
To appear in EPTCS.

Towards a Theory of Glue

Simon Bliudze
École Polytechnique Fédérale de Lausanne

Rigorous System Design Laboratory
INJ Building, Station 14, 1015 Lausanne, Switzerland

simon.bliudze@epfl.ch

We propose and study the notions of behaviour type and composition operator making a first step
towards the definition of a formal framework for studying behaviour composition in a setting suf-
ficiently general to provide insight into how the component-based systems should be modelled and
compared. We illustrate the proposed notions on classical examples (Traces, Labelled Transition
Systems and Coalgebras). Finally, the definition of memoryless glue operators, takes us one step
closer to a formal understanding of the separation of concerns principle stipulating that computa-
tional aspects of a system should be localised within its atomic components, whereas coordination
layer responsible for managing concurrency should be realised by memoryless glue operators.

1 Introduction

Component-based design is central in system engineering. Complex systems are built by assembling
components. Large components are obtained by “gluing” together simpler ones. “Gluing” can be con-
sidered as an operation on sets of components.

Component-based techniques have seen significant development, especially through the use of object
technologies supported by languages such as C++, Java, and standards such as UML and CORBA.
There exist various component frameworks encompassing a large variety of mechanisms for composing
components. They focus rather on the way components interact than on their internal behaviour. We lack
adequate notions of expressiveness to compare the merits and weaknesses of these frameworks. For a
meaningful and systematic comparison of component frameworks to be possible, one needs a sufficiently
abstract formalisation of the notions of both behaviour and glue.

These notions should capture the properties essential for reasoning about system composition. Intu-
itively, one can think of coordination as imposing constraints on the joint behaviour of the components
of the system [9, 12, 32]. Imposing coordination constraints means “reducing” the joint behaviour of the
involved components. Beyond the simple definition of a component model, this requires the following
two questions to be answered:

• What is the behaviour of several “parallel” components without any coordination constraints?

• How does one compare two behaviours?

We argue that these aspects, as well as the notions of common behaviour of two components and minimal
behaviour possible in a given framework, cannot be dissociated from the notion of behaviour as a whole.

There are several goals, for which the work in this paper is a starting point.

• There is a long-standing debate with a plethora of points of view about separation of concerns
[11, 13, 14, 21, 26] and in what sense it should be respected. In [6, 8], we have advocated for an
approach respecting a separation of concerns principle, whereby all “computation” performed by
the system is localised within its constituent atomic components, whereas the coordination layer

2 Towards a Theory of Glue

responsible for managing the parallelism consists of memoryless glue operators. Separation of
concerns applied in the context of the BIP framework resulted in a very powerful deadlock detec-
tion tool D-Finder [5]. Furthermore, it has allowed us to reduce a hard (sometimes undecidable)
problem of synthesis of reactive systems [20, 25] to a less ambitious, but more tractable design
methodology [9]. This separation of concerns principle is rather fragile: in [15], it is shown that a
slight extension of the BIP glue renders it Turing complete, which makes it possible to construct
non-trivial systems without a single atomic component. We speculate that, in the setting proposed
in the present paper, operators such as prefixing and choice are not glue operators. This hypothesis,
should it be verified, would give formal grounds to our view of the separation of concern principle.

• Another goal is to define a generic setting for an expressiveness study. In [7], we have proposed
a first notion of glue expressiveness for component-based systems, generalising the concepts pre-
sented in [28] that guided the design of the BIP (Behaviour, Interaction, Priority) framework [4].
However, this approach lacks abstraction, since it strongly depends on the choice of the formalism
for modelling both behaviour (Labelled Transition Systems; LTS) and glue (Structural Operational
Semantics; SOS [24]), which makes the expressiveness comparison questionable and dependent
on ad-hoc manipulation to make different frameworks comparable. For instance, in a more recent
paper [9], we have proposed a slightly modified formal model of component behaviour in BIP.
This entailed a corresponding modification to the definition of glue operators, which resulted in a
framework only partially comparable to that in [7]. A general definition of behaviour and glue, as
in the present paper, is necessary to solve this problem.

• Finally, a common practice in system engineering consists in applying existing solutions (archi-
tectures) to given components to ensure behavioural properties (mutual exclusion, scheduling,
communication protocols, etc.). These architectures can be modelled as composition operators.
Their simultaneous application should then ensure the application of the coordination constraints
imposed by both operators. Hence, it is important to understand when and how these architec-
tures can be combined. This brings forward another question: How does one model the simul-
taneous application of several composition operators and what are the conditions ensuring the
non-interference among them?

This paper is a modest first step towards the above goals. It focuses primarily on the notions of
behaviour types and composition operators defined in such a way as to allow reasoning about their
essential properties in a setting sufficiently general to provide insight into how component-based systems
should be modelled and compared.

To allow answering the questions that we have emphasised above, a behaviour type B must explic-
itly comprise certain elements beyond the minimal component model such as LTS. As illustrated, for
instance, by CCS and SCCS [22], different parallel composition operators can be defined on the same
objects. Hence a parallel composition operator ‖ must be defined as part of a behaviour type. In order
to avoid confusion with any of the existing parallel composition operators, we use the term maximal
interaction operator, since, intuitively, the operator defines the maximal set of interactions between two
components in absence of coordination constraints.

In order to address the question of comparing the behaviour, we require that two preorders be defined:
a simulation preorder v and a semantic preorder 4. Intuitively, simulation preorder relates two com-
ponents if one of them performs only actions that can also be performed by the other, thus generalising
the classical simulation relation and allowing a formalisation of the notion that composing component
behaviour amounts to imposing coordination constraints. The role of the semantic preorder is to relate
components that behave in a similar manner, in particular, the equivalence ' induced by this preorder

S. Bliudze 3

is a congruence with respect to composition operators, thus generalising such classical notions as ready
simulation equivalence and bisimilarity.

Finally, we need a meet operator ⊗, rendering (B/',4,⊗) a meet-semilattice, to talk about si-
multaneous application of two composition operators (Section 3.2). Let f1 and f2 be two composition
operators, which we would like to apply ”simultaneously” to a behaviour B. Viewing composition op-
erators as constraints on B, simultaneous application of the two constraints corresponds intuitively to
applying their conjunction. However, this idea does not fit into the functional view of operators, since
neither f1(f2(B)) nor f2(f1(B)) need correspond to the conjunction of the two constraints. Moreover,
neither of these two behaviours need be defined, in particular, since the arity constraints of the opera-
tors are not respected in general. A more direct approach consists in considering the maximal common
behaviour of f1(B) and f2(B), which is precisely f1(B)⊗ f2(B).

The paper is structured as follows. Section 2 introduces the notion of behaviour type and provides
three examples: traces, LTS and coalgebras of a particular type. Section 3 presents the notion of com-
position operators and some of their properties. In Section 4, we discuss some related and future work,
then we conclude in Section 5.

2 Behaviour types

Definition 2.1 (Behaviour type). A behaviour type over B is a tuple (B,‖,v,4,⊗,0) consisting of the
following data:

• A monoid (B,‖,0), where ‖ : B2→B is a totally defined associative binary operator with 0 ∈B
the neutral element;

• A preorder v ⊆B×B, such that

1. it is preserved by ‖, i.e. for any B1,B2,B3 ∈B, B2 v B3 implies B1 ‖ B2 v B1 ‖ B3,
2. for any B ∈B, holds 0v B;

• A preorder 4 ⊆B×B and a meet operator ⊗ : B×B→B, such that

3. 4 is preserved by ‖, i.e. for any B1,B2,B3 ∈B, B2 4 B3 implies B1 ‖ B2 4 B1 ‖ B3,

4. (B/',4,⊗), with 'de f
=4 ∩4−1, is a meet-semilattice.

Elements of B are behaviours. ‖ is the maximal interaction operator. Intuitively, B1 ‖ B2 is the par-
allel composition of B1 and B2 in absence of any coordination constraints. v is the simulation preorder.
It has the same meaning as the classical simulation preorder, i.e. B1 v B2 means that “B2 can perform at
least the same executions as B1”. 4 is the semantic preorder. Intuitively, B1 4 B2 means that B2 can act
as B1 in the same coordination context. B1⊗B2 is the greatest behaviour realisable by both B1 and B2.

