
Noname manuscript No.
(will be inserted by the editor)

SMT-Based Generation of Symbolic Automata

Xudong Qin · Simon Bliudze ·
Eric Madelaine · Zechen Hou · Yuxin Deng ·
Min Zhang

Received: date / Accepted: date

Abstract Open pNets are formal models that can express the behaviour of open sys-
tems, either synchronous, asynchronous, or heterogeneous. They are endowed with a
symbolic operational semantics in terms of open automata, which allows us to check
properties of such systems in a compositional manner. We present an algorithm com-
puting these semantics, building predicates expressing the synchronisation conditions
between the events of pNet sub-systems. Checking such predicates requires symbolic
reasoning about first order logics and application-specific data. We use the Z3 SMT
engine to check satisfiability of the predicates. We also propose and implement an opti-
mised algorithm that performs part of the pruning on the fly, and show its correctness
with respect to the original one. We illustrate the approach using two use-cases: the
first one is a classical process-algebra operator for which we provide several encodings,
and prove some basic properties. The second one is industry-oriented and based on
the so-called “BIP architectures”, which have been used to specify the control software
of a nanosatellite at the EPFL Space Engineering Center. We use pNets to encode a
BIP architecture extended with explicit data, compute its semantics and discuss its
properties, and then show how our algorithms scale up, using a composition of two
such architectures.

Keywords Networks of synchronised automata, software components, symbolic
semantics, SMT

This work was partially funded by the Associated Team FM4CPS between INRIA and ECNU,
Shanghai

Xudong Qin(E-mail: marsxd@gmail.com) · Zechen Hou (E-mail: zechen@sei.ecnu.edu.cn) ·
Yuxin Deng (E-mail: yxdeng@sei.ecnu.edu.cn) · Min Zhang (E-mail: mzhang@sei.ecnu.edu.cn)
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China

Simon Bliudze
INRIA Lille – Nord Europe, 40 avenue Halley, 59650 Villeneuve d’Ascq, France
E-mail: simon.bliudze@inria.fr ORCID: 0000-0002-7900-5271

Eric Madelaine
Université Côte d’Azur, Inria, CNRS, I3S, 06902 Sophia Antipolis, France,
E-mail: eric.madelaine@inria.fr ORCID: 0000-0002-5552-5993

https://orcid.org/0000-0002-7900-5271
https://orcid.org/0000-0002-5552-5993


1 Introduction

In the nineties, several works extended the basic behavioural models based on la-
belled transition systems to formalise value-passing or parameterised systems, using
various symbolic encodings of the transitions [16,32,23,34]. In [34], Lin considered
value-passing CCS [39], for which he developed a symbolic behavioural semantics, and
developed algorithms for checking symbolic bisimulations. Separately, Rathke [24] de-
fined another symbolic semantics for a parameterised broadcast calculus, together with
strong and weak bisimulation equivalences, and developed a symbolic model-checker
based on a tableau method for these processes. Later on, symbolic semantics was ex-
tended to the π-calculus [40] and decision algorithms for various symbolic bisimulations
were proposed [33,19]. However, no practical verification platform has been developed
to use this kind of approaches to provide proof methods for value-passing processes or
open process expressions.

Parameterised networks of synchronised automata (pNets) were proposed to give a
behavioural specification formalism for distributed systems, synchronous, asynchronous,
or heterogeneous. They are used in VerCors [25], a platform for designing and verifying
distributed systems, as the intermediate language for various high-level languages. The
high-level languages in VerCors formalise each component of a distributed system and
their composition. The model of pNets provides the core low-level semantic formalism
for VerCors, and is made of a hierarchical composition of (value-passing) automata,
called parameterised labelled transition systems (PLTS), where each hierarchical level
defines the possible synchronisation of the lower levels. Traditionally, pNets have been
used to formalise fully defined systems or softwares. But we also want to define and
reason about incompletely defined systems, like program skeletons, operators, or open
expressions of process calculi. The open pNet model addresses this problem, using holes
as process parameters, representing unspecified subsystems. The open pNet model was
developed in a series of papers [26,27] in which many examples have been introduced
showing its ability to encode the operators from some other algebras or program skele-
tons. The operational semantics of an open pNet is defined as an open automaton in
which open transitions contain logical predicates expressing the relations between the
behaviour of the holes and the global behaviour of a system. In previous work, only a
sketch of a procedure allowing for computing these semantics was presented, together
with a proof of finiteness of the open automaton, under reasonable hypothesis on the
pNet structure.

Implementing these semantics raised several challenges:

– to obtain a tool that could be applied to pNets representing various languages, in
particular various action algebras, with their specific decision theories;

– to separate clearly the algorithm that generates the transitions of an open au-
tomaton from the symbolic reasoning part that uses an SMT engine to check the
satisfiability of the predicates generated by the algorithm;

– to build a prototype of the algorithm, and validate the approach on our basic
case-studies, meanwhile, understand the efficiency of the interaction with the SMT
solver.

In the long term, we would like to check the equivalence between open systems
encoded as pNets. The equivalence between pNets is FH-bisimulation [27], a dedicated
version of symbolic bisimulation taking predicates into account when matching open
transitions. We foresee that the interplay with the SMT solver that we use here for

2



satisfiability of the predicates of open transitions will be similar to what we need when
proving (symbolic) equivalence between open pNets.

Contribution. In the current work we contribute in the following aspects.
– We present an open automaton generation algorithm. We implement a full working

prototype, within the VerCors platform. In the process, we improve the semantic
rules from [27], and add features in the algorithm to deal with the full model,
including management of variables and assignments.

– We implement the interaction between our algorithm and the Z3 SMT solver, for
checking the satisfiability of the transitions generated by the algorithm.

– We define a strategy checking satisfiability of open transitions in the course of the
residual algorithm, and show the correctness of the optimised algorithm w.r.t. the
original one.

– We show the usage of this approach on various use-cases from different settings, in-
cluding an industry-inspired case-study, namely one architectural pattern extracted
(and extended) from the BIP specification of a nanosatellite on-board software.

Related work. As mentioned above, early attempts were made by Lin and others to
define symbolic bisimulations for process calculi such as value-passing CCS and the
π-calculus, and design algorithms to compute the most general condition under which
two processes are bisimilar [23,34,35]. The idea of symbolic semantics was also gener-
alised to the setting of quantum CCS [20]. However, there is no algorithmic treatment
of the symbolic systems developed by interacting with automatic theorem provers. The
closest work is the one already mentioned by Rathke [24], who developed the symbolic
bisimulation for a calculus of broadcasting system (CBS). CBS is similar to classic
process calculi such as CCS and CSP [29], but communicating by broadcasting val-
ues, transmitting values without blocking. That makes the definition of the symbolic
semantics and bisimulation equivalence different from the classic works.

