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Abstract. Architectures depict design principles: paradigms that can
be understood by all, allow thinking on a higher plane and avoiding
low-level mistakes. They provide means for ensuring correctness by con-
struction by enforcing global properties characterizing the coordination
between components. An architecture can be considered as an operator
A that, applied to a set of components B, builds a composite component
A(B) meeting a characteristic property Φ. Architecture composability is
a basic and common problem faced by system designers. In this paper,
we propose a formal and general framework for architecture composabil-
ity based on an associative, commutative and idempotent architecture
composition operator ‘⊕’. The main result is that if two architectures
A1 and A2 enforce respectively safety properties Φ1 and Φ2, the archi-
tecture A1⊕A2 enforces the property Φ1∧Φ2, that is both properties are
preserved by architecture composition. We also establish preservation of
liveness properties by architecture composition. The presented results
are illustrated by a running example and a case study.

1 Introduction

Architectures depict design principles: paradigms that can be understood by all,
allow thinking on a higher plane and avoiding low-level mistakes. They provide
means for ensuring correctness by construction by enforcing global properties
characterizing the coordination between components.

Using architectures largely accounts for our ability to master complexity
and develop systems cost-effectively. System developers extensively use libraries
of reference architectures ensuring both functional and non-functional proper-
ties, for example fault-tolerant architectures, architectures for resource manage-
ment and QoS control, time-triggered architectures and security architectures.
Nonetheless, we still lack theory and methods for combining architectures in
principled and disciplined fully correct-by-construction design flows.

Informally speaking, an architecture can be considered as an operator A that,
applied to a set of components B builds a composite component A(B) meeting
a characteristic property Φ. In a design process, it is often necessary to com-
bine more than one architectural solution on a set of components to achieve a
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global property. System engineers use libraries of solutions to specific problems
and they need methods for combining them without jeopardizing their char-
acteristic properties. For example, a fault-tolerant architecture combines a set
of features building into the environment protections against trustworthiness
violations. These include 1) triple modular redundancy mechanisms ensuring
continuous operation in case of single component failure; 2) hardware checks to
be sure that programs use data only in their defined regions of memory, so that
there is no possibility of interference; 3) default to least privilege (least sharing)
to enforce file protection. Is it possible to obtain a single fault-tolerant archi-
tecture consistently combining these features? The key issue here is architecture
composability in the integrated solution, which can be formulated as follows.

Consider two architectures A1 and A2, enforcing respectively properties Φ1

and Φ2 on a set of components B. That is, A1(B) and A2(B) satisfy respectively
the properties Φ1 and Φ2. Is it possible to find an architecture A1 ⊕ A2 such
that the composite component (A1 ⊕A2)(B) meets Φ1 ∧ Φ2? For instance, if A1

ensures mutual exclusion and A2 enforces a scheduling policy is it possible to find
an architecture on the same set of components that satisfies both properties?

Architecture composability is a very basic and common problem faced by
system designers. Manifestations of lack of composability are also known as
feature interaction in telecommunication systems [1].

The development of a formal framework dealing with architecture composabil-
ity implies a rigorous definition of the concept of architecture as well as of the
underlying concepts of components and their interaction. The paper proposes
such a framework based on results showing how architectures can be used for
achieving correctness by construction in a rigorous component-based design flow
[2]. The underlying theory is inspired from BIP [3]. BIP is a component frame-
work rooted in well-defined operational semantics. It proposes an expressive
and elegant notion of interaction models for component composition. Interac-
tion models can be studied as sets of Boolean constraints expressing interactions
between components. BIP has been fully implemented in a language and sup-
porting toolset, including compilers and code generators [4].

BIP allows the description of composite components as an expression γ(B),
where B is a set of atomic components and γ is an interaction model. Atomic
components are characterized by their behaviour specified as transition systems.

An interaction model γ is a set of interactions. Each interaction is a set of
actions of the composed components, executed synchronously. The meaning of
γ can be specified by using operational semantics rules defining the transition
relation of the composite component γ(B) in terms of transition relations of
the composed components B. Intuitively, for each interaction a ∈ γ, γ(B) can
execute a transition labelled by a iff the components involved in a can execute
the corresponding transitions labelled by the actions composing a, whereas other
components do not move. A formal definition is given in Sect. 2 (Def. 2).

Given a set of components B an architecture is an operatorA such that A(B) =
γ(C,B), where γ is an interaction model and C a set of coordinating components,
and A(B) satisfies a characteristic property ΦA.
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According to this definition, an architecture A is a solution to a specific co-
ordination problem, specified by ΦA, by using an interaction model specified
by γ and C. For instance, for distributed architectures, interactions are point-
to-point by asynchronous message passing. Other architectures adopt a specific
topology (e.g. ring architectures, hierarchically structured architectures). These
restrictions entail reduced expressiveness of the interaction model γ that must
be compensated by using the additional set of components C for coordination.
The characteristic property ΦA assigns a meaning to the architecture that can be
informally understood without the need for explicit formalization (e.g. mutual
exclusion, scheduling policy, clock synchronization).