Often behaviour definition explicitly involves an interface, consisting at least of the set of actions a
component can perform. In this context, it is usually assumed that a universal set of actions is given.
Furthermore, it is convenient also to assume that this set is equipped with some lattice structure. A
straightforward example consists in considering finite sets rather than individual actions with the lattice
structure induced by set union and intersection.

2.1 Example: Traces

Let A be a universal set of actions and Traces be the set of pairs B = (A,T), where A ⊆ A is a set of
actions and T ⊆ A∗ is a prefix-closed set of traces. In particular, ε ∈ T , where ε is the empty word.

4 Towards a Theory of Glue

For B1 = (T1,A1) and B2 = (T2,A2), we define the maximal interaction operator ‖, as the interleaving of

actions of the two behaviours, by putting B1 ‖ B2
de f
= (A1∪A2,T), where

T
de f
=

{
w = (wi)

n
i=1 ∈ A∗

∣∣∣∃I ⊆ [1,n] : (wi)i∈I ∈ T1∧ (wi)i6∈I ∈ T2

}
. (1)

This makes (Traces,‖,0), with 0 = (/0,{ε}), a commutative monoid.
Equation (1) defines the maximal interaction operator through interleaving of traces. The correspond-

ing semantic preorder is defined through the notion of sub-sequence, which we denote ∝ and define by
putting, for v,w ∈ A∗,

v ∝ w
de f⇐⇒ ∃I ⊆ [1, |w|] : v = (wi)i∈I ,

where |w| is the length of w. Furthermore, for an alphabet A and a language T , we define T oA
de f
= {v ∈

A∗ |∃w ∈ T : v ∝ w} (notice that, if T ⊆ A∗, we have T ⊆ T oA). Finally, we define the semantic preorder
and the operator ⊗ as follows:

B1 4 B2
de f⇐⇒ A1 ⊆ A2 ∧ T1 ⊆ T2oA1

, (2)

B1⊗B2
de f
= (A1∩A2,T1oA1∩A2

∩T2oA1∩A2
) , (3)

the preorder v coincides with 4.
Clearly, for two alphabets A ⊆ B and a set of traces T , holds the equality (T oB)oA = T oA, which

implies immediately that the operator ⊗ defined by (3) is, indeed, the meet operator with respect to the
preorder 4. Hence, (Traces/',4,⊗) is a meet-semilattice. To prove that (Traces,‖,v, 4,⊗,0) is a
behaviour type we only have to show that condition 1 (and condition 3) of Definition 2.1 holds.

Proposition 2.2. Maximal interaction operator ‖ defined by (1) preserves the semantic preorder 4 de-
fined by (2).

Proof. For i = 1,2,3, let Bi = (Ai,Ti) ∈ Traces be such that B2 4 B3. By definition (2) of 4, we then
have A2 ⊆ A3 and T2 ⊆ T3oA2

. Consequently, A1∪A2 ⊆ A1∪A3.
Let B1 ‖ B2 = (A1 ∪ A2,T12) and B1 ‖ B3 = (A1 ∪ A3,T13), and consider w = (wi)

n
i=1 ∈ T12. By

(1), there exists I ⊂ [1,n] such that (wi)i∈I ∈ T1 and (wi)i6∈I ∈ T2. Since T2 ⊆ T3oA2
, there exists v ∈ T3

such that (wi)i6∈I ∝ v. Denoting by ṽ the projection of v on A1 ∪ A2, we have ṽ ∝ v, which implies
ṽ ∈ T3oA1∪A2

. It is clear that (wi)i6∈I ∝ ṽ and that one can interleave ṽ with (wi)i∈I in such a manner that
the positions of wi, for all i 6∈ I, be preserved. Denoting the obtained trace by u, we obviously obtain
w ∝ u ∈ T1oA1∪A2

T3oA1∪A2
= T13oA1∪A2

. Hence T12 ⊆ T13oA1∪A2
and B1 ‖ B2 4 B1 ‖ B3.

2.2 Example: Labelled Transition Systems

Let again A be a universal set of actions and let LT S be the set of triples B= (Q,A,→), with Q 6= /0 a finite
set of states, A⊆ A a set of actions, and→ ⊆ Q×2A×Q a set of transitions. The infix notation q a→ q′

is commonly used to denote a transition (q,a,q′) ∈→. Note that, with this definition, transitions are
labelled with interactions, i.e. sets of actions. This approach is particularly well suited for characterising
behaviour of components that can communicate through several ports during a single transition [6]. Such
behaviour naturally arises when composite components are assembled by parallel composition of sub-
components. Thus, labels are combined by set union, often denoted by juxtaposition.

S. Bliudze 5

As in the previous example, we take coinciding preorders v and 4. For B1 = (Q1,A1,→1) and
B2 = (Q2,A2,→2), we define the maximal interaction operator ‖ and the semantic preorder 4 as follows.

We put B1 ‖ B2
de f
= (Q1×Q2, A1 ∪A2, →), where → is the minimal transition relation satisfying the

following SOS rules:

q1
a→1 q′1

q1q2
a−→ q′1q2

,
q2

b→2 q′2
q1q2

b−→ q1q′2
,

q1
a→1 q′1 q2

b→2 q′2
q1q2

a∪b−→ q′1q′2
. (4)

With 0 = ({1}, /0, /0), it is straightforward to conclude that (LT S,‖,0) is a commutative monoid.
For B1 = (Q1,A1,→1) and B2 = (Q2,A2,→2), such that A1 ⊆ A2 consider the maximal simulation

relation R⊆ Q1×Q2 such that

q1Rq2 =⇒ ∀q1
a→1 q′1, ∃q′2 ∈ Q2,b⊆ A2 :

(
q2

b→ q′2 ∧ a⊆ b ∧ q′1Rq′2
)
. (5)

The semantic preorder 4, is defined by putting B1 4 B2 iff R is total on Q1.
Finally, we define the meet operator by putting, for B1 = (Q1,A1,→1) and B2 = (Q2,A2,→2), B1⊗

B2
de f
= (Q1×Q2,A1∩A2,→), where→ is the minimal transition relation satisfying the rule

q1
a→1 q′1 q2

b→2 q′2 a∩b 6= /0

q1q2
a∩b−→ q′1q′2

. (6)

Conditions 1–3 of the Definition 2.1 clearly hold, and, to show that (LT S,‖,v,4,⊗,0) is a behaviour
type, we only have to prove the following proposition.

Proposition 2.3. (LT S/',4,⊗) is a meet-semilattice.

Proof. To prove the proposition, we have to show that, for any B̃,B1,B2 ∈ LT S, holds B1⊗B2 4 B1,B2
and B̃ 4 B1,B2 implies B̃ 4 B1⊗B2.

Let B̃ = (Q̃, Ã,→), Bi = (Qi,Ai,→) (for i = 1,2) and B1⊗B2 = (Q1×Q2,A1 ∩A2,→) as defined
above (for clarity, we skip the indices on the transition relations).

1. First of all A1 ∩ A2 ⊆ A1,A2. By symmetry, it is sufficient to show that B1 ⊗ B2 4 B1. Let
R⊆ (Q1×Q2)×Q1 be the projection on the first component.

Consider a state q = (q1,q2) ∈ Q1×Q2. By definition of ⊗, for any q c→ q′ in B1⊗B2, there exist

transitions q1
a→ q′1 and q2

b→ q′2 such that a∩b = c and q′ = (q′1,q
′
2). Hence, we have c⊆ a and q′Rq′1,

satisfying the implication (5) is satisfied. Since R is total on Q1×Q2, we have B1⊗B2 4 B1.
2. Since B̃ 4 B1,B2, there exist total relations Ri ⊆ Q̃×Qi (for i = 1,2) satisfying the implication (5).

We define a relation R⊆ Q̃×(Q1,Q2) by putting q̃R(q1,q2) iff q̃Riqi, for both i = 1,2. Since Ã⊆ A1∩A2
and R is clearly total, we only have to show that (5) is satisfied.

