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ABSTRACT
We provide an algebraic formalisation of connectors in BIP.
These are used to structure interactions in a component-
based system. A connector relates a set of typed ports.
Types are used to describe di�erent modes of synchronisa-
tion: rendezvous and broadcast, in particular.

Connectors on a set of ports P are modelled as terms of the
algebra AC(P ), generated from P by using an n-ary fusion
operator and a unary typing operator. Typing associates
with terms (ports or connectors) synchronisation types �
trigger or synchron �, which determine modes of synchro-
nisation. Broadcast interactions are initiated by triggers.
Rendezvous is a maximal interaction of a connector includ-
ing only synchrons.

The semantics of AC(P ) associates with a connector the set
of its interactions. It induces on connectors an equivalence
relation which is not a congruence as it is not stable for
fusion. We provide a number of properties of AC(P ) used
to symbolically simplify and handle connectors. We provide
examples illustrating applications ofAC(P ), including a gen-
eral component model encompassing synchrony, methods for
incremental model decomposition, and e�cient implementa-
tion by using symbolic techniques.

1. INTRODUCTION
A key idea in systems engineering is that complex systems
are built by assembling components (building blocks). Com-
ponents are systems characterised by an abstraction, which
is adequate for composition and re-use. Large components
are obtained by composing simpler ones. Component-based
design confers many advantages such as reuse of solutions,
modular analysis and validation, recon�gurability, control-
lability etc.

Component-based design relies on the separation between
coordination and computation. Systems are built from units
processing sequential code insulated from concurrent execu-

tion issues. The isolation of coordination mechanisms allows
a global treatment and analysis.

One of the main limitations of the current state-of-the-art is
the lack of a uni�ed paradigm for describing and analysing
the coordination between components. Such a paradigm
would allow system designers and implementers to formu-
late their solutions in terms of tangible, well-founded and
organised concepts instead of using dispersed low-level coor-
dination mechanisms including semaphores, monitors, mes-
sage passing, remote call, protocols etc. A uni�ed paradigm
should allow a comparison and evaluation of otherwise un-
related architectural solutions, as well as derivation of im-
plementations in terms of speci�c coordination mechanisms.

A number of paradigms for unifying interaction in hetero-
geneous systems have been proposed in [1, 2, 3, 11]. In
these works uni�cation is achieved by reduction to a com-
mon low-level semantic model. Interaction mechanisms and
their properties are not studied independently of behaviour.
Coordination languages also o�er mechanisms for uni�ed
and implementation-independent interaction speci�cation,
e.g. [9, 17]. Nonetheless, these are de�ned on an ad hoc
basis, and there is no underlying theoretical framework.

We propose the algebra of connectors for modelling interac-
tion in component-based systems. The algebra allows the
description of coordination between components in terms
of structured connectors involving communication ports. It
formalises mechanisms and concepts that have been imple-
mented in the Behaviour-Interaction-Priority (BIP) compo-
nent framework developed at Verimag [4, 18]. BIP distin-
guishes between three basic entities: 1) Behaviour, described
as extended automata, including a set of transitions labelled
with communication ports. 2) Interaction, described by
structured connectors relating communication ports. 3) Dy-
namic priorities, used to model simple control policies, al-
lowing selection amongst possible interactions. BIP uses a
powerful composition operator parametrised by a set of in-
teractions.

We present an algebraic formalisation of the concept of con-
nector, introduced in [12, 13] as a set of communication
ports belonging to di�erent components that may be in-
volved in some interaction. To express di�erent types of
synchronisation, the ports of a connector have a type (at-
tribute) trigger or synchron. Given a connector involving as
set of ports {p1, . . . , pn}, the set of its interactions is de�ned
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Figure 1: Graphical representation of rendezvous (a)
and broadcast (b) connectors.
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Figure 2: Fusion (a) and structuring (b) of connec-
tors.

by the following rule: an interaction is any non empty subset
of {p1, . . . , pn} which contains some port that is a trigger;
otherwise, (if all the ports are synchrons) the only possible
interaction is the maximal one that is, {p1, . . . , pn}.

In Figure 1, we show two connectors modelling respectively
rendezvous and broadcast between ports p1, p2, p3. For
rendezvous, all the involved ports are synchrons (represented
by bullets) and the only possible interaction is p1p2p3. As
usual, we simplify notation by writing p1p2p3 instead of the
set {p1, p2, p3}. For broadcast, p1 is a trigger (represented by
a triangle). The possible interactions are p1, p1p2, p1p3, and
p1p2p3. A connector may have several triggers. For instance,
if both p1 and p2 are triggers in the above connector, then p2

and p2p3 should be added to the list of possible interactions.

The main contributions of this paper are the following:

• The algebra of connectors extends the notion of con-
nectors to terms built from a set of ports by using
a n-ary fusion operator and a unary typing operator
(trigger or synchron). Given two connectors involving
sets of ports s1 and s2, it is possible to obtain by fu-
sion a new connector involving the set of ports s1 ∪ s2

(cf. Figure 2(a)). Ports preserve their types except
for the case where some port occurs in both connec-
tors with di�erent types. In this case, the port in the
new connector is a trigger. It is also possible to struc-
ture connectors hierarchically as shown in Figure 2(b),
where terms p1 p2 and p3 p4 are typed and then fused
to obtain a new connector.