Our Contributions. We propose a general formal framework for architec-
ture composability based on a composition operator ‘⊕’ which is associative,
commutative and idempotent. We consider that characteristic properties are the
conjunction of safety properties and liveness properties. We show that if two
architectures A1 and A2 enforce respectively safety properties Φ1 and Φ2, the
architecture A1⊕A2 enforces Φ1∧Φ2, that is both properties are preserved by ar-
chitecture composition. The concept of liveness for architectures derives from the
Büchi-acceptance condition. We designate a subset of states of each coordinator
as “idle”, meaning that it is permissible for the coordinator to remain in such a
state forever. Otherwise, the controller must execute infinitely often. The main
result guaranteeing liveness preservation is based on a “pairwise noninterference”
check of the composed architectures that can be performed algorithmically.

The paper is structured as follows. Sect. 2 introduces the notions of com-
ponents and architecture, as well as the corresponding composition operators.
Sect. 3 presents the key results about the preservation of safety and liveness
properties. Sect. 4 illustrates the application of our framework on an Elevator
control use case. Some related work is discussed in Sect. 5, and Sect. 6 concludes.

2 The Theory of Architectures

2.1 Components and Architectures

Definition 1 (Components). A component is a Labelled Transition System
B = (Q, q0, P,−→), where Q is a set of states, q0 ∈ Q is the initial state, P is
a set of ports and −→⊆ Q × 2P × Q is a transition relation. Each transition is
labelled by an interaction a ⊆ P . We call P the interface of B. Notations q

a−→ q′,
q

a−→ and q � a−→ are as usual; QB, q
0
B, PB and −→B denote the constituents of B.

Definition 2 (Interaction model). Let B = {B1, . . . , Bn} be a finite set of
components with Bi = (Qi, q

0
i , Pi,−→),1 such that all Pi are pairwise disjoint, i.e.

∀i �= j, Pi ∩ Pj = ∅. Let P =
⋃n

i=1 Pi. An interaction model over P is a subset
γ ⊆ 2P . We call the set of ports P the domain of the interaction model.

1 Here and below, we skip the index on the transition relation −→, since it is always
clear from the context.
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The composition of B with the interaction model γ is given by the component
γ(B) = (Q, q0, P,−→), where Q =

∏n
i=1 Qi, q

0 = q01 . . . q
0
n and −→ is the minimal

transition relation inductively defined by the following rules:

qi
∅−→ q′i

q1 . . . qi . . . qn
∅−→ q1 . . . q

′
i . . . qn

,
a ∈ γ qi

a∩Pi−−−→ q′i (if a ∩ Pi �= ∅)
qi = q′i (if a ∩ Pi = ∅)

q1 . . . qn
a−→ q′1 . . . q

′
n

.

In the sequel, when speaking of a set of components B = {B1, . . . , Bn}, we
will always assume that it satisfies all assumptions of Def. 2.

Definition 3 (Architecture). An architecture is a tuple A = (C, PA, γ), where
C is a finite set of coordinating components with pairwise disjoint sets of ports,⋃

C∈C PC ⊆ PA, and γ ⊆ 2PA is an interaction model over PA.

Definition 4 (Application of an architecture). Let A = (C, PA, γ) be an
architecture and let B be a set of components, such that

⋃
B∈B PB ∩⋃

C∈C PC =

∅ and PA ⊆ P
Δ
=

⋃
B∈B∪C PB. The application of an architecture A to the

components B is the component

A(B) Δ
=

(
γ ‖ 2P\PA

)
(C ∪ B) , (1)

where, for interaction models γ′ and γ′′ over disjoint domains P ′ and P ′′ respec-
tively, γ′ ‖ γ′′ Δ

= {a′ ∪ a′′ | a′ ∈ γ′, a′′ ∈ γ′′} is an interaction model over P ′∪P ′′.

Architecture A enforces coordination constraints on the components in B.
The interface PA of an architecture A contains all ports of the coordinating
components C and some additional ports, which must belong to the components
in B. In the application A(B), the ports belonging to PA can only participate
in the interactions defined by the interaction model γ of A. Ports which do
not belong to PA are not restricted and can participate in any interaction. In
particular, they can join the interactions in γ (see (1)). If the interface of the
architecture covers all ports of the system, i.e. P = PA, we have 2P\PA = {∅}
and the only interactions allowed in A(B) are those belonging to γ. Finally, the
definition of γ′ ‖ γ′′, above, requires that an interaction from each of γ′ and
γ′′ be involved in every interaction belonging to γ′ ‖ γ′′. To enable independent
progress in (1), one must have ∅ ∈ γ. (Notice that ∅ ∈ 2P\PA holds always.)
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Fig. 1. Component (a) and coordinator (b) for Ex. 1.
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Example 1 (Mutual exclusion). Consider the components B1 and B2 in Fig. 1(a).
In order to ensure mutual exclusion of their work states, we apply the ar-
chitecture A12 = ({C12}, P12, γ12), where C12 is shown in Fig. 1(b), P12 =
{b1, b2, b12, f1, f2, f12} and γ12 = {∅, b1b12, b2b12, f1f12, f2f12}.