From a broader perspective, after the seminal work of Hennessy, Lin, and their col-
leagues on value-passing systems with assignments, many different works addressing
various classes of infinite-state systems and/or parameterised topologies have been
published, using combinations of approaches, often including predicate abstraction
and SMT satisfiability (e.g. [1,11,13,14,22]). Among these works, several have demon-
strated the usefulness of SMT engines (either Z3 or Yikes) as servers for solving ver-
ification conditions of algorithms, especially for large case-studies (e.g. [12,15]). With
respect to these, we use symbolic representations not only to get a finite representation
of infinite spaces, but also to express the (data-sensitive) synchronisations with the
environment, making our models suitable for compositional verification.

For other applications, such as the analysis of programming languages, there exist
dedicated platforms using external automatic theorem provers (ATPs) or automatic
tactics from interactive theorem provers (ITPs), to perform symbolic reasoning, and
for example to discharge some subgoals in the proofs. Tools like Rodin [17,18] have
already integrated several provers, like Z3, as modules for proving the proof obligations
generated from a user model. The prover we use, which also happens to be Z3, is
developed by Microsoft Research based on the satisfiability modulo theories framework
(SMT), and is mainly applied in extended static checking, test case generation, and
predicate abstraction. In a similar way, there are several ATPs/ITPs we could consider
to use for result pruning and bisimulation checking in our algorithm, as an alternative
to Z3, such as CVC4 [5], Coq [2] or others.

3



BIP (Behaviour-Interaction-Priority) [7] is a framework for component-based de-
sign of concurrent software and systems. In particular, the BIP tool-set comprises
compilers for generating C/C++ code, executable by linking with one of the dedicated
engines, which implement the BIP operational semantics [4]. This approach ensures
that any property, shown to hold on a given BIP model, will also hold by construction
on the generated code. BIP architectures [3] formalise design patterns, which enforce
global properties characterising the coordination among the components of the system.
They provide a compositional approach, ensuring correctness by construction during
the design of BIP models. In [3], it was shown that application of architectures is
compositional w.r.t. safety properties, i.e. when several architectures are applied, each
enforcing a safety property, the resulting system satisfies their conjunction. However, [3]
did not provide any mechanism for verifying the correctness of individual architectures.
The encoding presented in this paper provides such a mechanism.

Structure. In Section 2 we give a description and a formal definition of the pNet model.
In Section 3 we briefly recall the operational semantics of pNets. In Section 4 we present
an algorithm to compute this semantics, including the interaction with Z3. In Section 5
we give a few use-cases, in particular, a BIP architecture from the nanosatellite case-
study. Finally, we conclude and discuss perspectives in Section 6.

2 Preliminaries

We first introduce pNets and some notations, then give the formal definition of pNet
structures, together with an operational semantics for open pNets.

A pNet has a tree-like structure, where the leaves are either parameterised labelled
transition systems (PLTSs), expressing the behaviour of basic processes, or holes, used
as placeholders for unknown processes, of which we only specify their set of possible
actions, named sort. Nodes of the tree (pNet nodes) are synchronising artifacts, using
a set of synchronisation vectors that express the possible synchronisation between the
parameterised actions of a subset of the sub-trees.

Notations. We extensively use indexed structures over some countable indexed sets,
which are equivalent to mappings over the countable set. The symbol ai∈Ii denotes
a family of elements ai indexed over the set I. When this is unambiguous, we shall
use notations for sets, and typically write “indexed sets over I” which formally means
multisets, and write x ∈ ai∈Ii to mean x = ai for some i ∈ I. An empty family is
written ∅. We denote by a a family when the indexing set is irrelevant. The symbol ]
stands for the disjoint union of indexed sets.

Term algebra. Our models rely on a notion of parameterised actions that are sym-
bolic expressions using data types and variables. As we want to encode the low-level
behaviour of possibly very different programming languages, we do not impose one spe-
cific algebra for denoting actions, nor any specific communication mechanism. So we
leave unspecified the constructors of the algebraused to build expressions and actions.
Moreover, we use a generic action interaction mechanism, based on unification between
two or more action expressions. This will be used in the semantics of synchronisation
vectors to express various kinds of communication or synchronisation mechanisms.

4



Table 1 Algebra presentation: predefined sorts and operators

Sort Constructors Auxiliary Operators

Bool true, false ∧, ∨, ¬, =⇒ , =, 6=
Action Synchro, FUN
Int 0, {i,−i}i∈Nat −(unary), +, −(binary), ×, ÷ etc.
Extension for the Enable use-case of Example 1
Action l, r, δ, acc

Formally, we assume the existence of a term algebra TΣ,V , where Σ is the signa-
ture of the data and action constructors, and V a set of variables. Within TΣ,V , we
distinguish a set of data expressions EV , including a set of Boolean expressions BV
(BV ⊆ EV ). On top of EV we build the action algebra AV , with AV ⊆ TV . Action terms
can use both data and action expressions as sub-terms. The function vars(t) identifies
the set of variables in a term t ∈ T .

pNets can encode naturally the notion of input actions as found, e.g. in value-
passing CCS [39] or of usual point-to-point message passing calculi, but they also
allow for more general mechanisms, like gate negotiation in LOTOS [30], or broadcast
communications.

2.1 Algebra Presentations

In practice, the parameterisation of the pNet model by some specific action algebra
is realised by the definition of a many-sorted algebra presentation. It will be used to
check the well-formedness of a pNet system, and to define the translation of the pNet
semantics into the SMT engine input language (see [6]).

Definition 1 An algebra presentation is a triple P = 〈Sorts,Constrs,Ops〉, where
– Sorts is a set of data sorts.
– Constrs is a set of constructor operators: for each Con ∈ Constrs, arity(Con) =
n ∈ N is its arity and Con : (sel1, sort1), . . . , (seln, sortn) → sort is its signature
with the associated selectors. For each argument, the pair (sel i, sort i) defines an
auxiliary operator of name sel i with signature sel i : sort → sort i.

– Ops is a set of auxiliary operators, with their signatures in the form:
Op : sort1, . . . , sortn → sort .

– Constrs(sortname) and Sels(sortname) are, respectively, the sets of constructors
and selectors of the sort sortname.