Let q̃ ∈ Q̃ and (q1,q2) ∈ Q1×Q2 be related by R. Consider a transition q̃ c→ q̃′ in B̃. Since q̃Riqi,

for i = 1,2, there exist two transitions q1
a→ q′1 and q2

b→ q′2 such that c⊆ a,b and q̃′Riq′i. We then have
c⊆ a∩b and q̃′R(q′1,q

′
2), which satisfies (5) and proves the proposition.

2.3 Example: Coalgebras

Coalgebras [27] provide a general framework for unifying various state-based behaviour models such as
both deterministic and non-deterministic automata, LTS, Mealy machines, etc. The presentation below
is largely inspired by that in [29].

6 Towards a Theory of Glue

Table 1: Extensions of set operations to mappings (f : X → Y , f1 : X1→ Y1 and f2 : X2→ Y2)
f1× f2 : X1×X2→ Y1×Y2

(x1,x2) 7→
(

f1(x1), f2(x2)
) f1 + f2 : X1 +X2→ Y1 +Y2

x 7→ κi(fi(x′))

f A : XA→ Y A

g 7→ f ◦g

Pω(f) : Pω(X)→Pω(Y)

S 7→ { f (x) |x ∈ S}

Table 2: Structural induction definition of NDF ′ functors (for any set X and any mapping f : X → Y)
F(X) F(f) Structure of F

X f F = Id
B idB F = B

F1(X)×F2(X) F1(f)×F2(f) F = F1×F2

G(X)A G(f)A F = GA

Pω(G(X)) Pω(G(f)) F = Pω(G)

We recall, in Table 1, the extensions from sets to mappings of the following four operations: Cartesian
product X ×Y , disjoint union X +Y , exponentiation XA (set of mappings A→ X) and powerset Pω(X)
(set of finite subsets of X).

Let F be a functor on Set. An F-coalgebra is a pair (S, f : S→ F(S)), where S is the set of states.
The mapping f determines the transition structure of (S, f), whereas the functor F is the type of the
coalgebra.

Example 2.4. Functors M = (B× Id)A, D = B× (1+ Id)A and N = B2×Pω(Id)A, where B = {0,1}
and 1 = {∗}, are respectively the types of the coalgebraic definitions for, respectively, input-enabled
Mealy machines with the input domain A and output domain B, deterministic and non-deterministic
automata. For instance, in a D-coalgebra (S, f : S→ D(S)), the components of the mapping f = ω×δ ,
with ω : S→ B and δ : S→ (1+S)A, determine, for each state s ∈ S, whether it is a final state (mapping
ω) and the set

{(
s,a,δ (s)(a)

)∣∣∣a ∈ A,δ (s)(a) ∈ S
}

of transitions leaving s. The case where there is no
transition labelled a leaving the state s is reflected by δ (s)(a) = ∗ ∈ 1. Notice that, in this example, we
do not account for initial states of automata; determinism, here, means that only one transition is possible
from any given state with a given action.

We define a class NDF ′ of non-deterministic functors1 on the category Set of sets, defined by the
following grammar

F ::= Id |B |F×F |FA |Pω(F) , (7)

where A is the universal set of actions, Id is the identity functor and B 6= /0 is a join-semilattice with
bottom. Typical examples of semilattices used to define non-deterministic functors are B = {0,1} with
0∨1 = 1 and 0∧1 = 0; and the trivial lattice 1 = {∗}. The functors in NDF− are defined by structural
induction in Table 2 (cf. also Table 1).

Consider F ∈ NDF ′ and let (S1, f1) and (S2, f2) be two F-coalgebra. For a relation R⊆ S1×S2, we

1 NDF ′ is a subclass of the class NDF of non-deterministic functors as defined, for example, in [29].

S. Bliudze 7

define a relation ≤F
R ⊆ F(S1)×F(S2) by structural induction on F . For x ∈ F(S1) and y ∈ F(S2), we put

x≤F
R y

de f⇐⇒

(x,y) ∈ R, if F = Id,
x∨ y = y, if F = B,
x1 ≤F1

R y1∧ x2 ≤F2
R y2, if F = F1×F2, x = (x1,x2) and y = (y1,y2),

∀a ∈ A, x(a)≤G
R y(a), if F = GA,

∀x′ ∈ x,∃y′ ∈ y : x′ ≤G
R y′, if F = Pω(G).

We define the simulation preorder on F-coalgebra by putting (S1, f1) v (S2, f2), iff there exists a
relation R⊆ S1×S2 total on S1 and such that ∀(s1,s2) ∈ R, f1(s1)≤F

R f2(s2).

Definition 2.5 (Coalgebra homomorphism). An F-homomorphism of two F-coalgebras (S1, f1) and
(S2, f2) is a mapping h : S1→ S2 preserving the transition structure, i.e. such that the following diagram
commutes (f2 ◦h = F(h)◦ f1)

S1
h−−−−→ S2

f1

y y f2

F(S1) −−−−→
F(h)

F(S2)

where F(h) is the image of h by the functor F . In particular, for F ∈NDF ′, F(h) is defined by the second
column in Table 2.

Definition 2.6 (Bisimulation). Let (S1, f1) and (S2, f2) be two F-coalgebras. A relation R ⊆ S1× S2 is
a bisimulation iff there exists a witness mapping g : R→ F(R), such that projections πi : R→ Si, for
i = 1,2, are coalgebra homomorphisms, i.e. the following diagram commutes

S1
π1←−−−− R π2−−−−→ S2

f1

y g
y y f2

F(S1) ←−−−−
F(π1)

F(R) −−−−→
F(π2)

F(S2)

(8)

Remark 2.7. In the context of Definition 2.6, if F = F1×F2, g = g1× g2 and fi = f 1
i × f 2

i (i = 1,2),
the left diagram in (9) commutes, for j = 1,2, and defines a bisimulation on Fj-coalgebras (S1, f j

1)

and (S2, f j
2). Similarly, for F = GA, the right diagram in (9) commutes, for all a ∈ A, and defines a

bisimulation on G-coalgebras (S1, f1(a)) and (S2, f2(a)).

S1
π1←−−−− R π2−−−−→ S2

f j
1

y g j

y y f j
2

Fj(S1) ←−−−−
Fj(π1)

Fj(R) −−−−→
Fj(π2)

Fj(S2)

S1
π1←−−−− R π2−−−−→ S2

f1(a)
y g(a)

y y f2(a)

G(S1) ←−−−−
G(π1)

G(R) −−−−→
G(π2)

G(S2)

(9)

Lemma 2.8 ([27]). Consider coalgebras (S, f), (S1, f1) and (S2, f2) with coalgebra homomorphisms
g : S→ S1 and h : S→ S2. The image (g,h)(S) = {(g(s),h(s)) |s ∈ S} is a bisimulation on S1 and S2.

Theorem 2.9 ([27]). The union
⋃

k Rk of a family {Rk}k of bisimulations on coalgebras (S1, f1) and
(S2, f2) is again a bisimulation.

8 Towards a Theory of Glue

Lemma 2.10. Consider F-coalgebras (S1, f1), (S2, f2) and (S3, f3) with F ∈ NDF ′. The composition
R1 ◦R2 of two bisimulations R1 ⊆ S1×S2 and R2 ⊆ S2×S3 is a bisimulation on S1 and S3.

Proof. This lemma follows immediately from the following two facts: 1) comosition of bisimulations on
F-coalgebras is a bisimulation when F preserves weak pullbacks [27]; 2) NDF ′ functors preserve weak
pullbacks [30].

Although Theorem 2.9 allows us to speak of the maximal bisimulation on two coalgebras, the wit-
ness mapping on this maximal bisimulation need not be unique. The following proposition provides a
construction of a canonical witness mapping on a bisimulation of two coalgebras.

Proposition 2.11. Consider a bisimulation R ⊆ S1× S2 on two F-coalgebras (S1, f1) and (S2, f2) with

F ∈ NDF ′. Let g1,g2 : R→ F(R) be two witness mappings. The mapping g1
F
∪ g2 : R→ F(R) defined

below is again a witness for bisimulation R.

g1
F
∪ g2

de f
=

g1 = g2, if F = Id or F = B

(g1
1

F1∪ g1
2)× (g2

1
F2∪ g2

2) if F = F1×F2, gi = g1
i ×g2

i (i = 1,2)

λa.
(

g1(a)
G
∪ g2(a)

)
, if F = GA

g1∪g2, if F = Pω(G),

(10)

with g1∪g2 : (s1,s2) 7→ g1(s1,s2)∪g2(s1,s2).