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the only
possible interactions are those explicitly belonging to γ12. Assuming that the
initial states of B1 and B2 are sleep, and that of C12 is free, neither of the two
states (free, work, work) and (taken, work, work) is reachable, i.e. the mutual
exclusion property (q1 �= work) ∨ (q2 �= work) holds in A12(B1, B2)

Let B3 be a third component, similar to B1 and B2, with the interface {b3, f3}.
Since b3, f3 �∈ P12, the interaction model of the application A12(B1, B2, B3)
is γ12 ‖ {∅, b3, f3}. (We omit the interaction b3 f3, since b3 and f3 are never
enabled in the same state and, therefore, cannot be fired simultaneously.) Thus,
the component A12(B1, B2, B3) is the unrestricted product of the components
A12(B1, B2) and B3. The application of A12 enforces mutual exclusion between
the work states of B1 and B2, but does not affect the behaviour of B3.

2.2 Composition of Architectures

Architectures can be intuitively understood as enforcing constraints on the global
state space of the system [3, 5]. More precisely, component coordination is re-
alised by limiting the allowed interactions, thus enforcing constraints on the
transitions components can take. From this perspective, architecture composi-
tion can be understood as the conjunction of their respective constraints. This
intuitive notion is formalised by the two definitions below.

Definition 5 (Characteristic predicates [6]). Denote B = {tt, ff} and let
γ ⊆ 2P be an interaction model over a set of ports P . Its characteristic predicate

(ϕγ : BP → B) ∈ B[P ] is defined by letting ϕγ
Δ
=

∨
a∈γ

(∧
p∈a p ∧∧

p�∈a p
)
. For

any valuation v : P → B, ϕγ(v) = tt if and only if {p ∈ P | v(p) = tt} ∈ γ. A
predicate ϕ ∈ B[P ] uniquely defines an interaction model γϕ, such that ϕγϕ = ϕ.

Example 2 (Mutual exclusion (contd.)). Consider the interaction model γ12 =
{∅, b1b12, b2b12, f1f12, f2f12} from Ex. 1. Since the domain of γ12 is P12 = {b1, b2,
b12, f1, f2, f12}, its characteristic predicate is (omitting ‘∧’):

ϕγ12 = b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

= (b1 ⇒ b12) ∧ (f1 ⇒ f12) ∧ (b2 ⇒ b12) ∧ (f2 ⇒ f12) (2)

∧ (b12 ⇒ b1 XOR b2) ∧ (f12 ⇒ f1 XOR f2) ∧ (b12 ⇒ f12) .

Intuitively, the implication b1 ⇒ b12, for instance, means that, for the port b1
to be fired, it is necessary that b12 be fired in the same interaction [6].

Definition 6 (Architecture composition). Let Aj = (Cj , Pj , γj), for j = 1, 2
be two architectures. The composition of A1 and A2 is an architecture A1⊕A2 =
(C1 ∪ C2, P1 ∪ P2, γϕ), where ϕ = ϕγ1 ∧ ϕγ2 .
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The following lemma states that the interaction model of the composed com-
ponent consists precisely of the interactions a such that the projections of a
onto the interfaces of both of the composed architectures (A1, A2, resp.) belong
to the corresponding interaction models (γ1, γ2 resp.). In other words, these are
precisely the interactions that satisfy the coordination constraints enforced by
both composed architectures.

Lemma 1. Consider two interaction models γi ⊆ 2Pi , for i = 1, 2, and let
ϕ = ϕγ1 ∧ϕγ2 . For an interaction a ⊆ P1∪P2, a ∈ γϕ iff a∩Pi ∈ γi, for i = 1, 2.

Proposition 1. Architecture composition ‘⊕’ is commutative, associative and
idempotent; Aid =

(∅, ∅, {∅}) is its neutral element, i.e. for any architecture A,
we have A⊕Aid = A. Furthermore, for any component B, we have Aid(B) = B.

Notice that, for an arbitrary set of components B with P =
⋃

B∈B PB , we

have, by (1), Aid(B) =
(
2P

)
(B) (cf. Def. 2).

Example 3 (Mutual exclusion (contd.)). Building upon Ex. 1, let B3 be a third
component, similar to B1 and B2, with the interface {b3, f3}. We define two addi-
tional architecturesA13 andA23 similar toA12: for i = 1, 2,Ai3 = ({Ci3}, Pi3, γi3),
where, up to the renaming of ports, Ci3 is the same as C12 in Fig. 1(b), Pi3 =
{bi, b3, bi3, fi, f3, fi3} and γi3 = {∅, bibi3, b3bi3, fifi3, f3fi3}.