Constructors of arity 0 are called constants, and denoted by Consts(P).

In Table 1 we give an algebra presentation. Sorts Bool and Int are predefined
with standard operators. Sort Action is similar, with a constructor Synchro denoting
a synchronised action, i.e. an “internal” action that cannot be further synchronised
with the environment. It also comes with an overloaded FUN constructor, used to build
action expressions with arguments, which will be instantiated to the required sorts for
a given pNet.

The definition of an algebra presentation and a set of variables V fix the term
algebra elements TΣ,V ,BV , and AV .

5



2.2 Running example: the Enable operator

To illustrate our definitions and results, we will use a small running example, coming
from the specification language LOTOS [30]. Suppose we have two unspecified processes
P and Q. In the Enable expression “P >> Q”, an exit statement within P terminates
the current process and passes the control to Q, carrying a value x that is captured by
the accept statement of Q. In the next section we will define pNet encodings of the
Enable operator. Let us start by defining the algebra presentation that will be used in
these pNets.

Example 1 (The “Enable” Operator) In Fig. 1 we give two possible pNet encodings of
the “Enable” operator, which are state-oriented and data-oriented, respectively. The
first one is called EnableState, and uses a controller CState with three simple control
actions, l, r and δ, to synchronise the behaviour of P and Q. Here we use a simple action
algebra, containing two constructors δ(x) and acc(x), for any possible data type of the
variable x, corresponding to the LOTOS statements exit and accept. To construct the
algebra presentation, we extend the triple P = 〈Sorts,Constrs,Ops〉 shown in Table 1
with four new action constant constructors l, r, δ and acc.

This shows an example of the generic FUN constructor used to construct expressions
(of the Action sort, or of any data sort) in any algebra presentations. Here FUN will be
instanciated e.g. as, δ(x) in the form of FUNAction,Data(δ, x) where x is a variable of
type Data. Note that the same action constructor δ is also used as a constant action
in the controller CState.

The EnableData pNet uses the same algebra presentation.The main difference be-
tween EnableState and EnableData lies in the construction of their controllers CState
and CData that we will discuss in the next section.

2.3 The (Open) pNets Core Model

A PLTS is a labelled transition system with variables, which can be manipulated,
defined, or accessed inside states, actions, guards, and assignments. Each state has its
set of variables called state variables, which can only be modified by the assignment in
transitions targeting this state. Variables of the initial state must be initialized. Note
that we make no assumption on finiteness of the set of states, nor on finite branching
of the transition relation.

We first define the set of actions a PLTS can use. Let a range over action constants,
op over operators, and x over variable names. Action terms are given by the following
grammar:

α ∈ A ::= a(p1, . . . , pn) action terms
pi ::= Expr parameters

Expr ::= Value | x | op(Expr1, . . . ,Exprn) expressions

Definition 2 (PLTS) Given a term algebra TΣ,V , a PLTS is a tuple 〈S, s0,→〉, where
• S is a set of states, with s0 ∈ S the initial state.
• →⊆ S × L × S is the transition relation, with L the set of labels of the form
〈α, eb, (xj := ej)

j∈J 〉, where α ∈ AV is a parameterised action, eb ∈ BV is a

guard, and expressions EV ∪AV are assigned to xj . If s
〈α, eb, (xj:=ej)

j∈J 〉
−−−−−−−−−−−−−−→ s′ then

vars(eb)⊆vars(s) ∪ vars(α), and ∀j∈J. vars(ej)⊆vars(s) ∧ xj ∈vars(s′).

6



0

1l r

P Q

<-, a2, r> → a2[∀y2.a2 6= acc(y2)]

CState

EnableState
<a1, -, l> → a1[∀y1.a1 6= δ(y1)]

<δ(x1), acc(x1), δ> → δ(x1)

δ

0

P Q

<-, b2, r> → b2[∀y2.b2 6= acc(y2)]

EnableData
<b1, -, l> → b1[∀y1.b1 6= δ(y1)]

<δ(y2), acc(x2), δ> → δ(x2)

l [v=0]

δ [v=0] v:=1

r [v=1]

v:=0 CData

Fig. 1 Two pNet encodings for Enable

l
2

r
2

0

1

P

Q R <-, a4, r2> → a4 [∀y2.a4 6= acc(y2)]

<a1, -, l1> → a1 [∀y1.a1 6= δ(y1)]

<-, a2, r1> → a2 [∀y2.a2 6= acc(y2)]

<a3, -, l2> → a3 [∀y1.a3 6= δ(y1)]

EnableStateCompLeft

δ2

CState1

<δ(x1), acc(x1), δ1> → δ(x1)

<δ(x2), acc(x2), δ2> → δ(x2)

CState2

Fig. 2 Composed pNet for “P >> (Q >> R)”

Example 2 (PLTS of the Controllers in the “Enable” Operator)
The PLTS of the controller CState from Example 1 is 〈S, s0,→〉, where:

S = {0, 1}; s0 = 0;→= {0 l−→ 0, 0
δ−→ 1, 1

r−→ 1}.

And the PLTS of the controller CData is 〈S′, s′0,→〉 where:

S′ = {0}; s′0 = 0; vars(0) = {v}; init {v := 0};

→= {0 l,[v=0]−−−−−→ 0, 0
δ,[v=0],{v:=1}
−−−−−−−−−−→ 0, 0

r,[v=1]−−−−−→ 0}.

The PLTSs contained in EnableStateCompLeft are similar to the PLTS CState, but
their action constants have been renamed, ensuring disjoint state variable sets.

Now, we define pNet nodes as constructors for hierarchical structures. A pNet node
has a set of sub-pNets that can be either pNets or PLTSs, and a set of holes, playing
the role of process parameters (i.e. unknown in the environment).

A composite pNet consists of a set of sub-pNets, each exposing a set of actions.
The relation between the actions of a pNet and those of its sub-pNets is given by
synchronisation vectors, which synchronise one or several internal actions, and expose
a single resulting global action.

Definition 3 (pNets) A pNet is a hierarchical structure where leaves are PLTSs and
holes: pNet , PLTS | 〈pNeti∈Ii , J,SVk∈Kk 〉, with I, J,K potentialy infinite, where
• pNeti∈Ii is the family of sub-pNets.
• J is a set of indexes, called holes. I and J are disjoint : I∩J = ∅, I∪J 6= ∅.
• SVk∈Kk is a set of synchronisation vectors, where K ∈ IV with IV being the set

of indexed sets whose ranges depend on the variables in V. It is required that
each SVk is a pair (αl∈Ik]Jkl → α′k, gk), where vars(α′k) ⊆

⋃
l∈Ik]Jk vars(αl),

α′k ∈ AV , Ik ⊆ I, and Jk ⊆ J . The global action of a vector SVk is α′k. The
Boolean expression gk, with vars(gk) ⊆

⋃
l∈Ik]Jk vars(αl), is a guard associated

to the vector.

