approach does not connect
the physical quantities that we manipulated (here kinetic and potential energy) with the high
level parameters ϕ and θ that were used in writing down Equation (11).

To fill this gap, we must interpret the pendulum as a new deterministic system Newpend of
higher order that contains the previous elementary physical system Pend as a sub-system. This
new system has another sub-system which makes alternatively the two only operations:

• it reads the outputs of Pend and transforms them – by applying the two associated measure
functions – into (non standard) real values k and p that are stored in its internal memory,

• it takes the two last non standard real values k and p and writes them on its output
channel by applying the following transformation

write (k, p) =




1

L

√

2 k

m
, arccos

p

mgL



 ,

which can be expressed within our model by making use of adapted sub-systems, due to
the fact that we are only dealing here with analytic transformations (see Section 4).

If one identifies the output channels of this last sub-system to the output channels of Newpend,
it is then obvious to see that Newpend produces on its own output channels the pair (ϕ, θ) in
such a way that the energy conservation Equation (11) is always fulfilled.

3.2.3 Elementary hybrid systems

Elementary hybrid systems are systems of order 0 which can transform continuous behaviors
into discrete ones (or vice-versa). They can therefore naturally be used for modelling interfaces
between software and physical systems. The two following examples illustrate how to interpret
within our approach two classical interfaces of this kind – here a sampler and a modulator –
that are totally fundamental in practice.

Example 3.15 (Sampler) A sampler is a mechanism that takes a continuous time input func-
tion and produces a discrete sequence of samples of its values. It can be modelled by an ele-
mentary deterministic hybrid system Hτ which is parameterized by the time step τ > 0 of its
discrete output time scale. The input and the internal time scales of such a system are both
continuous with the same infinitesimal time step dt = τ/N (where N ∈ ∗

N is a given infinitely
great non standard integer). The input, output and memory domains of Hτ are all equal to ∗

R,
when its internal state set is equal to [0, N ], that is to say:

In(Sampler) = Out(Sampler) = Mem(Sampler) = ∗
R , State(Sampler) = [0, N ], .

The control mechanisms of Hτ are now given by the following transition functions:

read (i; x) =

{
(i + 1; x) if 1 ≤ i < N ,

(0; x) if i = N ,

write (0; y) = (1; y) ,

δ = − ,
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where − means that no action should be done (on the tape). The unique temporal behavior
of this deterministic hybrid system is now obvious: at each moment of its internal time scale
which is not a synchronization point with the time scale of the output channel, the system uses
the read function to memorize the value on the input channel inside a fixed cell of its internal
memory. On the other hand, the systems outputs – with the write function – the value currently
stored in this cell at each synchronization point with the output time scale, i.e. at every τ , thus
producing a discrete sequence out of a continuous one.

Example 3.16 (Modulator) The action of a modulator is reciprocal to that of a sampler and
consists in converting a discrete sequence of real numbers into a continuous function by making
use – at a discrete rate – of a pulse shape pτ (t), which will be considered here – for the sake of
simplicity (see below for more details on this hypothesis) – as a given function with interval [0, τ ]
as support. A modulator can then be modelled by an elementary deterministic hybrid system
Modpτ which is parameterized by this last function. The input, output and memory domains of
such a system are equal to ∗

R, when its internal state set is equal to [0, 2 N−1] where N stands
for a fixed infinitely great positive integer within ∗

N, that is to say:

In(Mod) = Out(Mod) = Mem(Mod) = ∗
R , State(Mod) = [0, 2 N−1] .

The input time scale of Modpτ is then a discrete time scale of time step τ , when its internal and
output time scales are both continuous with respective time steps dts = τ/(2 N) and dto = τ/N .
The control mechanisms of this system are now given by the following transition functions:

read (0 ; x) = (1 ; x) ,

write (2 k ; y) = (2 k+1; y · pτ (k dto)) for every k ∈ [1, N−1] ,

δ(k; m; 0) =







(2; m; 0) if k = 1 ,

(k+1; m; 0) if k = 2 i + 1 with i ∈ [1, N−2] ,

(0; m; 0) if k = 2 N−1 .

The unique temporal behavior of such a system consists then to read, at each possible synchro-
nization point, a value on its input channel and store it in a fixed cell of its internal memory,
to make a blank operation (i.e. doing nothing during one single internal clock tip) and then to
apply alternatively a write operation and a δ controlled transition.

Note also that though the pulse shape pτ in the above example gives us a degree of freedom
in the way we can modulate the continuous output, the most realistic choice is unfortunately
just to take pτ (t) = 1 for any t ∈ [0, τ ]. The examples that correspond to practical situations are
indeed obtained if the pulse shape has support bigger than [0, τ ], which requires to add several
consecutive input values. This technique would however lead to a more complicated modelling,
which explains why we restrained ourselves to the simpler system presented above.

3.3 An example of higher order system

In order to show the potentiality of our approach in practical situations, we will now try to
study how to model within our framework a simplified version of a radio transmission system
which immediately appears as an higher order system (in the sense of Definition 3.8).

Example 3.17 (Simplified radio transmission) We will now show how to model a commu-
nication transmitter taking messages from a buffer Buf – as described in Example 3.13 (whose
notations will be taken in the sequel for the purpose of this new example) – and transmitting
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them over a radio channel. In order to achieve this aim, we must first introduce an encoder com-
ponent Enc which reads messages from the buffer, converts them into binary form and encodes
the resulting sequence of bits – by blocks of Nb bits – into complex symbols 11 . Whenever the
encoder has less than Nb bits to work on, it sends a write request to the buffer. A description
of the systemic organization of this component is given just below in Figure 6.