By considering, for ϕγ13 and ϕγ23 , expressions similar to (2), it is easy to
compute ϕγ12 ∧ ϕγ13 ∧ ϕγ23 as the conjunction of the following implications:

b1 ⇒ b12 ∧ b13 , f1 ⇒ f12 ∧ f13 , b12 ⇒ b1 XOR b2 , f12 ⇒ f1 XOR f2 , b12 ⇒ f12 ,

b2 ⇒ b12 ∧ b23 , f2 ⇒ f12 ∧ f23 , b13 ⇒ b1 XOR b3 , f13 ⇒ f1 XOR f3 , b13 ⇒ f13 ,

b3 ⇒ b13 ∧ b23 , f3 ⇒ f13 ∧ f23 , b23 ⇒ b2 XOR b3 , f23 ⇒ f2 XOR f3 , b23 ⇒ f23 .

It is now straightforward to obtain the interaction model for A12⊕A13⊕A23, i.e.
{∅, b1b12b13, f1f12f13, b2b12b23, f2f12f23, b3b13b23, f3f13f23}. Notice that this
is different from the union of the interaction models of the three architectures.

Assuming that the initial states of B1, B2 and B3 are sleep, whereas those of
C12, C13 and C23 are free, one can observe that none of the states (·, ·, ·, work,
work, ·), (·, ·, ·, work, ·, work) and (·, ·, ·, ·, work, work) are reachable in (A12⊕A13⊕
A23)(B1, B2, B3). Thus, we conclude that the composition of the three architec-
tures, (A12⊕A13⊕A23)(B1, B2, B3), enforces mutual exclusion among the work
states of all three components. In Sect. 3.1, we provide a general result stating
that architecture composition preserves the enforced state properties.

2.3 Hierarchical Composition of Architectures

Proposition 2. Let B be a set of components and let A1 = (C1, PA1 , γ1) and
A2 = (C2, PA2 , γ2) be two architectures, such that 1) PA1 ⊆ ⋃

B∈B∪C1
PB and

2) PA2 ⊆ ⋃
B∈B∪C1∪C2

PB. Then A2(A1(B)) is defined and equal to (A1⊕A2)(B).
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Condition 1 states that A1 can be applied to the components in B (cf. Def. 4);
condition 2 states that A2 can be applied to A1(B). Note that, when PAi ⊆⋃

B∈B∪Ci
PB holds for both i ∈ {1, 2}—for i = 1, this is the condition 1—and

none of the architectures involves the ports of the other, i.e. PAi ∩
⋃

C∈Cj
PC =

∅, for i �= j ∈ {1, 2}, then the two architectures are independent and their
composition is commutative: A2(A1(B)) = (A1 ⊕A2)(B) = A1(A2(B)).
Proposition 3. Let B1,B2 be two sets of components, such that

⋃
B∈B1

PB ∩⋃
B∈B2

PB = ∅. Let A1 = (C1, PA1 , γ1) and A2 = (C2, PA2 , γ2) be two archi-
tectures, such that PA1 ⊆ ⋃

B∈B1∪C1
PB and PA2 ⊆ ⋃

B∈B1∪B2∪C1∪C2
PB . Then

A2(A1(B1,B2)) = A2(A1(B1),B2).

Intuitively, Prop. 3 states that one only has to apply the architecture A1 to
those components that have ports involved in its interface. Notice that, in order
to compare the semantics of two sets of components, one has to compose them
into compound components, by applying some architecture. Hence the need for
A2 in Prop. 3. As a special case, one can consider the “most liberal” identity
architecture Aid (see Prop. 1). Aid does not impose any coordination constraints,
allowing all possible interactions between the components it is applied to.

Example 4 (Mutual exclusion (contd.)). Ex. 3 can be generalised to an arbitrary
number n of components. However, this solution requires n(n − 1)/2 architec-
tures, and so does not scale well. Instead, we apply architectures hierarchically.

Let n = 4 and consider two architectures A12, A34, with the respective coordi-
nation components C12, C34, that respectively enforce mutual exclusion between
B1, B2 and B3, B4 as in Ex. 3. Assume furthermore, that an architecture A en-
forces mutual exclusion between the taken states of C12 and C34. It is clear that
the system A(A12(B1, B2), A34(B3, B4)) ensures mutual exclusion between all
four components (Bi)

4
i=1. Furthermore, by the above propositions,

A(A12(B1, B2), A34(B3, B4)) = A(A12(B1, B2, A34(B3, B4))) =

A(A12(A34(B1, B2, B3, B4))) = (A⊕A12 ⊕A34)(B1, B2, B3, B4) .

3 Property Preservation

Throughout this section we use several classical notions, which we recall here.

Definition 7 (Paths, path fragments, and reachable states). Let B =

(Q, q0, P,−→) be a component. A finite or infinite sequence q0
a1−→ q1

a2−→ · · · ai−1−−−→
qi−1

ai−→ qi · · · is a path in B if q0 = q0, otherwise it is a path fragment. A state
q ∈ Q is reachable iff there exists a finite path in B terminating in q.