7



Example 3 (pNet of the “Enable” Operator) Consider the pNet EnableState shown
in Fig. 1, upper part. It has two holes P and Q, and one PLTS CState. Note that
our graphical syntax presents pNet nodes and synchronisation vectors as finite arrays,
where the index sets follow the positions in the arrays. In this example we use syn-
chronised actions, to express actions that cannot be further synchronised, similar to
the silent action τ of CCS. We denote them as any action expression but with the
text underlined, e.g. δ(x1). Such synchronised actions do not play any special role for
defining the semantics of pNets, but as one can expect, they will be crucial for defining
weak equivalences. The pNet can be given as follows:
• pNet = {CState};
• J = {P,Q};
• SV = as listed on the right side of each pNet node.

Consider the first vector of EnableState, written as 〈a1, -, l〉 → a1[∀y1.a1 6= δ(y1)]. It
denotes a possible behaviour of P >> Q, for any possible action of the hole P that
respects the vector predicate, that is, any action that does not match δ(y1), for any
value of the variable y1. Remark that the data-oriented encoding in pNet EnableData
has the same synchronisation vectors, up to the usual alpha conversion. Only the
controller CState has been replaced by CData.

Example 4 (pNet of the Composition of “Enable” Operators) Now consider the pNet
EnableStateCompLeft in Fig. 2; the processes P , Q and R are three holes of the pNet.
It has been obtained by replacing the second hole in pNet EnableState by another
pNet representing Q >> R. Technically, the action constants in the PLTS CState1
and CState2 have been renamed to avoid clashes, and the variables in the vectors are
also given different names.

3 Operational Semantics of Open pNets

The semantics of an open pNet will be defined as an open automaton, which is an
automaton where each transition represents the composed transitions of several LTSs
with the actions of some holes; a transition occurs if its predicates hold, and can involve
a set of state modifications. Each state of an open automaton has a set of state variables
that can be assigned by incoming transitions.

Definition 4 (Open transitions) An open transition (OT ) over a set J of holes and
a set of states S is a structure of the form:

············································
{
βj−−→j}j∈J ,Pred ,Post

s
α−→ s′

,

where s, s′ ∈ S, the βj , α are action expressions, βj is an action of the hole j, and α is
the resulting action of the OT . Pred is a predicate over the variables of the terms, labels,
and states si, βj , s, α. Post is a set of equations that hold after the open transition,
represented as a substitution {xk ← ek}k∈K where xk is a variable of s′ or s′i, whereas
ek is an expression over other variables of the open transition.

Definition 5 (Open automaton) An open automaton is a tuple 〈J,S, s0, T 〉, where
• J is a set of indices,
• S is a set of states and s0 ∈ S the initial state,

8



• T is a set of open transitions and, for each t ∈ T , there exist J ′ with J ′ ⊆ J , such
that t is an open transition over J ′ and S.

The states and the shape of predicates in the transitions of an open automaton
representing the semantics of a pNet have the following specific structure.

States of open pNets. A state of an open pNet is a tuple of the states of its leaves. We
denote tuples in structured states in the form / . . . .. For any pNet p, let 〈Si, si0,→i〉i∈L
be the set of PLTSs at its leaves, then States(p) = {/si∈Li . | ∀i ∈ L.si ∈ Si}. A PLTS
could be its own single leave: States(〈S, s0,→〉) = {/s . | s ∈ S}. The initial state is
defined as: InitState(p) = /si0

i∈L..

Predicates. Let 〈pNet, J,SVk∈Kk 〉 be a pNet. Consider a synchronisation vector SVk,
for k ∈ K. We build a predicate MkPred relating the actions of the involved sub-pNets
and the resulting actions. This predicate verifies:

MkPred(SVk, a
i∈I
i , bj∈Jj , v)⇐⇒ SVk = (ai)

i∈I
, (bj)

j∈J → v.

Example 5 (Open transitions) Transition OT2 of the pNet EnableStateCompLeft
(shown in Figure 2) is generated by combining the first vector of its root node with
the second vector of its second node. The global states show that controller CState1
is changing from state 0 to 1.

OT2 = ···························································································
{ δ(x2)−−−−→P

acc(x2)−−−−−→Q} [∀y1.acc(x2) 6= δ(y1)]

/0, 0.
δ(x2)
−−−−→ /1, 0.

If we use the data-oriented pNet EnableData from Figure 1 to build a similar
EnableDataCompLeft expression “P >> (Q >> R)”, the corresponding open transi-
tion would be:

OT ′2 = ·····················································································································································
{ δ(x2)−−−−→P

acc(x2)−−−−−→Q} [v1 = 0 ∧ v2 = 0 ∧ ∀y1.acc(x2) 6= δ(y1)] {v1 ← 1}

/0, 0.
δ(x2)
−−−−→ /0, 0.

where v1 and v2 are respectively the state variables of the first and second EnableData
pNets. Indeed the global state space of this version is reduced to /0, 0., and the state
change is replaced by the assignment “v1 ← 1”.

Structural Semantic Rules. The semantics of pNets in terms of open automata has
been defined in [27], in the form of two structural rules, one for PLTSs, and the other
for pNet nodes. These rules are slightly improved, adding guards in the synchronisation
vectors and syntax for universal quantifier in the guards (see [42])1.

In [27] we also proved the following result, which ensures the termination of our
semantic construction algorithm. Note that this theorem and its proof were part of
previous versions of this work, when Algorithm 1 did not include the fixed point re-
finement computation. Proof of termination of the fixed point itself will be discussed
as part of the proof of Theorem 3.

1 For convenience, we provide these rules and the proof of the finiteness theorem in Ap-
pendix A

9



Theorem 1 (Finiteness) Let pnet = 〈pNet, S,SVk∈Kk 〉 be an open pNet with leaves
li∈Ii and holes hj∈Jj , where the sets I and J are finite. Suppose the synchronisation
vectors of all pNets included in pnet are finite, and li has a finite number of state
variables for each i ∈ I. Then the semantics of pnet is an open automaton with finitely
many states and transitions.