• The semantics of the algebra of connectors associates
with a connector (a term) the set of its interactions.
This induces an equivalence on terms. We show that
this equivalence is not a congruence as it is not pre-
served by fusion. This fact has deep consequences on
composability of interaction models investigated in the
paper. We show that for the subset of the terms where
all the connectors have the same type (synchron or
trigger) the semantic equivalence is a congruence.

• The algebra and its laws can be used to represent and
handle symbolically complex interaction patterns. The
number of interactions of a connector can grow expo-
nentially with its size. We provide applications of the
algebra in modelling languages, such as BIP, and show

that the use of symbolic instead of enumerative tech-
niques can drastically enhance e�ciency in execution
and transformation.

The paper is structured as follows. Section 2 provides a suc-
cinct presentation of the basic semantic model for BIP and
in particular, its composition parametrised by interactions.
In Section 3, we present the Algebra of Interactions. It is a
simple algebra used to introduce the Algebra of Connectors
presented in Section 4. The last section discusses possible
applications of the algebra of connectors to e�cient design,
analysis, and execution of languages with complex interac-
tion structure, such as BIP.

2. BIP COMPONENT FRAMEWORK
BIP is a component framework for constructing systems by
superposing three layers of modelling: Behaviour, Interac-
tion, and Priority. The lower layer consists of a set atomic
components representing transition systems. The second
layer models interactions between components, speci�ed by
connectors. These are relations between ports equipped with
synchronisation types. Priorities are used to enforce schedul-
ing policies applied to interactions of the second layer.

The BIP component framework has been implemented in a
language and a tool-set. The BIP language o�ers primitives
and constructs for modelling and composing layered com-
ponents. Atomic components are communicating automata
extended with C functions and data. Their transitions are
labelled with sets of communication ports. The BIP lan-
guage also allows composition of components parametrised
by sets of interactions as well as application of priorities.

The BIP tool-set includes an editor and a compiler for gen-
erating from BIP programs, C++ code executable on a ded-
icated platform (see [4, 7]).

We provide a succinct formalisation of the BIP component
model focusing on the operational semantics of component
interaction and priorities.

De�nition 2.1. For a set of ports P , an interaction is a
non-empty subset a ⊆ P of ports.

De�nition 2.2. A labelled transition system is a triple
B = (Q, P,→), where Q is a set of states, P is a set of
communication ports, and →⊆ Q× 2P ×Q is a set of tran-
sitions, each labelled by an interaction.

For any pair of states q, q′ ∈ Q and an interaction a ∈ 2P ,
we write q

a→ q′, i� (q, a, q′) ∈→. When the interaction is
irrelevant, we simply write q → q′.

An interaction a is enabled in state q, denoted q
a→, i� there

exists q′ ∈ Q such that q
a→ q′. A port P is active, i� it

belongs to an enabled interaction.

In BIP, a system can be obtained as the composition of n
components, each modelled by a transition system Bi =
(Qi, Pi,→i), for i ∈ [1, n], such that their sets of ports are
pairwise disjoint: for i, j ∈ [1, n] (i 6= j), we have Pi∩Pj = ∅.
We take P =

Sn
i=1 Pi, the set of all ports in the system.
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Figure 3: A system with four atomic components

The composition of components {Bi}n
i=1, parametrised by

a set of interactions γ ⊂ 2P is the transition system B =
(Q, P,→γ), where Q =

Nn
i=1 Qi and →γ is the least set of

transitions satisfying the rule

a ∈ γ ∧ ∀i ∈ [1, n], (a ∩ Pi 6= ∅ ⇒ qi
a∩Pi→ i q′i)

(q1, . . . , qn)
a→γ (q′1, . . . , q

′
n)

,

(1)
where qi = q′i for all i ∈ [1, n] such that a∩Pi = ∅. We write
B = γ(B1 . . . , Bn).

Notice that an interaction a ∈ γ is enabled in γ(B1, . . . , Bn),
only if, for each i ∈ [1, n], the interaction a ∩ Pi is enabled
in Bi; the states of components that do not participate in
the interaction remain unchanged.

Several distinct interactions can be enabled at the same
time, thus introducing non-determinism in the product be-
haviour, which can be restricted by means of priorities.

De�nition 2.3. Given a system B = γ(B1, . . . , Bn), a pri-
ority model π is a strict partial order on γ. For a, a′ ∈ γ, we
write a ≺ a′ i� (a, a′) ∈ π, meaning that interaction a has
less priority than interaction a′.

For B = (Q, P,→), and a priority model π, the transition
system π(B) = (Q, P,→π), is de�ned by the rule

q
a→ q′ ∧ 6 ∃ a′ : (a ≺ a′ ∧ q

a′→)

q
a→π q′

. (2)

Notice that an interaction is enabled in π(B) only if it is
enabled in B, and maximal according to π.

Example 2.4 (Sender/Receivers). Figure 3 shows a com-
ponent π γ(S, R1, R2, R3) obtained by composition of four
atomic components: a sender, S, and three receivers, R1,
R2, R3. The sender has a port s for sending messages, and
each receiver has a port ri (i = 1, 2, 3) for receiving them.
The following table speci�es γ for four di�erent coordination
schemes.

Set of interactions

Rendezvous {s r1 r2 r3}
Broadcast {s, s r1, s r2, s r3, s r1 r2, s r1 r3,

s r2 r3, s r1 r2 r3}
Atomic Broadcast {s, s r1 r2 r3}
Causality Chain {s, s r1, s r1 r2, s r1 r2 r3}

i
i

�
� i

i
�

� i
i

�
�

p pq r rs t tu

p q r s t u

n
{p}, {p q r}, {p q r s t}, {p q r s t u}

o{p} ≺ {p q r} ≺ {p q r s t} ≺ {p q r s t u}

Figure 4: Modulo-8 counter.