3.1 Safety Properties

Definition 8 (Properties and invariants). Let B = (Q, q0, P,−→) be a com-
ponent. A property of B is a state predicate Φ : Q → B. Φ is initial if Φ

(
q0
)
= tt.
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Definition 9 (Enforcing properties). Let A = (C, PA, γ) be an architecture;
let B be a set of components and Φ be an initial property of their parallel compo-
sition Aid(B) (see Prop. 1). We say that A enforces Φ on B iff, for every state
q = (qb, qc) reachable in A(B), with qb ∈

∏
B∈B QB and qc ∈

∏
C∈C QC , we have

Φ(qb) = tt.
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wwtswf

b1b12

b2b12

f1f12
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Fig. 2. Component from Ex. 5

Example 5. Consider again mutual ex-
clusion in Ex. 1. The component
A12(B1, B2) is shown in Fig. 2 (we ab-
breviate sleep, work, free and taken

to s, w, f and t respectively). Clearly
A12 enforces on {B1, B2} the property
Φ12 = (q1 �= w) ∨ (q2 �= w), where q1
and q2 are state variables of B1 and B2

respectively.
According to the above definition, when we say that an architecture enforces

some property Φ, it is implicitly assumed that Φ is initial for the coordinated
components. Below, we omit mentioning this explicitly.

Theorem 1 (Preserving enforced properties). Let B be a set of compo-
nents; let A1 and A2 be two architectures enforcing on B the properties Φ1 and
Φ2 respectively. The composition A1 ⊕A2 enforces on B the property Φ1 ∧ Φ2.
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For ease of reading, we omit
the transitions indicated in
blue and additionally label
each state with a red num-
ber, whereof the main label is
the binary representation with
s = 0 and w = 1.

Fig. 3. Projections of reachable states of Ex. 6 components onto Aid(B1, B2, B3)

Example 6. In the context of Ex. 3, consider the application of architectures A12

and A23 to the components B1, B2 and B3. The former enforces the property
Φ12 = (q1 �= w)∨ (q2 �= w) (the projections of reachable states of A12(B1, B2, B3)
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onto the state-space of the atomic components are shown in Fig. 3(a)), whereas
the latter enforces Φ23 = (q2 �= w) ∨ (q3 �= w) (the projections of reachable
states of A23(B1, B2, B3) onto the state-space of the atomic components are
shown in Fig. 3(b)). By Th. 1, the composition A12 ⊕A23 enforces Φ12 ∧ Φ23 =
(q2 �= w) ∨ (

(q1 �= w) ∧ (q3 �= w)
)
, i.e. mutual exclusion between, on one hand,

the work state of B2 and, on the other hand, the work states of B1 and B3

(see Fig. 3(c)). Mutual exclusion between the work states of B1 and B3 is not
enforced. Furthermore, it is easy to check that A1 ⊕ A2 ⊕ A3 enforces mutual
exclusion between the work states of B1, B2 and B3 as Φ12 ∧Φ13 ∧Φ23 =

(
(q1 �=

w) ∧ (q2 �= w)
) ∨ (

(q1 �= w) ∧ (q3 �= w)
) ∨ (

(q1 �= w) ∧ (q3 �= w)
)
.

3.2 Liveness Properties

Our treatment of liveness properties is based on the idea that each coordinator
C must be “invoked sufficiently often”, so that the liveness properties inherent in
C are imposed on the system as a whole. So, what does sufficiently often mean?
A reasonable initial idea is to require that each controller is executed infinitely
often (along an infinite path). But that turns out to be too strong. For example,
a mutual exclusion controller should not be invoked infinitely often if no process
that it controls requests the critical resource. So, we add “idle states”, so that it
is permitted for a coordinator to remain forever in an idle state. A coordinator
not in an idle state must eventually be executed. We will use the equivalent
formulation: an (infinite) path is live with respect to a coordinator C iff either
C is executed infinitely often, or is in an idle state infinitely often. A live path
is one that is live with respect to all coordinators. An architecture A is live with
respect to a set of components B iff every finite path of A(B) can be extended
to an infinite live one.

A transition q
a−→ q′ executes a coordinator C iff a∩ PC �= ∅. An infinite path

α executes C infinitely often iff α contains an infinite number of transitions that
execute C. An infinite path q0

a1−→ q1 · · · visits an idle state of coordinator C
infinitely often iff, for infinitely many i ≥ 0, qi � C (the state component of C in
qi) is an idle state of C.

Definition 10 (Architecture with liveness conditions). An architecture
with liveness conditions is a tuple A = (C, PA, γ), where C is a set of coor-
dinating components with liveness condition, PA is a set of ports, such that⋃

C∈C PC ⊆ PA, and γ ⊆ 2PA is an interaction model. A coordinating compo-
nent with liveness condition is C = (Q, q0, Qidle, PC ,−→), where (Q, q0, PC ,−→)
is a component (Def. 1) and Qidle ⊆ Q.