Notice that all the elements of such pNets and open automata are symbolic, and they
can represent many classes of unbounded systems.

4 Generation of Open Automata

In this section we describe an algorithm implementing the pNet semantics, its new “on-
the-fly” version, and the interaction with the Z3 SMT solver. Under the hypotheses of
Theorem 1 both algorithms terminate.

Algorithm 1 Open Automaton Generation
Input: A pNet P (can be a PLTS, but not a hole)
1: Initialize sets U = {InitState(P )} and E = ∅, for unexplored and explored global states,

respectively; L = ∅ for the resulting OTs;
2: while !isEmpty(U) do
3: Choose S in U ; remove S from U , add S to E;
4: OTs = MakeTransitions(P, S);
5: for each OT ∈ OTs do
6: Add OT to L;
7: Let S′ be the target state of OT ; add S′ to the unexplored states if necessary:
8: if (S′ 6∈ U ∪ E) then Add S′ into U ;
9: end for
10: end while
11: L1=filterUnsatTransitions(L,Assignments);
12: OA0

1=makeReachableSubAutomaton(InitState(P ), L1);
13: repeatOAn

1=RefineReachableSubAutomaton(OAn−1
1 )

14: until OAn
1 = OAn−1

1 ; \\ Fixed point reached
15: return OAn

1 ;

Algorithm 1 starts with an open pNet and builds its set of open transitions. Its
main loop is a classical residual algorithm: starting from the initial global state, it picks
a state in an unexplored set, computes all possible OTs, and adds the target states in
the unexplored set, until this set is empty.

The inside loop (MakeTransitions method) applies recursively the semantic rules
following the structure of the pNet. When applying a rule to a PLTS at the leaves, we
simply take the PLTS transitions of the corresponding local state and use the semantic
rules to build the OT. When applying a rule to a pNet node we use two methods,
combining and matching, to generate the open transitions in a hierarchical manner,
as shown in Algorithm 2. This method directly manages the holes of the node, so
MakeTransitions is never called on a hole.

Before the SAT checking step, the set L may contain symbolic transitions that do
not have valid ground instantiations. This is not logically incorrect, but is naturally
not an optimal representation. So (line 11) we prune these UNSAT transitions: at
the end of the open automaton generation, the predicate of each OT is translated

10



into SMTlib assertions (see Section 4.2), and then checked for satisfiability (function
filterUnsatTransitions). Then we compute (lines 12-14) the set of reachable transitions
and states to build the final open automaton (more details in Section 4.3).

Algorithm 2 MakeTransitions() for a pNet node
Input: a pNet node P with subnets sn and holes hole; a global state S.
1: Initialize empty list l and set L for sub-transitions and transitions, respectively;
2: for each Subnet in sn do \\ Recursively apply the semantic rules on the subnets
3: Store MakeTransitions(Subnet, S) in l;
4: end for
5: comb = Combining(l);
6: for each sv ∈ SV and each comb ∈ comb do
7: ot = Matching(sv, comb, hole);
8: if (ot is defined) then Store ot in L; \\ if Matching() succeeds
9: end for
10: return L;

Combining. The combining method enumerates all the possible behaviours of the sub-
nets as all the possible combinations of their open transitions. Assume that there is a
collection of n subnets. We denote by oti the set of open transitions of the i-th subnet
(obtained in line 3 of the algorithm); “−” means that the subnet is not involved. The
combination comb, a set of n-tuples, is the cartesian product:

comb = ({−} ∪ ot1)× ({−} ∪ ot2)× · · · × ({−} ∪ otn).

Matching. The Matching method builds the OTs of a pNet node from those of its
subnets. For each synchronisation vector and each possible combination of behaviours
of the subnets, as generated by the Combining method, it builds the corresponding
open transition. Here, we only detail the construction of the predicate. Suppose that
sv =

(
(a′i)

i∈I(b′j)
j∈J → v′

)
∈ SV is a synchronisation vector, Gk is its guard, and

comb = (oti)
i∈[1,n] ∈ comb is a tuple of open transitions such that, for each i ∈ [1, n],

either oti = −, or the result action of oti is ai. Suppose further that hole = (bj)
j∈J is

the hole behaviour and v is a fresh variable, representing the result action of the OT
under construction. Then we can build the predicate:

MkPred(sv, comb, hole, v) = (∀i ∈ I, ai = a′i) ∧ (∀j ∈ J, bj = b′j) ∧ (v = v′) ∧Gk.

Filtering. While matching a vector with a combination tuple, Matching tries to filter
out some incompatibilities as early as possible. If some of the subnet actions are marked
inactive in the vector while some of the behaviours at the corresponding positions in
the chosen combination are active, the matching would fail and the algorithm can filter
it.

The matching would also fail if the active actions in the vector and the active be-
haviours in the chosen combination are not matched by pattern-matching or unification.
Such case will be checked later, together with the guards collected from synchronisation
vectors and PLTS transitions, using the satisfiability check in the SMT engine.

11



4.1 Management of State Variables and Assignments

In a PLTS, there may be several incoming transitions that assign potentially different
(symbolic) values to a state variable. To handle such cases, the algorithm manages a list
of assignment expressions for each PLTS state. The only assignments for state variables
that happen at the PLTS level are as follows: every time theMakeTransitions method
is applied on a PLTS, it collects the expressions from the Post in each transition.

For a global state in the open automaton, the set of state variables (which may
be used in an outgoing transition) is the disjoint union of the sets of state variables
of the individual PLTS states constituting this global state. The final assignment sets
are assembled when building the open automaton from the reachable transitions, see
below.

4.2 Pruning the Unsatisfiable Results

Our matching/filtering strategy builds some transitions where the predicates express
incompatible constraints. Such constraints come from the mismatching of the actions
by pattern-matching or unification, including the guards collected from PLTSs and
synchronisation vectors, which are all present in the predicates. Even if having an
unsatisfiable (symbolic) transition would not be incorrect, we choose to minimize the
open automaton (i.e. its number of transitions and states), by checking the predicates
for satisfiability.

Example 6 (Unsat OT)

OT19 = ······································································································
{ a1−−→P

acc(x2)−−−−−→R} [a1 = δ(x2) ∧ ∀y1.a1 6= δ(y1)]

/2, 0.
δ(x2)
−−−−→ /3, 0.

Here we display an unsatisfiable open transition from the open automaton of Fig.
2. It shows the case where processes P and R “try” to communicate directly, but this is
made impossible by the combination of chosen synchronisation vectors and their guards.
This mismatch is materialised by the predicate fragment “a1 = δ(x2) ∧ ∀z.a1 6= δ(z)”.
In Section 4.5 we will show how this is encoded and checked using the SMT engine.