Proof. To prove the proposition, we have to show that
F
∪ is well defined, i.e. that g1 = g2 for either F = Id

or F = B, and that projections πi : R→ Si (i = 1,2) are coalgebra homomorphisms from (R,g1
F
∪ g2) to

(Si, fi).
For F = Id, we have, g1 = (π1 ◦g1,π2 ◦g1) = (f1 ◦π1, f2 ◦π2) = (π1 ◦g2,π2 ◦g2) = g2.
For F = B, we have F(π1) = idB and g1 = idB ◦g1 = f1 ◦π1 = idB ◦g2 = g2.
The proof that πi are coalgebra homomorphisms is by structural induction on F . It is trivial for the

cases F = Id and F =B. For the cases F =F1×F2 and F =GA, it follows immediately from Remark 2.7.
Finally, for F = Pω(G), we have Pω(G)(πi) ◦ (g1 ∪ g2) = (Pω(G)(πi) ◦ g1)∪ (Pω(G)(πi) ◦ g2) =
(fi ◦πi)∪ (fi ◦πi) = (fi ◦πi).

We define the semantic preorder on F-coalgebras with F ∈ NDF ′ by putting (S1, f1) 4 (S2, f2) iff

they have a bisimulation total on S1. The meet operator is defined by putting (S1, f1)⊗ (S2, f2)
de f
= (R,g),

where R is their maximal bisimulation and g : R→ F(R) is the witness mapping maximal with respect

to
F
∪ defined by (10). Observe that

F
∪ can be applied point-wise. Furthermore, for each (s1,s2) ∈ S1×S2,

there is only a finite number of possible values for the bisimulation witness mapping. Hence, (R,g) is
defined uniquely.

Proposition 2.12. (SetNDF ′/',4,⊗) is a meet-semilattice, where SetNDF ′ is the category of F-coalgebra
with F ∈ NDF ′.

Proof. First of all, Lemma 2.10 implies the transitivity of 4. To complete the proof, we must show that,
in the above context, (R,g) is, indeed, the meet of (S1, f1) and (S2, f2).

Let (S, f) be an F-coalgebra such that (S, f)4 (Si, fi), for i = 1,2. Then there exist two correspond-
ing coalgebras (Ri,gi) such that each Ri ⊆ S×Si is a bisimulation on (S, f) and (Si, fi) total on S. Since
R1 and R2 are total on S, and since R is maximal, R is total on the image R1(S)⊆ S1.

S. Bliudze 9

Since both idR and the projection π : R→ S1 are coalgebra homomorphisms (the latter by definition
of bisimulation), Lemma 2.8 implies that the image (π, idR)(R) is a bisimulation on (S1, f1) and (R,g).
Moreover, it is total on R1(S). We conclude, by observing that, by Lemma 2.10, R1 ◦ (π, idR) is a
bisimulation on (S, f) and (R,g), total on S, i.e. (S, f)4 (R,g).2

In the general case, the subject of coalgebra composition has been considered, for example, in [3, 17].
Here we provide, for a functor F ∈NDF ′, an example of the F-coalgebra composition operator along the
lines of [17]. We define the maximal interaction operator ‖ by putting, for any two F-coalgebras (S1, f1)
and (S2, f2),

(S1, f1) ‖ (S2, f2)
de f
= (S1×S2, f1 ‖ f2) , (11)

with

(f1 ‖ f2) : S1×S2→ F(S1×S2)

(s1,s2) 7→ f1(s1)
F
./

S1,S2
f2(s2)

, (12)

where
F
./
X ,Y

: F(X)×F(Y)→ F(X ×Y) is defined by structural induction on F . For any x ∈ F(X) and
y ∈ F(Y), we put

x
F
./
X ,Y

y
de f
=

(x,y), if F = Id,

x∨ y, if F = B,(
x1

F1./
X ,Y

y1, x2
F2./

X ,Y
y2

)
, if F = F1×F2, x = (x1,x2) and y = (y1,y2),

λa.
(

x(a)
G
./
X ,Y

y(a)
)
, if F = GA.{

x′
G
./
X ,Y

y′
∣∣∣ x′ ∈ x,y′ ∈ y

}
, if F = Pω(G).

(13)

As it has been observed in [17], the composition operator defined by (11) and (12) is well-behaved,
provided that F

./ is a natural transformation of functors from F × F to F . In particular, this would
guarantee that this composition operator preserves coalgebra homomorphisms and, consequently the
semantic preorder defined above.

Proposition 2.13. F
./ is a natural transformation from F×F : Set2→ Set to F : Set2→ Set.

Proof. We prove, by structural induction on F that, for any morphism h = (h1×h2) : X ×Y → X ′×Y ′,
the diagram

F(X)×F(Y)

F
./
X ,Y−−−−→ F(X×Y)

(F×F)(h)
y yF(h)

F(X ′)×F(Y ′) −−−−→
F
./

X ′,Y ′

F(X ′×Y ′)

2 Observe that the maximality of g is only used to prove the uniqueness of (R,g). Thus, (S, f) 4 (R,g′), for any witness
mapping g′ : R→ F(R).

10 Towards a Theory of Glue

is commutative, i.e. that, for any x ∈ F(X) and y ∈ F(Y), holds

F(h1×h2)
(

x
F
./
X ,Y

y
)

= F(h1)(x)
F
./

X ′,Y ′
F(h2)(y) . (14)

Case 1. (F = Id)

Id(h1×h2)
(

x
Id
./
X ,Y

y
)
= (h1×h2)(x,y) = (h1(x),h2(y)) = Id(h1)(x)

Id
./

X ′,Y ′
Id(h2)(y) .

Case 2. (F = B)

B(h1×h2)
(

x
B
./
X ,Y

y
)
= idB(x∨ y) = x∨ y = idB(x)∨ idB(y) = B(h1)(x)

B
./

X ′,Y ′
B(h2)(y) .

Case 3. (F = F1×F2) Let x = (x1,x2) and y = (y1,y2).

(F1×F2)(h1×h2)
(
(x1,x2)

F1×F2./
X ,Y

(y1,y2)
)
=

= (F1(h1×h2)×F2(h1×h2))
(

x1
F1./

X ,Y
y1, x2

F2./
X ,Y

y2

)
by (13) and the definition in Table 2

=
(

F1(h1×h2)
(

x1
F1./

X ,Y
y1

)
, F2(h1×h2)

(
x2

F2./
X ,Y

y2

))
by the definition in Table 1

=
(

F1(h1)(x1)
F1./

X ′,Y ′
F1(h2)(y1), F2(h1)(x2)

F2./
X ′,Y ′

F2(h2)(y2)
)

by the induction hypothesis

=
(

F1(h1)(x1),F2(h1)(x2)
) F1×F2./

X ′,Y ′

(
F1(h2)(y1),F2(h2)(y2)

)
by (13)

= (F1×F2)(h1)(x1,x2)
F1×F2./
X ′,Y ′

(F1×F2)(h2)(y1,y2) by the definition in Table 1.

Case 4. (F = GA)

GA(h1×h2)
(

x GA
./
X ,Y

y
)
=

= G(h1×h2)◦λa.
(

x(a)
G
./
X ,Y

y(a)
)

by (13) and the definitions in Tables 1 and 2

= λa.
(

G(h1×h2)
(

x(a)
G
./
X ,Y

y(a)
))

by the definition of function composition

= λa.
(

G(h1)(x(a))
G
./

X ′,Y ′
G(h2)(y(a))

)
by the induction hypothesis

=
(

λa.G(h1)(x(a))
)

GA
./

X ′,Y ′

(
λa.G(h2)(y(a))

)
by (13)

= GA(h1)(x)
GA
./

X ′,Y ′
GA(h2)(y) by the definitions in Tables 1 and 2.