Rendezvous means strong synchronisation between S and
all Ri. This is speci�ed by a single interaction involv-
ing all the ports. This interaction can occur only if
all the components are in states enabling transitions
labelled respectively by s, r1, r2, r3.

Broadcast means weak synchronisation, that is a synchro-
nisation involving S and any (possibly empty) subset
of Ri. This is speci�ed by the set of all interactions
containing s. These interactions can occur only if S
is in a state enabling s. Each Ri participates in the
interaction only if it is in a state enabling ri.

Atomic broadcast means that either a message is received
by all Ri, or by none. Two interactions are possible: s,
when at least one of the receiving ports is not enabled,
and the interaction s r1 r2 r3, corresponding to strong
synchronisation.

Causality chain means that for a message to be received
by Ri it has to be received at the same time by all
Rj , for j < i. This coordination scheme is common in
reactive systems.

For rendezvous, the priority model is empty. For all other
coordination schemes, whenever several interactions are pos-
sible, the interaction involving a maximal number of ports
has higher priority, that is we take π = {(a, a′) | a ⊂ a′}.

Throughout the paper, the above rule is applied. In other
words, amongst the enabled interactions, are preferred the
ones involving a maximal number of ports.

Example 2.5 (Modulo-8 counter). Figure 4 shows a
model for the Modulo-8 counter presented in [15], obtained
by composition of three Modulo-2 counter components. Ports
p, r, and t correspond to inputs, whereas q, s, and u cor-
respond to outputs. It can be easily veri�ed that the in-
teractions p q r, p q r s t, and p q r s t u happen, respectively,
on every second, fourth, and eighth occurrence of an input
interaction through the port p.

Notice that the composition operator can express usual par-
allel composition operators [8], such as the ones used in CSP
[14] and CCS [16]. By enforcing maximal progress, priorities
allow to express broadcast.

3. THE ALGEBRA OF INTERACTIONS
We de�ne the algebra of interactions that will serve as a
basis for building the algebra of connectors.



3.1 Syntax, axioms, and semantics
Syntax. Let P be a set of ports, such that 0, 1 6∈ P . The
syntax of the algebra of interactions, AI(P ), is de�ned by

x ::= 0 | 1 | p ∈ P | x · x | x + x | (x) , (3)

where `+' and `·' are binary operators, respectively called
union and synchronisation. Synchronisation has a higher
order of precedence than union.

Axioms. The operations satisfy the following axioms.

1. Union `+' is idempotent, associative, commutative,
and has an identity element 0, i.e. (AI(P ), +, 0) is a
commutative monoid;

2. Synchronisation `·' is idempotent, associative, and com-
mutative, has an identity element 1, and an absorbing
element 0; synchronisation distributes over union, i.e.
(AI(P ), +, ·, 0, 1) is a commutative semi-ring.

Semantics. The semantics of AI(P ) is given by the func-

tion ‖ · ‖ : AI(P ) → 22P

, de�ned by

‖0‖ = ∅, ‖1‖ = {∅}, ‖p‖ =
n
{p}

o
,

‖x1 + x2‖ = ‖x1‖ ∪ ‖x2‖,
‖x1 · x2‖ =

n
a1 ∪ a2

˛̨̨
a1 ∈ ‖x1‖, a2 ∈ ‖x2‖

o
,

‖(x)‖ = ‖x‖,

(4)

for p ∈ P , x, x1, x2 ∈ AI(P ). Terms of AI(P ) represent
sets of interactions between the ports of P .

Proposition 3.1. The axiomatisation of AI(P ) is sound
and complete, that is, for any x, y ∈ AI(P ),

x = y ⇐⇒ ‖x‖ = ‖y‖ .

Example 3.2 (Sender/Receiver continued). InAI(P ),
the interaction for the four coordination schemes of Exam-
ple 2.4 are:

Set of interactions

Rendezvous s r1 r2 r3

Broadcast s (1 + r1) (1 + r2) (1 + r3)

Atomic Broadcast s (1 + r1 r2 r3)

Causality Chain s (1 + r1 (1 + r2 (1 + r3)))

Clearly, this representation is more compact and exhibits
more information: e.g. the expression (1 + ri) suggests that
the port ri is optional.

3.2 Correspondence with boolean functions
AI(P ) can be bijectively mapped to the free boolean algebra
B[P ] generated by P . We de�ne a mapping β : AI(P ) →
B[P ] by setting:

β(0) = false , β(1) =
^

p∈P

p ,

β(pi1 . . . pik ) =

k̂

j=1

pij ∧
^

i6=ij

pi ,

β(x + y) = β(x) ∨ β(y) ,

for pi1 , . . . pik ∈ P , and x, y ∈ AI(P ), where in the right-
hand side the elements of P are considered to be boolean

variables. For example, consider the correspondence table
for P = {p, q} shown in Figure 5.

The mapping β is an order isomorphism, and each expres-
sion x ∈ AI(P ) represents exactly the set of interactions
corresponding to boolean valuations of P satisfying β(x).

Although techniques speci�c to boolean algebras can be ap-
plied to the boolean representation of AI(P ) (e.g. BDDs),
AI(P ) provides a more natural representation of interac-
tions for two reasons.