Checking satisfiability requires some symbolic computation on the action expres-
sions and the predicates, which may depend on the specific theory of the action algebra
datatypes. The “Modulo Theory” part of SMT solvers is important here, as the solvers
can use specific properties of each data type in the action algebra.

In Algorithm 1, functions filterUnsatTransitions (in line 11) RefineReachableSubAu-
tomaton (in line 13) make use of the Z3 engine to implement the satisfiability checking,
for all the OTs computed that far. For a transition

············································
{
βj−−→j}j∈J ,Pred ,Post

s
α−→ s′

we need to build a predicate encoding both the OT predicate and the information
available on the possible assignments of the initial state s. This is expressed as

Predl ∧
∧

v∈vars(s)
{

∨
Assign∈assigns(v,s)

Assign}

12



where each Assign represents one of the possible (symbolic) values of variable v.

Each call to the SMT engine will return either SAT or UNSAT results, or may fail
due to time bounds. Also, the accuracy of a “SAT” result may depend on the character-
istics of the specific theory used to axiomatise the data domains and operators. Such
theories may be intrinsically undecidable, or may not be properly handled by the SMT
engine (e.g. for recursive datatypes). However, while building the open automaton,
which is a symbolic representation of the pNet behaviour, it is not logically incorrect
to keep potentially unsatisfiable transitions, so we will treat undecidable results, and
time bounds failures, as SAT. So the open automaton may have more transitions and
states than the theoretical minimum.

This is not a problem in itself when constructing the automaton, but a similar
limitation will arise later when using open automata as the input of model checking
or equivalence checking algorithms. Note that decidability results for these will be
dependent on the decidability of the SMT theories used, as is proved e.g. in [27], for
bisimulations.

4.3 Building the Open Automaton

As the removal of the unsatisfiable transitions may entail some transitions without
preceeding transitions, the set L1 might contain unreachable transitions. To remove
those transitions, the last step of the algorithm (lines 12-14) builds the final open
automaton via a traversal of L1, starting at the initial state InitState(p) as defined in
page 9. More precisely, this is a residual algorithm building a graph from the reachable
transitions in L1. Each state in the graph is decorated with a set of its local variables,
and a list of their possible assignments, gathered during the traversal using the “Post”
parts of the OTs.

A further reduction may now be gained by using the information from these sets
of possible assignments: adding this information when checking satisfiability of transi-
tions leaving a given state may result in more UNSAT transitions. The set of possible
assignments computed by the algorithm is an over approximation of possible values of
the variables of such state, so narrowing it means we get a better approximation, and
potentially more information, which can be used in the SAT checking of subsequent
transitions. In turn, this may reduce the possible assignments of the corresponding
target states. In Algorithm 1, we iterate this procedure (lines 13-14), each iteration
reducing the set of transitions and the sets of assignments; the final open automaton
is the fixed point of this iteration.

In practice, this could be expensive as it requires several traversals of the whole
set of open transitions, and it is not incorrect to leave some UNSAT OTs in the result.
Empirically, on real life systems, the unreachable transitions constitute a small part of
the ultimate open transitions, very little will be gained to compute the fixed point. So
we would only perform one step of iteration. Further algorithms (e.g. model-checking
or equivalence checking) will be able to use the full information from the predicates
and the assignment sets, even if some spurious OTs are left here.

13



4.4 Computing Reachable State Space on the Fly

The basic algorithm introduced above potentially explores some areas of the global state
space that will not be reachable after checking the OTs’ predicates for satisfiability.
Incorporating the satisfiability check inside the residual algorithm will definitely save
some of these useless computation. More precisely, it will still create, and submit to
Z3, the OTs at the “border” of the state space, but not the transitions issued from
non-reachable global states. We use this idea to create our “smart” algorithm.

But there is more to this. Due to the symbolic nature of the transitions, reachability
is not as easy to define as in standard models, as illustrated by the discussion above. By
avoiding building the OTs coming from some unreachable states, we also avoid adding
the corresponding assignments to the variables of their target states. But we cannot
use the assignment information in the “on-the-fly” SAT checking, because they cannot
be complete before exploring (at least) all the reachable state space. We first need to
compute an over-approximation of the reachable state space and assignment sets; this
corresponds to the automaton OA0

2 in Algorithm 3, line 13. So the smart algorithm
proceeds in two steps: during the first step, the SAT checking is done without using
any assignment set information (line 5). Only the OTs found SAT from this check will
be added to L, and the corresponding target global state added to U if necessary. This
ensures that all explored global states are effectively reachable by a chain of SAT OTs.

Algorithm 3 “Smart” Reachable Open Automaton Generation
Input: A pNet P (cannot be a hole)
1: Initialize sets U = {InitState(P )} and E = ∅, for unexplored and explored global states,

respectively; L = ∅ for the resulting OTs;
2: while !isEmpty(U) do
3: Choose S in U ; remove S from U , add S to E;
4: OTs = MakeTransitions(P, S);
5: for each OT ∈ OTs do Check satisfiability of OT using the SMT solver;
6: if SAT (OT ) then
7: {Add OT to L;
8: Let S′ be the target global state of OT
9: if (S′ 6∈ U ∪ E) then Add S′ into U ; }
10: end for
11: end while
12: L2=filterUnsatTransitions(L,Assignments);
13: OA0

2=makeReachableSubAutomaton(InitState(P ), L2);
14: repeatOAn

2=RefineReachableSubAutomaton(OAn−1
2 )

15: until OAn
2 = OAn−1

2 ;
16: return OAn

2 ;

At the end of the residual loop, we do another traversal of the automaton, this time
using the assignment information collected that far (line 12), and compute the final
reachable sub-automaton iteratively (lines 13-15), in the same way as in Algorithm 1.
Naturally, this step is only useful if there are some assignments.

Now we will prove that the smart algorithm computes essentially the same open
automata as those of the original algorithm.

The easy case is when the system does not contain assignments to state variables.
This does not mean “data-independency”: we can still have guards in the PLTS tran-
sitions and in the synchronisation vectors, making the behaviour depending on the

14



values of input variables. But the open automaton needs not to collect the set of pos-
sible values dealing with the values of local variables, so the final automaton is AO0

2

as computed in line 13.