S. Bliudze 11

Case 5. (F = Pω(G))

Pω(G)(h1×h2)

(
x Pω (G)

./
X ,Y

y
)
=

=

{
G(h1×h2)

(
x′

G
./
X ,Y

y′
)∣∣∣∣ x′ ∈ x

y′ ∈ y

}
by (13) and the definitions in Tables 1 and 2

=
{

G(h1)(x′)
G
./

X ′,Y ′
G(h2)(y′)

∣∣∣ x′ ∈ x
y′ ∈ y

}
by induction hypothesis

=

{
x′′

G
./

X ′,Y ′
y′′
∣∣∣∣ x′′ ∈ {G(h1)(x′) |x′ ∈ x}

y′′ ∈ {G(h2)(y′) |y′ ∈ y}

}
=

{
x′′

G
./

X ′,Y ′
y′′
∣∣∣∣ x′′ ∈Pω(G(h1))(x)

y′′ ∈Pω(G(h2))(y)

}
by the definition in Table 1

= Pω(G)(h1)(x)
Pω (G)
./

X ′,Y ′
Pω(G)(h2)(y) by (13) and the definition in Table 2.

Finally, we put 0F = (1, f 0
F), with f 0

F : 1→ F(1) defined, once again, by structural induction on F :

f 0
F(∗)

de f
=

∗, if F = Id,
⊥, if F = B,
(f 0

F1
(∗), f 0

F2
(∗)), if F = F1×F2,

λa. f 0
G(∗), if F = GA,

{ f 0
G(∗)}, if F = Pω(G),

where ⊥ ∈ B is the bottom of B.
Clearly, taken together, the elements defined in this section form a behaviour type over the family of

F-coalgebras.

3 Behaviour composition

3.1 Composition operators

Assume that a behaviour type (B,‖,v,4,⊗,0) is given.

Definition 3.1 (Composition operator). An n-ary operator f : Bn→B is a composition operator iff it
satisfies the following properties, for any B1, . . . ,Bn, B̃ ∈B:

1. f (B1, . . . ,Bn)v B1 ‖ · · · ‖ Bn,

2. For any i ∈ [1,n], Bi 4 B̃ implies f (B1, . . . ,Bi, . . . ,Bn)4 f (B1, . . . , B̃, . . . ,Bn).

We denote by C the set of all composition operators. C =
⋃

n≥1 C (n), where C (n) is the set of all
n-ary composition operators.

Among the immediate consequences of the above definition, one should notice the following facts.

Lemma 3.2. 1. The equivalence relation ' = 4 ∩4−1 is a congruence with respect to composition
operators;

12 Towards a Theory of Glue

2. The maximal interaction operator ‖ is a composition operator;

3. For any B1,B2 ∈B, one has B1 v B1 ‖ B2.

Proof. The first two statements of the lemma are trivial. The third one is proven by observing that 0v B2
and, consequently, B1 ' B1 ‖ 0v B1 ‖ B2.

Definition 3.3 (Composition of operators). For an n-ary operator f1 : Bn→B, an m-ary operator f2 :
Bm→B, and i ∈ [1,n], the (n+m−1)-ary operator f1 ◦i f2 is defined by

(f1 ◦i f2)
(

B1, . . . ,Bn+m−1

)
de f
= f1

(
B1, . . . ,Bi−1, f2(Bn, . . . ,Bn+m−1),Bi, . . . ,Bn−1

)
. (15)

Lemma 3.4. A composition of two composition operators is also a composition operator.

Example 3.5 (BIP interaction model). A convenient way of defining composition operators is through
the use of SOS rules. For example, consider the behaviours specified by LTS (see Section 2.2). In the
BIP interaction model [6], given γ ⊆ 2A, the corresponding n-ary composition operator is defined on

behaviours Bi = (Qi,Ai,→i), for i ∈ [1,n], by putting γ(B1, . . . ,Bn)
de f
= (∏n

i=1 Qi,
⋃n

i=1 Ai,→), where→
is the minimal transition relation satisfying the following set of SOS rules

{
qi

ai→i q′i
}

i∈I

{
qi = q′i

}
i 6∈I

⋃
i∈I ai = a

q1 . . .qn
a−→ q′1 . . .q

′
n

∣∣∣∣∣∣∣ a ∈ γ

 . (16)

Proposition 3.6. Any operator f defined as above is a composition operator on LTS.

Proof. We have to show that f preserves the preorder 4. By symmetry, it is sufficient to prove that, for
B1 4 B̃1 and B2, . . . ,Bn, we have f (B1,B2, . . . ,Bn) 4 f (B̃1,B2, . . . ,Bn). First of all, since A1 ⊆ Ã1, we
have

⋃n
i=1 Ai ⊆ Ã1∪

⋃n
i=2 Ai.

Since B1 4 B̃1, there exists a relation R1 ⊆ Q1× Q̃1 total on Q1 and satisfying (5). We can then
define a relation R ⊆ (Q1×∏

n
i=2 Qi)× (Q̃1×∏

n
i=2 Qi), by putting (q1,q2, . . . ,qn)R(q̃1,q′2, . . . ,q

′
n) iff

q1R1q̃1 and qi = q′i, for i ∈ [2,n]. This relation is clearly total. Let q1q2 . . .qn
a→ q′1 . . .q

′
n be a transition

in f (B1,B2, . . . ,Bn) and let q1R1q̃1. By definition of the operator f , this transition must be inferred by
the rule (16) from a set of transitions {qi

ai→i q′i}i∈I with a =
⋃

i∈I ai. If 1 6∈ I, then clearly q1 = q′1 and the
corresponding transition q̃1q2 . . .qn

a→ q̃1q′2 . . .q
′
n is possible in f (B̃1,B2, . . . ,Bn). If 1 ∈ I, by (5), there

exists a transition q̃1
b1→ q̃1

′ such that a1⊆ b1 and q′1R1q̃1
′. Hence, a= a1∪

⋃
i∈I\{1} ai⊆ b∪

⋃
i∈I\{1} ai

de f
=

b and, by (16), q̃1q2 . . .qn
b→ q̃1

′q2 . . .qn, which proves the proposition.

Example 3.7 (Negative premises). Consider the family of SOS operators with negative premises, that is
defined by the rules of the form{

qi
ai→i q′i

∣∣∣ i ∈ I
} {

qi = q′i
∣∣∣ i 6∈ I

} {
q j 6

bk
j−→ j

∣∣∣ j ∈ J,k ∈ K j

}
a =

⋃
i∈I ai

q1 . . .qn
a−→ q′1 . . .q

′
n

, (17)

where q j 6
bk

j−→ j means that there is no transition labelled bk
j possible from the state q j of behaviour B j.

S. Bliudze 13

It is easy to see that such operators do not preserve simulation relation 4 and therefore are not
composition operators on the LTS behaviour type as defined in Section 2.2. An adaptation of the ready
simulation relation from the initial proposition by Bloom [10] is necessary to obtain a behaviour type,
for which such operators would, indeed, be composition operators.

Let us now revisit the separation of concerns principle mentioned in the introduction. In our context,
this principle consists in separating the computation of a system from the application of glue operators
coordinating its atomic components. Intuitively, this means that no additional behaviour should be intro-
duced by application of a glue operator. Not only glue operators are limited to restricting the behaviour
of atomic components by imposing coordination constraints (cf. condition 1 of Definition 3.1), but, on
top of that, they should be memoryless. Intuitively, this corresponds to requiring that two conditions be
satisfied: 1) the glue operator should not add state to the coordinated system and 2) the actions possible
in a global state of the composed system are completely determined by the properties of the correspond-
ing states of the constituent subsystems. The latter condition is justified by the fact that a memoryless
operator is unaware of any states of the system other than the current one. In order to impose these
additional requirements, we need a formal notion of state, provided precisely by coalgebras.

Definition 3.8. Let F be a Set-functor. An n-ary composition operator gl on a behaviour type over the
family of F-coalgebras is a glue operator iff there exists a natural transformation sync : Fn → F , such
that, for any set {Bi = (Si, fi) | i ∈ [1,n]} of F-coalgebras, gl(B1, . . . ,Bn) = (S, f) with S = ∏

n
i=1 Si and

f (s) = sync(f1(s1), . . . , fn(sn)), for all s = (s1, . . . ,sn) ∈ S.