1. Representation in AI(P ) is more intuitive as it gives
directly all the interactions. For example, the term p+
p q of AI(P ) represents the set of interactions {p, p q}
for any set of ports P containing p and q. The boolean
representation of p + p q depends on P : if P = {p, q}
then β(p + pq) = p, whereas if P = {p, q, r, s} then
β(p + pq) = p r s.

2. Synchronisation of two interactions in AI(P ) is by
simple concatenation, whereas for their boolean repre-
sentation there is no simple context-independent com-
position rule, e.g. to obtain the representation of p q
from β(p) = p q r s and β(q) = p q r s.

4. THE ALGEBRA OF CONNECTORS
We provide an algebraic formalisation of the concept of con-
nector, supported by the BIP language [4]. Connectors can
express complex coordination schemes combining synchro-
nisation by rendezvous and broadcast.

4.1 Syntax, axioms, and semantics
Syntax. Let P be a set of ports, such that 0, 1 6∈ P . The
syntax of the algebra of connectors, AC(P ), is de�ned by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | x + x | (x) ,

(5)

for p ∈ P , and where `+' is binary operator called union,
`·' is an n-ary operator called fusion, and brackets `[·]' and
`[·]′' are unary typing operators. Fusion has a higher order
of precedence than union.

Union has the same meaning as union in AI(P ). Fusion is
a generalisation of the synchronisation in AI(P ). It is not
associative. Typing is used to form typed connectors: `[·]′'
de�nes triggers (which can initiate an interaction), and `[·]'
de�nes synchrons (which need synchronisation with other
ports in order to interact).

De�nition 4.1. A term x ∈ AC(P ) is a monomial, i� it
does not involve union operators.

Notation 4.2. We write [x]α, for α ∈ {0, 1}, to denote a
typed connector. When α = 0, the connector is a synchron,
otherwise it is a trigger. When the exact type is irrelevant,
we write `[·]∗'.

In order to simplify notation, we will omit brackets on 0, 1,
and ports p ∈ P , as well as `·' for the fusion operation.

The algebraic structure on AC(P ) inherits most of the ax-
ioms from AI(P ) except for the associativity of fusion.



AI(P ) B[P ]

0 false

1 p q p q p q p q p q p q

p + 1 q + 1 p q + 1 p + q p + p q q + p q q p p q ∨ p q p q ∨ p q p q

p + q + 1 p q + p + 1 p q + q + 1 p q + p + q p ∨ q p ∨ q p ∨ q p ∨ q

p q + p + q + 1 true

Figure 5: Correspondence between AI({p, q}) and boolean functions with two variables.

Axioms. The operations satisfy the following axioms.

1. Union `+' is associative, commutative, idempotent,
and has the identity element [0].

2. Fusion `·' is commutative, distributive, and has an
identity element [1]. It is idempotent on monomial
connectors, i.e. for any monomial x ∈ AC(P ) we have
x · x = x.

3. Typing `[·]∗' satis�es the following axioms, for x, y, z ∈
AC(P ) and α, β ∈ {0, 1}:

(a) [0]′ = [0],

(b)
h
[x]α

iβ

= [x]β ,

(c) [x + y]α = [y]α + [x]α,

(d) [x]′ [y]′ = [x]′ [y] + [x] [y]′.

Lemma 4.3. For xi ∈ AC(P ), where i = 1, . . . , n,

nY
i=1

[xi]
′ =

nX
i=1

0@[xi]
′

nY
i6=j

[xj ]

1A .

Notice that, by application of the above lemma, it is possible
to reduce the degree of the terms to one. For example,
consider a connector between two independent senders and
three receivers s′1 s′2 [r1 + r2 r3]. This connector is equal to
s′1 s2 [r1 + r2 r3] + s1 s′2 [r1 + r2 r3].

Semantics. The semantics of AC(P ) is given by the func-
tion | · | : AC(P ) → AI(P ), de�ned by the rules

|[p]| = p , (6)

|x1 + x2| = |x1|+ |x2| , (7)˛̨̨ nY
i=1

[xi]
˛̨̨

=

nY
i=1

|xk| , (8)

˛̨̨ nY
i=1

[xi]
′ ·

mY
j=1

[yj ]
˛̨̨

=

nX
i=1

|xi| ·

0@Y
k 6=i

“
1 + |xk|

”
·

·
mY

j=1

“
1 + |yj |

”!
, (9)

for x, x1, . . . , xn, y1, . . . , ym ∈ AC(P ) and p ∈ P ∪ {0, 1}.
Rules (8) and (9) are applied to the maximal fusion terms.

Notice that, through the semantics of AI(P ), connectors
represent sets of interactions.

Rule (9) can be decomposed in two steps: 1) the application
of Lemma 4.3, to reduce the degree of all terms to one; 2) the
application of rule (9) for n = 1, expressing the fact that the
single trigger in each term must participate in all interac-
tions, while synchrons are optional. Compare Example 4.7
in the following section with Examples 2.4 and 3.2.