Theorem 2 (Correctness without assignments) For a pNet satisfying the finite-
ness conditions of Theorem 1 and containing no assignment to state variables, the smart
algorithm, without a final reachability computation, computes the same open automaton
as that of Algorithm 1 up to a renaming of variables in the transition labels.

Proof Let pn be a pNet. The set of states managed by the two algorithms both are sub-
sets of the cartesian product of the PLTS states, as defined in page 9. In a similar way,
the set of state variables attached to each state are also equal. Comparing transitions re-
quires a little more care, because within theMakeTransitions function, fresh variables
are created everytime a synchronisation vector is used (this occurs within theMkPred

and matching functions). However, given a global state, the call of MakeTransitions

will always return exactly the same set of OTs, up to a renaming of these fresh vari-
ables. When this is not ambiguous, we will speak of equality (of transitions, and of
open automata) without the phrase “up to a renaming of fresh variables”.

Let us first define some notations.
– L0: the original set of transitions by Algorithm 1 (i.e. before line 11),
– L1sat: the original set of transitions by Algorithm 1, after satisfiability check (i.e.

after line 11),
– L1reach: the final set of OTs of Algorithm 1, as computed by line 12 (as OA0

1).
– L2sat: the original set of transitions by Algorithm 3 (i.e. before line 13),
– L2reach: the final set of OTs of Algorithm 3, as computed by line 13. Here also
OAn2 = OA0

2.
– States : OT → State: the function that computes the set of target states of a set

of OTs.
– Rename : L1reach → L2reach: a function that keeps state names of transitions but

renames fresh variables in the transition labels. In the sequel, transitions li will
range over L0 set (and L1∗), and l′i will range over L2∗ sets. Of course renaming
preserves satisfiability.
We now prove that L1reach = L2reach and States(L1reach) = States(L2reach).
By definition of the algorithms, we have:

L1reach ⊆ L1sat ⊆ L0 and L2reach ⊆ L2sat .
Let S = /s. = /{si}i∈Leaves(pn). range over the global states States(L0), The

only difference between the main loops of the algorithms is that Algorithm 3 only
retains the satisfiable OTs (lines 6-7), so Algorithm 3 computes fewer transitions than
Algorithm 1. Formally, we have that L2sat ⊆ Rename(L0) (up to a renaming of fresh
variables), and as a consequence States(L2reach) ⊆ States(L0), i.e.,

∀ / u. ∈ States(L2reach), ∃ / t. ∈ States(L0), /t. = /u. .
For a global state S, and a set of OTs L, define its distance |S|L as the length n of

(one of the) shortest chain S0
l1−→ S1

l2−→ ...Sn−1
ln−→ S from the initial state S0, with

lk ∈ L for each k ∈ [1..n].

We will prove by induction on the distance from the original state that
∀S ∈ L0.∀n ∈ N.S ∈ States(L2reach) ∧ |S|L2reach

= n ⇒ S ∈ States(L1reach),
and vice-versa.

The initial property is trivial, for n = 0, both state sets of distance zero are reduced
to {S0}.

15



Suppose our property is true for distance n, and suppose |S|L2reach
= n+ 1, then

there exists a chain S0
l′1−→ S1

l′2−→ ...Sn
l′n+1−−−→ S with all l′k ∈ L2reach. In particular,

since L2reach ⊆ L2sat, we have that l′n+1 ∈ L2sat and its predicate is satisfiable.
By induction hypothesis, we get Sn ∈ States(L1reach), so during the call of

makeReachableSubAutomaton in Algorithm 1, line 12, there exists an OT Sn
ln+1−−−→ S

in L1sat, with l′n+1 = Rename(ln+1); this OT will be checked and found SAT, so
S ∈ States(L1reach).

Conversely, if |S|L1reach
= n+1, we get a similar chain in L1reach, with the tran-

sition Sn
ln+1−−−→ S. Then Sn ∈ States(L1reach) and ln+1 is satisfiable. By induction,

we have Sn ∈ States(L2reach) = States(L2sat), so there exists l′n+1 = Rename(ln+1)
that will have been checked on the fly, in line 6 of Algorithm 3. Then the transition

Sn
l′n+1−−−→ S will be added to L2sat, and thus S ∈ States(L2reach).
Note that L0 is finite. Therefore, we can conclude that L1reach = L2reach and

States(L1reach) = States(L2reach). ut

General case with assignments. In the presence of assignments, we need to collect all
of them before using the assignment information to refine the SAT checking. Still, the
smart strategy will explore a reduced state space, though not necessarily the minimal
one. In the following theorem, both algorithms are considered in their complete version,
meaning the reachability (with assignments) step is iterated up to fixed points.

Theorem 3 (Correctness with assignments) In the general case, if a pNet sat-
isfies the finiteness conditions of Theorem 1 and contains some assignments to state
variables, the smart algorithm computes the same open automaton as that of Algo-
rithm 1 up to a renaming of variables in the transition labels.

Proof Define the OT sets L0, L1sat, L2sat, L2reach and the function States as before,
and:
– L∗1: the final set of OTs of Algorithm 1, as computed by an iterative application of
makeReachableSubAutomaton (line 14) up to a fixed point.

– L∗2: the final set of OTs of Algorithm 3, as computed by an iterative application of
makeReachableSubAutomaton (line 15) up to a fixed point.

– Assigns : OT → Assign: the function of computing the set of assignments of (the
variables of the states of) a given set of OTs.

– AssignsV ar : V ars× OT → Assign: the function of computing the set of assign-
ments of a specific state variable in a transition.

The structure implicitly computed by both algorithms is a triple Aut = 〈OT, State,
Assign〉.

We already know that L2sat ⊆ L1sat (up to a renaming), because every OT that
will be checked positively (using assignments) in line 12 of Algorithm 3 will also be
tested in Algorithm 1 (as L2sat ⊆ L0), and with a larger set of assignments.

Consequently, the initial triples of the refinement loop are:

Aut01 = 〈L1sat, States(L1sat), Assigns(L1sat)〉

Aut02 = 〈L2sat, States(L2sat), Assigns(L2sat)〉

with Aut02 ⊆ Aut01, component-wise and up to a renaming.

16



Based on each triple structure Aut, we define the function Refine : Aut → Aut

modelling the function makeReachableSubAutomaton(S0, OTs). It uses the assign-
ments of the OTs remaining from the previous iteration to refine the computed reach-
able space:

Autn = Refine(Autn−1) = 〈Ln, States(Ln), Assigns(Ln)〉

where Ln = Reach(Ln−1 − Ln−1
unsat), and L

n−1
unsat is the set of unsatisfiable transitions

checked in this iteration. We have Ln ⊆ Ln−1, and consequently, their states and
assignments may be reduced:

States(Ln) ⊆ States(Ln−1) ∧Assigns(Ln) ⊆ Assigns(Ln−1) .