We now consider two classical operators, namely the prefixing operator and choice. The former is
a unary operator, which consists in executing a given action before “running” the behaviour to which
the prefixing is applied. The latter is an associative and commutative binary operator, which consists
in running exactly one of the behaviours to which it is applied. In order to implement either of these
two operators, one has to ”remember” that, respectively, the initial transition or the choice of the two
components has been made, thus adding state to the composed system.

For behaviour types based on coalgebras, the binary choice operator + can be formally defined as

the coproduct functor on the category of coalgebras, i.e. (S1, f1)+(S2, f2)
de f
= (S1 +S2, f1 + f2).

Hypothesis 3.9. Let F be a Set-functor weakly preserving pullbacks. In a behaviour type over F-
coalgebras with the semantic preorder defined as in Section 2.3 there is no glue operator gl, in the sense
of Definition 3.8, such that gl '+.

To formulate a similar hypothesis for the prefixing operator, a notion of initial state is necessary.
Although such a notion is provided by pointed coalgebras, we omit this discussion in this paper.

Notice also the distinction between choice and interleaving. The former consists in choosing once
and for all the behaviour to run, whereas the latter makes this choice independently at each execution
step.

3.2 Combining composition operators

Although composition of operators introduced in Definition 3.3 allows to combine several operators
hierarchically, it does not allow “simultaneous” application of the constraints imposed by two operators.

Example 3.10 (Simultaneous application of two operators). Indeed, consider, for example, for i ∈ [1,4],
Bi = (Qi,Ai,→) ∈ LT S (see Section 2.2) and four given actions ai, such that ai ∈ Ai and ai 6∈ A j for
i 6= j. Consider also two quaternary composition operators f1, f2 ∈ C (4), such that the action of f1
consists in synchronising the actions a1 and a2 (cf. Example 3.5) of the first two components it is applied

14 Towards a Theory of Glue

to, whereas f2 synchronises the actions a3 and a4 of the last two of its arguments. More precisely,
f1(B1,B2,B3,B4) = γa1a2(B1,B2) ‖ B3 ‖ B4 and f2(B1,B2,B3,B4) = B1 ‖ B2 ‖ γa3a4(B3,B4), where the
binary operator γa, parametrised by an interaction a (here, a = a1a2, for f1, and a = a3a4, for f2) is
defined by the following rules, x and y being action variables,

q1
x→ q′1 x 6∈ a

q1q2
x−→ q′1q2

,
q2

x→ q′2 x 6∈ a
q1q2

x−→ q1q′2
,

q1
x→ q′1 q2

y→ q′2 x,y 6∈ a

q1q2
x∪y−→ q′1q′2

, (18){
qi

a∩Ai−→ q′i
∣∣∣a∩Ai 6= /0

} {
qi = q′i

∣∣∣a∩Ai = /0
}

q1q2
a−→ q′1q′2

. (19)

Intuitively, simultaneous application of f1 and f2 to any components B1, B2, B3, B4 should enforce,
on one hand, the synchronisation of a1 and a2 in B1 and B2 respectively, and, on the other hand, the
synchronisation of respectively a3 and a4 in B3 and B4. However, the result f1(B1,B2,B3,B4) of applying
f1 is a single component, to which f2 cannot be applied any more, since the latter is a quaternary operator.

Furthermore, considering the specification of the γa operator above as “enforcing the synchronisation
of actions belonging to the interaction a”, one would expect the simultaneous application of γa1a2 and
γa3a4 to any set of behaviours to achieve the same effect as above, without having to explicitly define
operators f1 and f2 and avoiding the associated problem discussed in the previous paragraph.

First of all, the semantic preorder 4 and the operator ⊗ can be canonically extended to composition
operators, provided they have the same arity: for any n≥ 1 and gl1,gl2 ∈ C (n),

f1 4 f2
de f⇐⇒ ∀B1, . . . ,Bn ∈B,

(
f1(B1, . . . ,Bn)4 f2(B1, . . . ,Bn)

)
, (20)

∀B1, . . . ,Bn ∈B, (f1⊗ f2)(B1, . . . ,Bn)
de f
= f1(B1, . . . ,Bn)⊗ f2(B1, . . . ,Bn) . (21)

Proposition 3.11. (C (n)/',4,⊗) is a meet-semilattice.

Proof. Let f1, f2 ∈ C (n) be two composition operators and consider f ∈ C (n) such that f1⊗ f2 4 f 4
f1, f2. The right-hand relation implies that, for any B ∈B, f (B)4 f1(B)⊗ f2(B) = (f1⊗ f2)(B). Hence
f 4 f1⊗ f2 and, together with the left-hand relation, this implies f ' f1⊗ f2.

Example 3.12 (Preorder on SOS operators). Consider once again the LT S behaviour type defined in
Section 2.2 and the corresponding family of composition operators defined by (16) in Example 3.5.
Identifying each operator with the set of its defining SOS rules, it follows directly from [7, Lemma 3]
that, for two such operators f1 and f2, f1 4 f2 is equivalent to f1 ⊆ f2. Hence, f1⊗ f2 = f1∩ f2.

Going back to Example 3.10, (f1⊗ f2)(B1,B2,B3,B4) represents the behaviour where both the actions
of B1 are synchronised with those of B2, and the actions of B3 are synchronised with those of B4, as
defined respectively by f1 and f2.

In order to allow application of a given composition operator to any set of component behaviours
with cardinality at least the arity of the composition operator in question, we introduce below the arity
extension for composition operators.

Definition 3.13. The arity extension of an n-ary composition operator f ∈ C (n) to arity m ≥ n is the
composition operator f (m) ∈ C (m) defined by putting, for all B1, . . . ,Bn ∈B,

f (m)(B1, . . . ,Bn)
de f
=

⊗
σ∈Sm

(
f
(
Bσ(1), . . . ,Bσ(n)

)
‖ Bσ(n+1) ‖ · · · ‖ Bσ(m)

)
, (22)

S. Bliudze 15

where Sm is the group of all permutations of [1,m]. The right-hand side of (22) consists in simultaneously
applying f to all possible subsets of n components.

For operators f1 and f2 of Example 3.10, we have f1 = (γa1a2)
(4) and f2 = (γa3a4)

(4).

Lemma 3.14 (Isotony of arity extension). Arity extension preserves the semantic preorder, that is, for
any f1, f2 ∈ G(n) and m≥ n, f1 4 f2 implies f1

(m) 4 f2
(m).

Example 3.15 (Disjoint behaviours). Going back to Example 3.10 of Section 3.2 and considering that,
for i 6= j, ai 6∈ A j, one can see that

f1⊗ f2 ' γa1a2
(4)⊗ γa3a4

(4) ' (γa1a2⊗ γa3a4)
(4) .

The assumption that, for i 6= j, ai 6∈ A j is essential here. It guarantees that the operators γa1a2 and γa3a4 do
not interfere with the behaviour of components B3,B4 and B1,B2 respectively. Precise characterisation
of such a notion of non-interference will be an important part of our future work.

3.3 Symmetrical composition operators

Notice that the operator f (m) defined by (22) is symmetrical in the sense of the following definition.

Definition 3.16. An operator f : Xn→ Y is called symmetrical iff, for any permutation σ ∈ Sn and any
x1, . . . ,xn ∈ X , holds the equation f (x1, . . . ,xn) = f (xσ(1), . . . ,xσ(n)).

Clearly, an operator f ∈ C (n) is symmetrical iff f ' f (n). Furthermore, for symmetrical operators,
one can also unambiguously define the arity reduction.

Definition 3.17. The arity reduction of a symmetrical n-ary composition operator f ∈C (n) to arity m≤ n
is the composition operator f (m) ∈ C (m) defined by putting, for all B1, . . . ,Bm ∈B,

f (m)(B1, . . . ,Bn)
de f
= f (B1, . . . ,Bn,0, . . . ,0) . (23)

Given a symmetrical operator f ∈C , one can combine both concepts—arity extension and reduction—

to define the operator f̃ : Pω(B)→B, by putting, for any finite subset B⊆B, f̃ (B) de f
= f (|B|)(B).

Observe that several popular parallel composition operators, such as the ones used in CCS [23], CSP
[18] and BIP [6], are symmetrical.

4 Discussion and related work

The complete bibliography, as related to the motivations behind the present paper, is yet to be established.
However, several contributions can already be mentioned.