Example 4.4. Consider a system consisting of two Senders
with ports s1, s2, and three Receivers with ports r1, r2, r3.
The meaning of the connector s′1 s′2 [r1 + r2 r3] is computed
as follows.

|s′1 s′2 [r1 + r2 r3]| =

(9)
= |s1| (1 + |s2|) (1 + |r1 + r2 r3|)

+|s2| (1 + |s1|) (1 + |r1 + r2 r3|)
(7)
= |s1| (1 + |s2|) (1 + |r1|+ |r2 r3|)

+|s2| (1 + |s1|) (1 + |r1|+ |r2 r3|)
(8)
= |s1| (1 + |s2|) (1 + |r1|+ |r2| |r3|)

+|s2| (1 + |s1|) (1 + |r1|+ |r2| |r3|)
(6)
= s1 (1 + s2) (1 + r1 + r2 r3)

+s2 (1 + s1) (1 + r1 + r2 r3) ,

which corresponds to exactly the set of all possible inter-
actions containing at least one of s1 and s2, and possibly
either r1 or both r2 and r3.

Proposition 4.5. The axiomatisation of AC(P ) is sound,
that is, for x, y ∈ AC(P ),

x = y =⇒ |x| = |y| . (10)

De�nition 4.6. Two connectors x, y ∈ AC(P ) are equiva-
lent (denoted x ' y), i� they have the same sets of interac-
tions, i.e.

x ' y
def⇐⇒ |x| = |y| . (11)

In Section 4.3, we show that this equivalence relation is not
a congruence, which implies that there is no complete ax-
iomatisation for the semantics `| · |'.

4.2 Examples
Example 4.7 (Sender/Receiver continued). In AC(P ),
the interactions for the four coordination schemes of Exam-
ple 2.4 are:



e e e e
s r1 r2 r3

��AA
e e e

s r1 r2 r3

(a) (b)

��AA e e ee
s

r1 r2 r3
��AA

e��AA

e
��AA

e
s

r1 r2 s3

(c) (d)

Figure 6: Graphic representation of connectors.

Set of interactions

Rendezvous s r1 r2 r3

Broadcast s′ r1 r2, r3

Atomic Broadcast s′ [r1 r2 r3]

Causality Chain s′ [r′1 [r′2 r3]]

Notice that AC(P ) allows compact representation of inter-
actions, and, moreover, explicitly captures the di�erence be-
tween broadcast and rendezvous. The four connectors are
shown in Figure 6. The typing operator induces a hierarchi-
cal structure. Connectors can be represented as sets of trees,
having ports at their leaves. We use triangles and circles to
represent types: triggers and synchrons, respectively.

The distinction between parentheses `(·)' and the typing op-
erator `[·]∗' is important, as shown by the following example.

Example 4.8. Consider two terms p′ (a′ c+b) and p′ [a′ c+b]
of AC(P ). For the �rst term we have

|p′ (a′ c + b)| = |p′ a′ c + p′ b| =

= p (1 + a) (1 + c) + a (1 + p) (1 + c) + p (1 + b)

= p + p a + p c + p a c + a + a c + p b ,

whereas for p′ [a′ c + b] we have

|p′ [a′ c + b]| = |p| (1 + |a′ c + b|)
= p (1 + a + a c + b) = p + p a + p a c + p b .

Example 4.9 (Broadcast). For the broadcast connector
s′ r1 r2 r3 (Figure 6(b)), we have

|s′ r1 r2 r3| = s (1 + r1) (1 + r2) (1 + r3) .

This connector can be constructed incrementally. For exam-
ple, one can start from the connector s′ r1, having |s′ r1| =
s (1 + r1). By typing this connector as a trigger and adding
the synchron r2, we obtain

|[s′ r1]
′ r2| = |s′ r1| (1 + |r2|) = s (1 + r1) (1 + r2) .

Connecting r3 in a similar manner gives [[s′ r1]
′ r2]

′ r3 (Fig-
ure 7(a)). The two connectors are equivalent:

|[[s′ r1]
′ r2]

′ r3| = s (1 + r1) (1 + r2) (1 + r3)

It is easy to verify that another incremental construction re-
sults in the equivalent connector [s′ r1]

′ [r′2 r′3] (Figure 7(c)).
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Figure 7: Two connectors realising a broadcast.
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Figure 8: Modulo-8 counter.

Example 4.10 (Modulo-8 counter). In the model shown
in Figure 8, the causality chain pattern (cf. Figure 6(d)) is
applied to connectors p, q r, s t, and u. Thus interactions are

modelled by a single structured connector p′
h
[q r]′ [[s t]′ u]

i
:˛̨̨

p′
h
[q r]′

h
[s t]′ u

ii˛̨̨
= p + p q r + p q r s t + p q r s t u .

These are exactly the interactions of the Modulo-8 counter
of Figure 4.

Example 4.11 (Ethernet). Consider n components, each
equipped with a send port, si, and a receive port ri, for
i ∈ [1, n]. We model two types of interactions:

• successful communication, where some component k
sends data through the port sk, and all the others lis-
ten on their respective receive ports ri for i 6= k;

• collision, where several components try to send data on
their respective send ports {si}i∈I for some I ⊆ [1, n],
while the others listen on {ri}i6∈I .

Thus, the connector modelling the possible interactions is

nX
i=1

s′k
Y
i6=k

(s′i + ri) .

4.3 Congruence relation onAC(P )
De�nition 4.12. We denote by `∼=' the largest congruence
relation contained in `'', that is the largest relation satisfy-
ing, for x, y ∈ AC(P ), and z 6∈ P ,

x ∼= y =⇒ ∀E ∈ AC(P ∪ {z}), E(x/z) ' E(y/z) , (12)

where e.g. E(x/z) denotes the expression, obtained from E
by replacing all occurrences of z by x.