Hence, we augment each coordinator with a liveness condition: a subset Qidle

of its states Q, which are considered “idle”, and in which it can remain forever
without violating liveness.

Definition 11 (Live path). Let A = (C, PA, γ) be an architecture with liveness
conditions and B a set of components. An infinite path α in A(B) is live iff, for
every C ∈ C, α contains infinitely many occurrences of interactions containing
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some port of C, or α contains infinitely many states whose projection onto C is
an idle state of C.

That is, if α
Δ
= q0

a1−→ q1
a2−→ · · · ai−→ qi · · · then, for every C ∈ C, for infinitely

many i: ai ∩ P �= ∅ or qi � C ∈ Qidle, where C = (Q, q0, Qidle, P,−→), and qi � C
denotes the local state of C in qi.

The intuition behind this definition is that each liveness condition guarantees
that its coordinator executes “sufficiently often”, i.e. infinitely often unless it
is in an idle state. When architectures are composed, we take the union of all
the coordinators. Since each coordinator carries its liveness condition with it, we
obtain that each coordinator is also executed sufficiently often in the composed
architecture. We also obtain that architecture composition is as before, i.e. we
use Def. 6, with the understanding that we compose two architectures with
liveness conditions. For the rest of this section, we use “architecture” to mean
“architecture with liveness conditions”.

When we apply an architecture with liveness conditions to a set of compo-
nents, thereby obtaining a system, we need the notion of machine closure [7]:
every finite path can be extended to a live one.

Definition 12 (Live w.r.t. a set of components). Let A be an architecture
with liveness conditions and B be a set of components. A is live w.r.t. B iff every
finite path in A(B) can be extended to a live path.

Even if A1, . . . , Am are each live w.r.t. B, it is still possible for (A1 ⊕ · · · ⊕
Am)(B) to be not live w.r.t. B, due to “interference” between the coordinators
of the Ai. For example, consider two architectures that enforce mutually incon-
sistent scheduling policies, e.g. they require two conflicting interactions (those
that share a component) to both be executed. Hence, we define a notion of
“noninterference” which guarantees that (A1 ⊕ · · · ⊕Am)(B) is live w.r.t. B.

A system is free of global deadlock iff, in every reachable global state, there
is at least one enabled interaction. We show in [8] how to verify that a system
is free of global deadlock, using a sufficient but not necessary condition that,
in many cases, can be evaluated quickly, without state-explosion. Essentially,
we check, for every interaction a in the system, that the execution of a cannot
possibly lead to a deadlock state. The check can often be discharged within a
“small subsystem,” which contains all of the components that participate in a.

We now give a criterion for liveness that can be evaluated without state-
explosion w.r.t. the number of architectures. For simplicity, we assume in the
sequel that each architecture Ai has exactly one coordinating component Ci.

Definition 13 (Noninterfering live architectures). Let architectures Ai =
({Ci}, PAi , γi), for i = 1, 2 be live w.r.t. a set of components B. Then A1 is
noninterfering with respect to A2 and components B iff, for every infinite path α
in (A1⊕A2)(B) which executes C1 infinitely often: either α executes C2 infinitely
often or α visits an idle state of C2 infinitely often.

A set of architectures Ai = ({Ci}, PAi , γi), for i ∈ {1, . . . ,m} is pairwise-
noninterfering w.r.t. components B, iff for all j, k ∈ {1, . . . ,m}, j �= k: Aj is
noninterfering w.r.t Ak and components B.
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Theorem 2 (Pairwise noninterfering live architectures). Let architec-
tures Ai = ({Ci}, PAi , γi), for i ∈ {1, . . . ,m} be live and pairwise-noninterfering
w.r.t. a set of components B. Assume also that (

⊕m
i=1 Ai)(B) is free of global

deadlock. Then (
⊕m

i=1 Ai) is live w.r.t. B.
Example 7 (Noninterference in mutual exclusion). Consider the system (A12 ⊕
A23⊕A13)(B1, B2, B3), as in Ex. 3. Let each coordinator have a single idle state,
namely the free state. Consider the applications of each pair of coordinators, i.e.
(A12 ⊕ A23)(B1, B2, B3), (A23 ⊕ A13)(B1, B2, B3) and (A12 ⊕ A13)(B1, B2, B3).
For (A12 ⊕A23)(B1, B2, B3), we observe that along any infinite path, either C12

executes infinitely often, or remains forever in its idle state after some point.
Hence A23 is noninterfering w.r.t. A12 and B1, B2, B3. Likewise for the five other
ordered pairs of coordinators. We verify that (A12 ⊕ A23 ⊕ A13)(B1, B2, B3) is
free from global deadlock using the method of [8]. Hence by Th. 2, we conclude
that (A12 ⊕A23 ⊕A13) is live w.r.t. {B1, B2, B3}.