Based on the same observations about the importance of studying glue as a first-class notion, Abstract
Behavior Types (ABM) were proposed in [2] guiding the design of the Reo language. ABT propose to
characterise components as channels (or dataflow transformers) that do not provide any information as to
the manner in which the defining transformations are computed. This approach is radically different from
the one taken in the present paper, since the main emphasis is put on one aspect of component behaviour
(namely the dataflow transformation) and its expressive power with regards to assembling more complex
transfer functions. In particular composition of channels boils down to pipeline assembly. Although,
ABT are likely to provide another interesting case study for the behaviour types we propose, they lack
the abstraction necessary to model a larger class of behaviour as intended here.

16 Towards a Theory of Glue

It would be interesting to further verify the robustness of the proposed framework by defining be-
haviour types based on interface [1] or modal [19] automata, whereof the particularity is that the corre-
sponding standard refinement relations are contravariant as opposed to the examples of this paper.

Furthermore, although all the examples provided in this paper can be interpreted as state-based be-
haviour types and, therefore, modelled as coalgebras of the appropriate types, the intention is to keep
the abstraction level sufficiently high in order to be able to accommodate for behaviour types that do not
have a clearly identifiable notion of state. In particular, it would be interesting to investigate applicability
of this framework to continuous time systems as modelled in Simulink3 or Modelica4.

As mentioned above, most—if not all—behaviour types, of interest for the author of this paper, can
be modelled as coalgebras of a suitable type. Since their introduction as a model for system behaviour,
coalgebras have been subject to extensive studies. It seems, however, that most of these studies were
focusing primarily on coalgebras as a way to model individual component behaviour. Although, in
[3, 17], coalgebra composition has been addressed in a much more general form than in the present
paper, some questions remain unanswered: What is the class of coalgebra types, for which a meaningful
maximal interaction operator can be constructively defined? How does one characterise the composition
operators other than maximal interaction? The latter question is related to the work presented in [16, 31],
where GSOS-style operational semantics is studied from the categorical point of view.

Last but not least, an important subject that we have mentioned in this paper and that we are planning
to address as part of our future work is the interference between glue operators. Consider two glue
operators gl1 and gl2, and a family of behaviours {Bi}n

i=1. Assume, furthermore, that, for i = 1,2,
gli(n)(B1, . . . ,Bn) satisfies some given property Pi. What conditions have to be satisfied by gl1 and gl2, on
one hand, and {Bi}n

i=1, on the other hand, for any of the composite behaviours gli(1)(gl j
(n)(B1, . . . ,Bn))

(i 6= j), (gl1⊗gl2)
(n)(B1, . . . ,Bn), etc. to satisfy P1 ∧P2? Given computable representations of gl1 and

gl2 how does one compute the operator imposing P1∧P2? The latter question was partially addressed in
Example 3.12 of Section 3.2. Furthermore, our result in [7] suggests that this example can be generalised,
on a suitable behaviour type, to SOS operators with negative premises. Can a similar result be obtained
for a larger class of coalgebras types?

A first, naı̈ve approach consists in defining a class of distributive behaviour types characterised by the
distributivity of their maximal interaction operator over the meet operator, that is, for any B1,B2,B3 ∈B,

(B1⊗B2) ‖ B3 ' (B1 ‖ B3) ⊗ (B2 ‖ B3) .

It is easy to see that distributivity of a behaviour type implies that of the arity extension of composition
operators over the meet operator: for any f1, f2 ∈ C (n) and m≥ n,

(f1⊗ f2)
(m) ' f1

(m)⊗ f2
(m) .

Assuming that we know how to compute f1⊗ f2, we can then reasonably expect the obtained operator to
satisfy both properties imposed by f1 and f2.

Although none of behaviour types considered in this paper appear to be distributive, all the counter-
examples we have considered while preparing the paper were based on the fact that several compo-
nents shared certain actions. As illustrated by Example 3.15 of Section 3.2, “local distributivity” can
be achieved provided the “absence of conflicts” in the component interfaces. An important question to
be addressed in the future work is: How can these notions of “local distributivity” and “absence of
conflicts” be formalised and generalised to larger classes of behaviour types?

3http://www.mathworks.com/products/simulink/
4http://www.modelica.org/

S. Bliudze 17

5 Conclusion

The goal of this paper was to make a first step towards the definition of a formal framework for studying
behaviour composition in a setting sufficiently general to provide insight into how the component-based
systems should be modelled and compared.

We have proposed the notions of behaviour type and composition operator, which, while striving for
generality, allow to capture some essential properties expected when reasoning intuitively about compo-
nent composition. We have illustrated the notion of behaviour type on three examples, namely Traces,
Labelled Transition Systems and F-coalgebras with a restricted class of non-deterministic functors.

In the framework proposed in this paper, a behaviour type is a tuple (B,‖,v,4,⊗,0), where B
is the set of underlying behaviours (Traces, Labelled Transition Systems, Coalgebras, etc.); ‖ is the
maximal interaction operator defining the joint behaviour of two components without any coordination
constraints; v and 4 are two preorders used respectively to represent “containment”, or simulation,
relation between two behaviours and the semantic relation reflecting the fact that one component can
be substituted by another one while essentially preserving the intended behaviour. The relation ' = 4
∩ 4−1 is a congruence for composition operators. The example provided in Section 2.3 supports our
idea that these two preorders need not necessarily be the same. We require that (B/',4,⊗) be a meet-
semilattice, whereby the meet operator ⊗ identifies the common behaviour of two components. Finally,
the notion of zero behaviour 0 serves as a “sanity check” for the behaviour type. Intuitively, it represents
a component that does nothing. On one hand, it should not influence the behaviour of other components
when placed in parallel (for any B ∈B, B ‖ 0' B) and, on the other hand, it should be simulated by all
other behaviours (for any B ∈B, 0v B).

The requirement that the semantic preorder of a given behaviour type induce a meet-semilattice struc-
ture has allowed us to define a meet of composition operators, representing their simultaneous application
to a given set of behaviours and, consequently, to extend any composition operator to a symmetrical one,
applicable to any finite set of behaviours. This, together with the definition of memoryless glue opera-
tors, takes us one step closer to a formal understanding of the separation of concerns principle that we
have advocated in our previous papers, and which stipulates that the computational aspects of the system
should be localised in the atomic components, whereas the coordination layer responsible for managing
concurrency should be realised by memoryless glue operators.

Finally, we have discussed some related work and key questions, arising from the proposed frame-
work, that are important for the understanding of fundamental principles of component-based design.

Acknowledgements

I would like to express my gratitude to the anonymous reviewers for the instructive discussion on the ICE
2012 forum. I would also like to thank Ana Sokolova and Alexandra Silva for the discussion after the
workshop and the pointers to the literature allowing me to include the powerset functor in Section 2.3.

References

[1] Luca de Alfaro & Thomas A. Henzinger (2001): Interface automata. SIGSOFT Softw. Eng. Notes 26(5), pp.
109–120, doi:10.1145/503271.503226.

[2] Farhad Arbab (2005): Abstract Behavior Types: A foundation model for components and their composition.
Sci. Comput. Program. 55(1–3), pp. 3–52, doi:10.1016/j.scico.2004.05.010.

http://dx.doi.org/10.1145/503271.503226
http://dx.doi.org/10.1016/j.scico.2004.05.010

18 Towards a Theory of Glue

[3] Luı́s Soares Barbosa (2000): Components as Processes: An Exercise in Coalgebraic Modeling. In Scott F.
Smith & Carolyn L. Talcott, editors: FMOODS, IFIP Conference Proceedings 177, Kluwer, pp. 397–418.

[4] Ananda Basu, Marius Bozga & Joseph Sifakis (2006): Modeling Heterogeneous Real-time Components
in BIP. In: 4th IEEE Int. Conf. on Software Engineering and Formal Methods (SEFM06), pp. 3–12,
doi:10.1109/SEFM.2006.27. Invited talk.

[5] Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung Nguyen, Joseph Sifakis & Rongjie
Yan (2011): D-Finder 2: towards efficient correctness of incremental design. In: Proceedings of the
3rd international conference on NASA Formal methods, NFM’11, Springer-Verlag, Berlin, Heidelberg,
pp. 453–458, doi:10.1007/978-3-642-20398-5 32. Available at http://dl.acm.org/citation.cfm?id=
1986308.1986344.