Notice that, in general, two equivalent terms are not con-
gruent. For example, p′ ' p, but p′ 6∼= p as p′ q 6' p q, for
p, q ∈ P .

Proposition 4.13. Similarly typed equivalent terms are con-
gruent, i.e. for x, y ∈ AC(P ), and α ∈ {0, 1}, we have

x ' y =⇒ [x]α ∼= [y]α . (13)



Note 4.14. Clearly, the converse implication in (13) is also
true.

Lemma 4.15. For x, y ∈ AC(P ),

x ∼= y ⇐⇒ ∀z ∈ AC(P ), (z is monomial⇒ x · z ' y · z) .

De�nition 4.16. The degree of a term x ∈ AC(P ) of the
form

Q
i∈I [xi]

∗, denoted by #x, is the number of its trigger
sub-terms.

Theorem 4.17. For two non-zero monomial connectors
x, y ∈ AC(P ), we have

x ∼= y ⇐⇒

8><>:
x ' y

x · 1′ ' y · 1′

#x > 0 ⇔ #y > 0 .

(14)

The following two corollaries are used for the axiomatisation
of the algebra of triggers, de�ned in the next section.

Corollary 4.18. For x ∈ AC(P ) such that #x > 0, we
have x · 0′ ∼= x.

Corollary 4.19. For x, y ∈ AC(P ),

[x]′ [y]′ ∼=
h
[x]′ [y]′

i′
.

4.4 Associative sub-algebras
The subsets of the terms of AC(P ), involving only triggers
or synchrons, de�ne two sub-algebras: the algebra of trig-
gers, AT (P ), and the algebra of synchrons, AS(P ). The
terms of these algebras model, respectively, coordination by
rendezvous and by broadcast.

It can be shown [8] that, for AS(P ), fusion is associative,
that is for x, y, z ∈ AS(P )h

[x] [y]
i
[z] = [x] [y] [z] = [x]

h
[y] [z]

i
.

Thus, fusion in AS(P ) satis�es the same axioms as synchro-
nisation in AI(P ). It follows that dropping the brackets
immediately provides an isomorphism between AS(P ) and
AI(P ).

Corollary 4.19 shows that fusion is equally associative in
AT (P ), that is for x, y, z ∈ AT (P )h

[x]′ [y]′
i′

[z]′ = [x]′ [y]′ [z]′ = [x]′
h
[y]′ [z]′

i′
.

Notice that [1] 6∈ AT (P ). The identity element for fusion in
AT (P ) is [0]′ (cf. Corollary 4.18).

Proposition 4.20.

1. The axiomatisation of AS(P ) is sound and complete.

2. The axiomatisation of AT (P ) is sound. It becomes
complete with the additional axiom

[x]′ y = [x]′ y + [x]′ .

5. APPLICATIONS
The algebra of connectors formalises the concept of struc-
tured connector already used in the BIP language. It �nds
multiple applications in improving both the language and its
execution engine. The three applications presented in this
section show its expressive power and analysis capabilities.

5.1 Efficient execution of BIP
The proposed algebraic framework can be used to enhance
performance of the BIP execution Engine. The Engine drives
the execution of (the C++ code generated from) a BIP pro-
gram. A key performance issue is the computation of the set
of the possible interactions of the BIP program from a given
state. The Engine has access to the set of the connectors
and the priority model of the program. From a given global
state, each atomic component of the BIP program, waits for
an interaction through a set of active ports (ports labelling
enabled transitions) communicated to the Engine. The En-
gine computes from the connectors of the BIP program and
the set of all the active ports, the set of the maximal in-
teractions (involving active ports). It chooses one of them,
computes associated data transformations and noti�es the
components involved in the chosen interaction.

Currently, the computation of the maximal set of interac-
tions involves a costly exploration of enumerative represen-
tations for connectors. This leads to a considerable overhead
in execution times. For instance, for an MPEG4 encoder in
BIP obtained by componentisation of a monolithic C pro-
gram of 11,000 lines of code, we measured almost 100% of
overhead in execution time. We provide below the principle
of a not yet implemented, symbolic method which could be
used to drastically reduce this overhead.

Given a set a of active ports, we use the following algorithm
to �nd the maximal interactions contained in a and a con-
nector K.

1. Let {p1, . . . , pk} be the set of ports that do not belong
to a. Compute K(0/p1, . . . , 0/pk) (substitute 0 for all
pi, with i = 1, . . . , k).

2. In the resulting connector, erase all primes to obtain

a term eK ∈ AI(P ).

3. Consider eK as a star-free regular expression and build
the associated (acyclic) automaton with states labelled
by interactions contained in a.

4. The �nal states of the obtained automaton correspond
to maximal enabled interactions within K.

Example 5.1. Suppose that only ports q, r, s, and t are ac-
tive, and compute the maximal interactions of the connector
p′ [q [s + r] + r q′]′[t + u].

Substitute 0 for p and u to obtain

0′
h
q [s + r] + r q′

i′
[t + 0] =

h
q [s + r] + r q′

i′
t ,

which becomes
h
q [s + r] + r q

i
t by erasing the primes. The

associated automaton is:

i��*
H

Hj

iqir @
@R-

-

q r

q s

-

-

q r t

q s t

The �nal states of this automaton correspond to two in-
teractions, q r t and q s t, and it can be easily veri�ed that
these are, indeed, the two maximal interactions in the given
connector, when ports p and u are not active.
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Figure 9: Modelling a joint call of two functions.