For a finite-state system (A1 ⊕A2)(B), we verify noninterference by checking
for infinite paths along which C1 (the coordinator of A1) executes forever, while
C2 (the coordinator of A2) does not execute and is not in an idle state. Our algo-
rithm is: (1) generate the state-transition graphM12 of (A1⊕A2)(B), by starting
with the initial state and repeatedly applying all enabled interactions until there
is no further change; (2) let M ′

12 result from M12 by removing all transitions of
C2 and all global states (and their incident transitions) whose C2-component is
an idle state of C2; (3) find all non-trivial maximal strongly connected compo-
nents of M ′

12, if any. A strongly connected component is nontrivial if it is either
a single state with a self-loop, or it contains at least two states. Existence of
such a component CC of M ′

12 certifies the existence of an infinite path along
which C1 executes forever, while C2 does not execute and is not in an idle state.
Conversely, the non-existence of such a CC certifies that A1 is noninterfering
w.r.t. A2 and B (Def. 13).

Let |M12| denote the number of nodes (states) plus the number of edges
(transitions) in M12. Let |γ1 ∪ γ2| denote the number of interactions in |(A1 ⊕
A2)(B)|. Step (1) takes time O(|M12|∗|γ1∪γ2|), since every interaction is checked
in every state. Step (2) takes time O(|M12|), since it can be implemented using a
depth-first (or breadth-first) search of M12. Step (3) takes time O(|M12|), using
[9]. Hence our algorithm has time complexity O(|M12| ∗ |γ1 ∪ γ2|).

4 Case Study: Control of an Elevator Cabin

We illustrate our results with the Elevator case study adapted from the literature
[10, 11], for a building with three floors. Control of the elevator cabin is modelled
as a set of coordinated atomic components shown in Fig. 4. Each floor of the
building has a separate caller system, which allows floor selection inside the
elevator and calling from the floor. Ports ic and fc respectively represent calls
made within the elevator and calls from a floor. Ports is and fs represent cabin
stops in response to these calls. Furthermore, port names, m, c, o, s, dn , up, nf ,
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Fig. 4. Elevator atomic components

fn and fr stand respectively for “move”, “call”, “open”, “stop”, “move down”,
“move up”, “not full”, “finish” and “free”. Caller system components and their
ports are indexed by floor numbers. B = {E,D,CS0, CS1, CS2} denotes the set
of atomic components.
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Fig. 5. Coordinating components for the elevator example

To enforce required properties, we successively apply and compose architec-
tures. First, apply architecture A1 = ({C1}, P1, γ1) to B. C1 is shown in Fig. 5(a).
P1 contains all ports of C1 and all ports of B. γ1 comprises the empty interaction
∅ and the following interactions (for i ∈ [0, 2]):

– Door control: {{o, o1}, {c, c1}}
– Floor selection control: {{fci}, {ici}}
– Moving control: {{si, s, fs i}, {si, s, isi}, {up,m1}, {dn,m1}}

System A1(B) provides basic elevator functionality, i.e., moving up and down,
stopping only at the requested floors, and door control. Architecture A1 en-
forces the safety property: the elevator does not move with open doors. Nonethe-
less, A1(B) allows the elevator to stop at a floor, and then to leave with-
out having opened the door. To prevent this, we apply architecture A2 =
({C2}, P2, γ2) where C2 is shown in Fig. 5(b), P2 = {e2, d2,m2, c1, s,m1}, and
γ2 = {∅, {s, d2}, {c1, e2}, {m1,m2}}. This grants priority to the door controller
after an s action. By Prop. 2, A2(A1(B)) = (A1 ⊕ A2)(B). (A2 ⊕ A1)(B) pro-
vides the same functionality as A1(B), and also this additional property. The
property “if the elevator is full, it must stop only at floors selected from the
cabin and ignore outside calls” [10, 11], is enforced by applying architecture
A3 = ({C3}, P3, γ3) with C3 shown in Fig. 5(c), P3 = {add3, sub3, nf 3, s, fs i | i ∈
[0, 2]} and γ3 = {∅, {add3}, {sub3}} ∪ {{s,nf 3, fs i} | i ∈ [0, 2]}. A elevator is full
in our example if it contains two passengers. By Prop. 2, A3((A1 ⊕ A2)(B)) =
(A1 ⊕A2 ⊕A3)(B). By Th. 1, (A1 ⊕A2 ⊕A3)(B) satisfies all three properties.

We specify liveness properties for (A1 ⊕ A2 ⊕ A3)(B) by choosing idle states
for the coordinators. C1 and C2 have only their initial states idle, since a moving
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elevator must eventually stop, and an open door must eventually close. C3 has all
of its states idle, since C3 enforces a pure safety property. We implemented our
algorithm for checking noninterference, and used the implementation to verify
that C1 and C2 are mutually noninterfering w.r.t. to B. Our implementation
showed, however, that C3 interferes with both C1 and C2, since it allows an
infinite sequence of add3 and sub3 interactions. This reflects the absence of an
environment component: in reality, one assumes that clients will not hold up
the elevator indefinitely by continuously moving in and out. This shows that we
can detect shortcomings in component models w.r.t. liveness: they manifest as
violations of noninterference.