[6] Simon Bliudze & Joseph Sifakis (2007): The Algebra of Connectors — Structuring Interaction in BIP. In:
Proc. of the EMSOFT’07, ACM SigBED, pp. 11–20, doi:10.1145/1289927.1289935.

[7] Simon Bliudze & Joseph Sifakis (2008): A Notion of Glue Expressiveness for Component-Based Systems. In
Franck van Breugel & Marsha Chechik, editors: CONCUR 2008, LNCS 5201, Springer, pp. 508–522.

[8] Simon Bliudze & Joseph Sifakis (2010): Causal semantics for the algebra of connectors. Formal Methods
in System Design 36(2), pp. 167–194, doi:10.1007/s10703-010-0091-z.

[9] Simon Bliudze & Joseph Sifakis (2011): Synthesizing Glue Operators from Glue Constraints for the Con-
struction of Component-Based Systems. In Sven Apel & Ethan Jackson, editors: 10th International Confer-
ence on Software Composition, LNCS 6708, Springer, pp. 51–67, doi:10.1007/978-3-642-22045-6 4.

[10] Bard Bloom (1989): Ready Simulation, Bisimulation, and the Semantics of CCS-Like Languages. Ph.D.
thesis, Massachusetts Institute of Technology.

[11] Roberto Bruni, Ivan Lanese & Ugo Montanari (2006): A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1), pp. 98–120, doi:10.1016/j.tcs.2006.07.005.

[12] Dave Clarke, José Proença, Alexander Lazovik & Farhad Arbab (2009): Deconstructing Reo. ENTCS 229(2),
pp. 43–58, doi:10.1016/j.entcs.2009.06.028.

[13] Paul C. Clements (1995): From Subroutines to Subsystems: Component-Based Software Development. The
American Programmer 8(11).

[14] Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia, Kevin Lee, Jo Ueyama &
Thirunavukkarasu Sivaharan (2008): A generic component model for building systems software. ACM Trans.
Comput. Syst. 26(1), pp. 1:1–1:42, doi:10.1145/1328671.1328672.

[15] Cinzia Di Giusto & Jean-Bernard Stefani (2011): Revisiting Glue Expressiveness in Component-Based Sys-
tems. In Wolfgang De Meuter & Gruia-Catalin Roman, editors: COORDINATION, Lecture Notes in Com-
puter Science 6721, Springer, pp. 16–30, doi:10.1007/978-3-642-21464-6 2.

[16] Ichiro Hasuo (2011): The Microcosm Principle and Compositionality of GSOS-Based Component Calculi.
In Andrea Corradini, Bartek Klin & Corina Cı̂rstea, editors: CALCO, Lecture Notes in Computer Science
6859, Springer, pp. 222–236, doi:10.1007/978-3-642-22944-2 16.

[17] Ichiro Hasuo, Bart Jacobs & Ana Sokolova (2008): The Microcosm Principle and Concurrency in Coalge-
bra. In Roberto M. Amadio, editor: FoSSaCS, LNCS 4962, Springer, pp. 246–260, doi:10.1007/978-3-540-
78499-9 18.

[18] C. A. R. Hoare (1985): Communicating Sequential Processes. Prentice Hall International Series in Computer
Science, Prentice Hall.

[19] Kim Larsen, Ulrik Nyman & Andrzej Wa̧sowski (2007): Modal I/O Automata for Interface and Product Line
Theories. In Rocco De Nicola, editor: Programming Languages and Systems, Lecture Notes in Computer
Science 4421, Springer Berlin / Heidelberg, pp. 64–79, doi:10.1007/978-3-540-71316-6 6.

[20] Yoad Lustig & Moshe Y. Vardi (2009): Synthesis from Component Libraries. In: FOSSACS’09: Proceedings
of the 12th International Conference on Foundations of Software Science and Computational Structures,
Springer-Verlag, Berlin, Heidelberg, pp. 395–409, doi:10.1007/978-3-642-00596-1 28.

http://dx.doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/10.1007/978-3-642-20398-5_32
http://dl.acm.org/citation.cfm?id=1986308.1986344
http://dl.acm.org/citation.cfm?id=1986308.1986344
http://dx.doi.org/10.1145/1289927.1289935
http://dx.doi.org/10.1007/s10703-010-0091-z
http://dx.doi.org/10.1007/978-3-642-22045-6_4
http://dx.doi.org/10.1016/j.tcs.2006.07.005
http://dx.doi.org/10.1016/j.entcs.2009.06.028
http://dx.doi.org/10.1145/1328671.1328672
http://dx.doi.org/10.1007/978-3-642-21464-6_2
http://dx.doi.org/10.1007/978-3-642-22944-2_16
http://dx.doi.org/10.1007/978-3-540-78499-9_18
http://dx.doi.org/10.1007/978-3-540-78499-9_18
http://dx.doi.org/10.1007/978-3-540-71316-6_6
http://dx.doi.org/10.1007/978-3-642-00596-1_28

S. Bliudze 19

[21] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten & Betty H.C. Cheng (2004): Composing adaptive
software. Computer 37(7), pp. 56–64, doi:10.1109/MC.2004.48.

[22] Robin Milner (1983): Calculi for synchrony and asynchrony. Theoretical Computer Science 25(3), pp. 267–
310, doi:10.1016/0304-3975(83)90114-7.

[23] Robin Milner (1989): Communication and Concurrency. Prentice Hall International Series in Computer
Science, Prentice Hall.

[24] Gordon D. Plotkin (1981): A Structural Approach to Operational Semantics. Technical Report DAIMI FN-
19, University of Aarhus. Available at http://citeseer.ist.psu.edu/plotkin81structural.html.

[25] Amir Pnueli & Roni Rosner (1990): Distributed reactive systems are hard to synthesize. Annual IEEE
Symposium on Foundations of Computer Science 2, pp. 746–757, doi:10.1109/FSCS.1990.89597.

[26] Awais Rashid, Peter Sawyer, Ana Moreira & João Araújo (2002): Early aspects: a model for aspect-oriented
requirements engineering. In: Proceedings of the IEEE Joint International Conference on Requirements
Engineering (RE’02)., pp. 199–202, doi:10.1109/ICRE.2002.1048526.

[27] Jan J. M. M. Rutten (2000): Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), pp. 3–80,
doi:10.1016/S0304-3975(00)00056-6.

[28] J. Sifakis (2005): A Framework for Component-based Construction. In: Proceedings of the Third Inter-
national Conference on Software Engineering and Formal Methods (SEFM), IEEE Computer Society, pp.
293–300.

[29] Alexandra Silva (2010): Kleene Coalgebra. Ph.D. thesis, CWI, Amsterdam, The Netherlands.
[30] Ana Sokolova (2005): Coalgebraic Analysis of Probabilistic Systems. Ph.D. thesis, TU Eindhoven, Eind-

hoven, The Netherlands.
[31] Daniele Turi & Gordon D. Plotkin (1997): Towards a Mathematical Operational Semantics. In: LICS, IEEE

Computer Society, pp. 280–291, doi:10.1109/LICS.1997.614955.
[32] Peter Wegner (1996): Coordination as constrained interaction (extended abstract). In: Proc. of the First

International Conference on Coordination Languages and Models, LNCS 1061, Springer-Verlag, Springer
Berlin / Heidelberg, pp. 28–33, doi:10.1007/3-540-61052-9.

http://dx.doi.org/10.1109/MC.2004.48
http://dx.doi.org/10.1016/0304-3975(83)90114-7
http://citeseer.ist.psu.edu/plotkin81structural.html
http://dx.doi.org/10.1109/FSCS.1990.89597
http://dx.doi.org/10.1109/ICRE.2002.1048526
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.1109/LICS.1997.614955
http://dx.doi.org/10.1007/3-540-61052-9

	Introduction
	Behaviour types
	Example: Traces
	Example: Labelled Transition Systems
	Example: Coalgebras

	Behaviour composition
	Composition operators
	Combining composition operators
	Symmetrical composition operators

	Discussion and related work
	Conclusion