5.2 d-Synchronous component model
Modelling heterogeneous models in BIP, and in particu-
lar synchronous models, has shown that some coordination
schemes need a number of connectors increasing exponen-
tially with the number of ports. Nonetheless, these connec-
tors can be obtained by combination of a reasonably small
number of basic connectors.

To avoid tedious and error prone enumerative speci�cation,
we propose an extension of the current component model
where a transition of the product component may involve
synchronous execution of interactions from several connec-
tors. This leads to a d-synchronous extension of the BIP
component model discussed below.

To motivate the proposed extension, we model joint function
call inspired from constructs found in languages such as nesC
and Polyphonic C# [10, 17]. A function call for a function
fi, involves two strong synchronisations between the Caller
and the Calleei: 1) through the connector Ki = ci bi to
begin the execution of fi; 2) through the connector Li = ri fi

for �nish and return (see Figure 9 for an example with two
Callees).

Joint function calls involve the computation in parallel of
several functions. The Caller awaits for all the invoked func-
tions to complete their execution. For instance, modelling a
joint function call for functions f1 and f2, entails a modi�-
cation of existing connectors by adding the links in dashed
lines, shown in Figure 9, to obtain

[b1 c1]
′ [b2 c2]

′ ' b1 c1 + b2 c2 + b1 c1 b2 c2 .

Depending on the number of ports involved in the call, an
exponential number of connectors can be required. To avoid
connector explosion, we extend the composition operator of
BIP in the following manner.

De�nition 5.2. An interconnected system is given by a
pair ({Bi}n

i=1, {Kj}m
j=1), where Bi = (Qi, Pi,→i) with→i⊆

Qi × 2Pi × Qi, are components, and Kj ∈ AC(P ) with
P =

Sn
i=1 Pi.

For an integer parameter 0 < d ≤ m, the d-synchronous se-
mantics of ({Bi}n

i=1, {Kj}m
j=1) is the system γd(B1, . . . , Bn)

de�ned by applying the rule (1) with γ = γd, where

γd =
X

I⊆[1,m]
|I|=d

Y
i∈I

[Ki]
′ .

Synchronous semantics corresponds to the case, where d is
maximal (i.e. d = m).

Notice that γd contains all the interactions obtained by syn-

ii?p + p q

p

q

e
e ii?r + r s

s

r

e
e

Figure 10: Causality loop.

chronisation of at most d connectors. Thus, in particular,
we have γ1 ⊆ γ2 ⊆ · · · ⊆ γm.

The application of rule (1) for the d-synchronous semantics
with d > 1, requires the nontrivial computation of all the
possible interactions. For this the following proposition can
be used.

Proposition 5.3. Let ({Bi}n
i=1, {Kj}m

j=1) be an intercon-
nected system. The set of possible interactions for its d-
synchronous semantics is

nY
i=1

[Gi]
′ ∩ γd , (15)

where, for i ∈ [1, n], we put Gi =
P

qi∈Qi
Gqi with Gqi =P

qi
a→ a.

Notice that Gi, in (15), is the set of all interactions o�ered by
the component i alone. Thus,

Qn
i=1[Gi]

′ is the set of all the
interactions o�ered by the components, whereas γd is the set
of the interactions allowed by the d-synchronised connectors.
Therefore, the intersection of the two sets characterises all
the possible interactions for the d-synchronous semantics.

Example 5.4 (Causality loop). Consider the intercon-
nected system shown in Figure 10. For d = 2 (synchronous
semantics), the only possible interaction is

[p′ q]′ [r′ s]′ ∩ [q r]′ [p s]′ = p q r s ,

which corresponds to a causality loop, in the terminology of
synchronous languages [6].

Notice that, for d = 1, the set of possible interactions is
empty:

[p′ q]′ [r′ s]′ ∩
“
q r + p s

”
= ∅ .

Example 5.5 (Modulo-8 counter). For synchronous se-
mantics the system in Figure 11 is equivalent to the Modulo-
8 counter given in Example 4.10 of Section 4.2. The syn-
chronous model is a more natural representation of this sys-
tem. Its interactions can be computed by application of
Proposition 5.3:

[p + p q]′ [r + r s]′ [t + t u]′ ∩ p′ [q r]′ [s t]′ u′ =

= p + p q r + p q r s t + p q r s t u .

As shown in the above examples, it is important to compute
e�ciently the interactions of a system for d-synchronous se-
mantics with d > 1. This requires a computation of inter-
section of connectors. To avoid costly enumeration, we have
developed an alternative technique, based on dependency
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Figure 11: Synchronous modulo-8 counter.
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Figure 12: Synthesised connector for mod-8 counter.

graph analysis. Due to space limitations, we will illustrate
this technique, by applying it to the Modulo-8 counter.

The dependency graph analysis consists in building a di-
rected acyclic graph, based on relations induced by connec-
tors between the components of an interconnected system
and labels of the transitions of these components. The re-
sulting graph allows to determine the set of the possible
interactions in the synchronous semantics, without having
to enumerate them explicitly.

For the Modulo-8 counter, the interconnected system in Fig-
ure 11 provides the following relations: p → q (p can trigger
q), r → s, t → u, q = r (q and r must synchronise), and
s = t. All these relations together, are represented by the
graph

p → q r → s t → u . (16)

Each path in such dependency graph represents a causality
chain. This graph represents the connector p′ [[q r]′ [[s t]′ u]],
shown in Figure 12 (cf. also Figure 8). In general, this
technique allows the synthesis of the connectors of a 1-
synchronous model equivalent to a given synchronous model.