Finally, we consider the additional property: “requests from the sec-
ond floor have priority over all other requests” [10, 11]. This is en-
forced by the architecture A4 = ({C4}, P4, γ4) with C4 shown in
Fig. 5(d). P4 consists of ports of C4, CS2, and o, s and dn; γ4 =
{∅, {fc2, req4}, {ic2, req4}, {o, fr4}, {dn, fr 4}, {fs2, fn4}, {is2, fn4}}. The system
obtained by application of A4 to (A1 ⊕A2 ⊕A3)(B) has a local deadlock, which
was detected by using the deadlock analysis tool presented in [8]. This deadlock
occurs when a full elevator is called from the second floor. In fact, A4 enforces
the constraint of not going down, while A3 forbids stopping at this floor. Thus,
the only choice is to move upward, which is impossible. Hence the system is in
a local deadlock state involving the elevator engine.

(A1⊕A2⊕A4)(B), obtained by applying A4 to (A1⊕A2)(B), is verified to be
deadlock-free, using [8]. {A1, A2, A4} are pairwise-noninterfering w.r.t. B, using
our implementation. So by Th. 2, (A1 ⊕A2 ⊕A4) is live w.r.t. B.

5 Related Work

A number of paradigms for unifying component composition have been stud-
ied in [12–14]. These achieve unification by reduction to a common low-level
semantic model. Coordination mechanisms and their properties are not studied
independently of behaviour. This is also true for the numerous compositional and
algebraic frameworks [15–23]. Most of these frameworks are based on a single
operator for concurrent composition. This entails poor expressiveness, which re-
sults in overly complex architectural designs. In contrast, BIP allows expression
of general multiparty interaction and strictly respects separation of concerns.
Coordination can be studied as a separate entity that admits a simple Boolean
characterisation that is instrumental for expressing composability.

BIP has some similarities with CSP, which can directly express multiparty in-
teraction by using composition operators parameterized by channel names. For
example,B|{a}|B′ is the system that enforces synchronisation of a-actions of com-
ponentsB andB′. Nonetheless, CSP is not adequate for architecture composition
as the components must be modified when additional architecture constraints are
applied. Consider for example the components Bi = ai → STOP for i = 1, 2, 3.
To model the system described in BIP by {{a1, a2}, {a2, a3}}{B1, B2, B3}, two
channels α and β must be defined representing respectively interactions {a1, a2}
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and {a2, a3} and the components modified as follows: B1 = α → STOP , B2 =
α → STOP � β → STOP,B3 = β → STOP . That is, in addition to renaming,
B2 must be modified to show explicitly the conflict between α and β.

Existing research on architecture composability deals mainly with resource
composability for particular types of architectures, e.g. [23]. The feature interac-
tion problem is how to rapidly develop and deploy new features without disrupt-
ing the functionality of existing features. It can be considered as an architecture
composability problem to the extent that features can be modelled as archi-
tectural constraints. A survey on feature interaction research is provided in [1].
Existing results focus mainly on modelling aspects and checking feature inter-
action by using algorithmic verification techniques with well-known complexity
limitations. Our work takes a constructive approach. It has some similarities to
[24] which presents a formal framework for detecting and avoiding feature inter-
actions by using priorities. Nonetheless, these results do not deal with property
preservation through composition. Similarly, existing work on service interaction
mainly focuses on modelling and verification aspects, e.g. [25, 26].

6 Conclusion

Our work makes two novel contributions towards correct-by-construction system
design. First, it proposes a general concept of architecture. Architectures are
operators restricting the behaviour of their arguments by enforcing a character-
istic property. They can be composed and studied independently. Composition
of architectures can be naturally expressed as the conjunction of the induced
synchronisation constraints. This implies nice properties such as associativity,
commutativity and idempotence. Nonetheless, it is not easy to understand it as
an operation on interaction models. Using BIP to describe architectures proves
to be instrumental for achieving this. In contrast to other formalisms, BIP is
expressive enough and keeps a strict separation between behaviour and coordi-
nation aspects. Application of architectures does not require any modification of
the atomic components. The second contribution is preservation of properties en-
forced by architectures. The preservation of state predicates is guaranteed by the
very nature of architecture composition. This result is different from existing re-
sults stipulating the preservation of invariants of components when composed by
using parallel composition operators e.g., an invariant of B1 is also an invariant
of B1||B2 for some parallel composition operator ||. Our result is about preser-
vation of properties over the same state-space, which is the Cartesian product
of the atomic components. That is, a property of A1(B) is also a property of
(A1 ⊕A2)(B), and so the state-space of the components B is unchanged.

Our work pursues similar objectives as the research on interaction of fea-
tures or services, insofar as they can be modelled as architectural constraints.
Nonetheless, it adopts a radically different approach. It privileges constructive
techniques to avoid costly and intractable verification. It proposes a concept of
composability focusing on property preservation.
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