- -m s
Conv

�
�-

read
︸ ︷︷ ︸��

?
G

-δb

�
�-
ρ

-

�
�write

Figure 6: Description of the encoder component.

The corresponding (non deterministic) system can indeed be defined as follows. We first suppose
that the internal time scale of Enc has a discrete time step which is Nb times smaller than the
rest of the global radio transmission system to which it will belong. The input domain of the
encoder is just A, the same set of messages than the buffer to which it is connected. The output
domain is taken to be C×{ε, ↑} in order to model the fact that two types of output information
can be sent on two different channels (i.e. a complex encoding or a write request). The memory
domain is defined as {0, 1}∗ × C since one must be able to store (on two different tapes) both
sequences of bits and complex numbers. Finally the internal state set is reduced to two elements
q0 and q1 (see the explanations below). These elements can be summarized by setting:

In(Enc) = A , Out(Enc) = C × {ε, ↑} , Mem(Enc) = {0, 1}∗ × C , State(Enc) = {q0, q1} .

We also suppose that Enc possesses a unique sub-system Conv – i.e. that Sub(Enc) = {Conv}
– which can convert blocks of Nb bits into complex symbols according to a given table and
which has the same input time scale than Enc (the second state of Enc is in particular used
to interconnect the reading of a bit on the tape of Enc with its sending to Conv). The control
mechanisms of Enc can now be given by means of the following transition functions:

read (q0; m) = (q0; b · m) ,

G(q0; (b, s)) = (q1; b1) ,

δ(q1; (b, s); 0) = (q0; (b � 1, s); 0) , (13)

ρ(q0; (b, s); y) = (q0; (b, y)) ,

write (q0; (b, s)) =

{

(q0; (s, ↑)) if |b| < Nb ,

(q0; (s, ε)) otherwise ,

where m ∈ A and m ∈ {0, 1}∗ stand respectively for the message at the input of the encoder and
for its binary form and where (b, s) ∈ {0, 1}∗ × C is the current value of the internal memory of
the system, with b denoting the sequence of bits that is currently stored on the main tape of the
encoder and s being the complex symbol produced by the Conv sub-system. We also denoted
above the concatenation product by ·, the first bit of the sequence b by b1 and the shift of b by

11The simplest example of such a process is the Binary Phase Shift Keying (BPSK) modulation protocol that
converts every bit b ∈ B = {0, 1} into the real number (−1)b (for more details, see for instance [26] or [16]).
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one bit by b � 1. Note finally that we did not represented here – for the sake of clarity – the
precise behavior of δ on the main tape of Enc (that we modelled just as a single cell that can
contain sequences of bits on which concatenation products can be directly applied).

The transmitter in its turn receives on the input a sequence of complex symbols (sk)k≥0 at
a discrete rate and generates on the output a radio signal of the form

u(t) =
∞∑

k=0

sk p(t − tk) ,

where p(t) is a pulse shape function and tk is the moment when the k-th complex symbol is sent.
This new operation can be realized by a modulator similar to that of Example 3.16. Composing
now, as shown in Figure 7, the three components we introduced, one obtains the simplified radio
transmitter system that we wanted to model.

- Buf (fer) - Enc(oder)
��-Trans(mitter) -�

��6

A A
C

C

{ε, ↑}

Figure 7: Graphical description of a simplified radio transmission chain.

Observe that in the above example, the nature of the first two components (that is to say
Buf and Enc) is completely discrete, whereas that of the third component (Trans) is hybrid
(discrete input with continuous output). This should be interpreted within the classification
that we introduced in Section 3.2, as Buffer and Encoder are purely logical, whereas Transmitter
serves as an interface between software and physical environments.

4 Conclusion

We tried to show in this paper that it is possible to construct a general unified theory of systems
which may give a common framework to deal both with continuous and discrete systems (that
are the two core kinds of systems used in engineering modelling). Note that our theory allows to
take into account large classes of classical systems. For instance, (controlled) causal dynamical
systems (see [12]) can be recovered within our framework as the standardization of suited phy-
sical-like deterministic systems, if one supposes that the observability function and the vector
fields implied in the definition of such systems (see formula (III.2) of Section III.2 of [12]) are
rationally analytic (which means that their Taylor development has only coefficients that are
rational functions of their generic integer parameters) 12 . In the same way, synchronous systems

12 To recover this family of systems, one should transform the differential equation (III.2) of [12] into a finite
difference equation that involves an infinitesimal time step. To see that this last equation expresses the functional
behavior of a system, the key problem is then just to prove that any A(q) can be computed by a system when
A is a rationally analytic vector field. This last property can then be reduced to prove that (non standard)
finite sums and products of non standard real numbers can be realized by a system, which can be done by using
physical like systems (cf. Section 3.2.2). The only technical difficulty lies in fact in proving that one can design
such a system for realizing the product of two non standard real numbers which can be done by implementing
an adapted Euclidian algorithm (two non standard real numbers u and v being respectively infinitely closed to
known multiples K and L of a given infinitesimal 1/N ∈ I with N ∈ ∗

N, one can find the non standard integer
M such that u v ≈ M/N by computing the quotient of the non standard Euclidian division of K L by N).
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– which are the discrete equivalents of causal dynamical systems – can also be modelled in our
framework by software deterministic systems with the same input and output time scales.

However our approach does not reduce to re-interpret classical classes of systems. It also
leads to the introduction of new classes of systems (such as the elementary software and physical
systems that were discussed in Sections 3.2.1 and 3.2.2) and to lots of new questions (can one
develop a Λ-calculus formalism for systems ? what are the “good” system sub-families ? can
one construct a complexity theory for systems ? what are really the differences existing between
deterministic and non-deterministic systems ? etc.) that should now be studied more in details
in order to understand more deeply the notion of system.
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