5.3 Incremental decomposition of connectors
In [13, 18], it has been argued that incrementality, which
means that models can be constructed by adding and re-
moving components in such a way that the resulting system
is not a�ected by the order of operations, is an important
property of the system composition.

For instance, the following incremental construction for the
broadcast connector s′ r1 r2 r3 is provided in Example 4.9.

s′ r1 r2 r3 ' [s′ r1 r2]
′ r3 '

h
[s′ r1]

′ r2

i′
r3 .

We studied techniques for computing incremental decom-
positions for connectors. These techniques are based on the
iterative application of decompositions as de�ned by the fol-
lowing problem.

Problem 5.6 (Decomposition of Connectors). Given
a connector K ∈ AC(P ) and a subset of ports P0 ⊂ P ,

construct two families Ki ∈ AC(P0) and eKi ∈ AC(P \ P0),

for i = 1, . . . , n, such that

K '
nX

i=1

Ki · eKi .

Clearly, it is possible to solve this problem by computing
explicitly all the interactions of K, and, for each interac-
tion, separating the ports of P0. This involves exhaustive
enumeration of possible interactions, and thus leads to a
combinatorial explosion of terms. We have developed two
techniques for decomposing connectors, avoiding this explo-
sion.

Both techniques, involve an iterative application of decom-
positions. The �rst technique [8] is based on term rewriting
rules, whereas the second technique, presented below, uses
the notion of derivation.

Theorem 5.7. For p ∈ P and K ∈ AC(P ) there exists a
unique, up to equivalence, derivative dK/dp ∈ AC(P \ {p})
such that

K ' p ·
»

dK

dp

–
+ K(0/p) . (17)

Derivatives can be computed by applying the axioms of
AC(P ) and the following rules.

Proposition 5.8. For K ∈ AC(P ) and α, β ∈ {0, 1},

1. K(1) ' dK

dp
+ K(0),

2. K ∈ AI(P\{p}) ⇒ d(p K)

dp
' K and

d(p′ K)

dp
' 1′ K ,

3.
d

dp

“
K1 + K2

”
' dK1

dp
+

dK2

dp
,

4.
d

dp

“
[K1]

α[K2]
β

”
'»

dK1

dp

–α

[K2(1)] + [K1(1)]

»
dK2

dp

–β

.

Example 5.9. Consider the connector K =
h
[s′ r1]

′ r2

i′
r3

modelling a broadcast. Let us decompose it with respect to
s. We have

dK

ds
'

h
[1′ r1]

′ r2

i′
r3 and K(0) ' 0 . (18)

Substituting (18) into (17), and applying the equivalence
x [1′ y] ' [x]′ y, we obtain

K ' s
hh

[1′r1]
′r2

i′
r3

i
' s

hh
r′2r1 + 1′r1

i′
r3

i
' s

h
[r′2r1]

′r3 + r′3r1 + 1′r1

i
' s

h
[r′2r1]

′r3 + r′3r1

i
+ s′r1.

6. CONCLUSION
AC(P ) provides an abstract and powerful framework for
modelling control �ow between components. It allows the
structured combination of two basic synchronisation proto-
cols: rendezvous and broadcast. It is powerful enough to



represent any kind of coordination by interaction, avoiding
combinatorial explosion inherent to broadcast.

Connectors are constructed by using two operators having
a very intuitive interpretation. Triggers initiate asymmetric
interactions; they are sources of causal interaction chains.
Synchrons are passive ports which either can be activated
by triggers or can be involved in some maximal symmet-
ric interaction. Fusion allows the construction of new con-
nectors by assembling typed connectors. Typing induces a
hierarchical structuring, naturally represented by trees.

The concept of structured connectors is directly supported
by the BIP language where connectors describe a set of in-
teractions as well as associated data transformations. Its in-
terest has been demonstrated in many case studies including
an autonomous planetary robot, wireless sensor networks [5],
and adaptive data-�ow multimedia systems. The BIP lan-
guage is used in the framework of industrial projects, as a se-
mantic model for the HRC component model (IST/SPEEDS
integrated project), and for AADL (ITEA/SPICES project).

We believe that AC(P ) provides an elegant mathematical
framework to deal with interactions. The comparison with
boolean algebra shows its interest: fusion becomes a context-
sensitive and rather complicated operation on boolean func-
tions. Boolean algebra representation allows the use of ex-
isting powerful decision techniques, e.g. to decide that an
interaction belongs to a connector or equivalence between
connectors. The relations between AC(P ) and boolean al-
gebra should be further investigated.

Due to space limitations, we could not provide detailed re-
sults about applications of AC(P ). The notation has been
instrumental for formalising the semantics of the synchronous
component model. Axiomatisation and properties of deriva-
tives in AC(P ) allow an e�cient incremental decomposition
of connectors avoiding enumeration of interactions. Finally,
algebraic representation is a basis for symbolic manipula-
tion and transformation of connectors which is essential for
e�cient implementation of the BIP framework.

To our knowledge, AC(P ) is the �rst algebraic framework
for modelling interaction. It can be a semantic model for
formalisms used for modelling architecture, and provides a
basis for comparing coordination mechanisms supported by
existing languages, such as coordination languages.
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