In each iteration k, consider a transition l ∈ Lk and define

Pred(l, Lk−1) = Predl ∧
∧

v∈vars(pn)
{

∨
Assign∈AssignsV ar(v,Lk−1)

Assign} .

Checking the satisfiability of l means checking the satifiability of Pred(l, Lk−1). Note
that this is equivalent to the predicate defined in Section 4.2, because we consider
all state variables of the pNet, rather than those of state s, but assignments of other
variables will not change the satisfiability.

There are two reasons why an OT would disappear during one application of
Autk = Refine(Autk−1): either its predicate, checked with the set of Assign(Lk−1),
becomes UNSAT; or this OT is at the end of a sequence starting from a state in
s0 ∈ State(Lk), the next OT becomes UNSAT, and the following states in the se-
quence are not reachable using satisfiable OTs in Autk. More formally, there is a chain

s0
ot1−−→ s1

ot2−−→ ...sn
otn+1−−−−→ sn+1

with Pred(ot1, L
k−1) being UNSAT, and all states si, i ∈ [1..n], are unreachable in

Autk.
In each iteration, the number of triples decreases, thus there exists a sequence

Autn = Refine(Autn−1) s.t. |Autn| < |Autn−1|.

The iteration terminates when Autn contains no more unsatisfiable transition, reaching
the fixed point Autn = Refine(Autn−1). The initial structure is finite by Theorem 1,
so the iteration always terminates.

Now we prove that the triples at the end of the fixed point computation in both
algorithms are equal. Let Aut∗1 and Aut∗2 be two fixed points with Refine(Aut∗1) =
Aut∗1 and Refine(Aut∗2) = Aut∗2. We want to prove L∗1 = L∗2.

We already have Aut02 ⊆ Aut01. We will proceed in two steps: first prove by induc-
tion that Hypk = (Lk2 ⊆ Lk1) is preserved by each application of Refine (meaning that
the refine function in Algorithm 1 cannot go “faster” than in Algorithm 3), then prove
that when the fixed points are reached, they are the same.

Suppose Hypk−1 holds and let us prove the validity of Hypk. Consider an OT
l ∈ Lk2 , but l /∈ Lk1 . We have

l ∈ Lk2 =⇒ l ∈ Lk−1
2 =⇒ l ∈ Lk−1

1

so the transtion l has been removed from Lk−1
1 during the last iteration Refinek1 . This

can be caused by:

17



– either Pred(l, Lk−1
1 ) is UNSAT, because of some assignment u ∈ Assigns(Lk−1

1 ).
But l ∈ Lk2 , so its predicate Pred(l, Lk−1

2 ) is satisfiable; this is a contradiction,
because Assigns(Lk2) ⊆ Assigns(Lk1) (having more possible assignments cannot
reduce satisfiability).

– or there is a sequence s0
l1−→ s1

l2−→ ...sn
l−→ sn+1, with s0 ∈ States(Lk−1

1 ),
Pred(l1, L

k−1
1 ) is UNSAT, and all further states are unreachable in Lk−1

1 . But
as in the previous case, we would have l1 in Lk2 and not in Lk1 , reaching a similar
contradiction.

Now consider the fixed points of the Refine iterations. From the initial inclusion
L0
2 ⊆ L0

1 and our invariant, we get the inclusion L∗2 ⊆ L∗1.
Suppose there exists an OT l in L∗1 that is not in L∗2. The fact that l ∈ L∗1 means

that Predl, with the information contained in Assigns(L∗1), is satisfiable, but also all

the transitions {li}i∈[1..n] in a sequence s0
l1−→ s1

l2−→ ...sn
ln+1−−−→ sn+1 leading to this

ln+1 = l.
Clearly all these {li}i∈[1..n] are also satisfiable and reachable in L0

2 during the
“smart” traversal, which does not use assignments. Now consider the chain of assign-
ment sets {Assigns(Li2)}i∈[0..k], used during the iteration of Refine by Algorithm 3;
we argue that the specific instantiation of variables that makes Pred(l, L∗1) satisfiable
is contained in Assigns(L0

2), and that if it is removed during one of the Refine step
in Algorithm 1, then it is removed similarly in Algorithm 3. So we get a contradiction.

Therefore, we conclude that L∗2 = L∗1. ut

4.5 Translation to SMTlib and Satisfiability Check

We check the satisfiability of each open transition using the SMT solver Z3. In this
section, we describe the translation of the algebra presentation, of assignments, and of
the predicates.

Our implementation submits satisfiability requests to Z3 using its Java API. Here,
for readability, we show the Z3 code using its SMTlib input language. Note that in the
previous sections, the OTs were displayed in a simplified, human readable form. The
input and output of our tool, and also the generated SMTlib fragments, are slightly
more difficult to read, in particular because of structured names for the fresh variables
generated by the algorithms, allowing for traceability of the result [42].

Figure 3 shows the translation of Example 6, page 12, in the SMTlib syntax. It
contains the declaration of the relevant part of the LOTOS action algebra sorts and
constructors, then the declaration of variables, and finally the predicate to be checked,
encoded as a set of assertions.

Here the behaviour of the hole “P ” (a1 in Example 6), after matching with the
synchronisation vectors, appears as a variable “|a1:sva_SVA0:15:1|”, and “R” (acc(x2))
as “(ACT delta |x:sva_SV4:1:2|)”. Line 16 requires that a1 = δ(x2) to match the second
synchronisation vector of the root pNet node, and lines 17-18 that a1 does not match
δ(x1) for any x1. We also display the diagnosis (“SAT” or “UNSAT”) generated by Z3.

For simplicity, we have only shown here a use-case with boolean conditions, so we
only require the basic SAT capability of the Z3 engine. It should be clear that more
involved examples will require reasoning about predicates of various data types. Z3
provides theories for reasonning about integers, bitstrings, enumerated types, arrays,
etc. We also need to deal with some universal quantification on free variables occuring

18



Fig. 3 Checking one open transition in Z3

in the guards of synchronisation vectors. For other data structures in such models,
like records, or recursive structures, the user will have to develop her own theories.
Decidability of these theories will condition on the completeness of the satisfiability
check, and the decidability of model-checking or bisimulation checking.

Production of the SMT-lib code To build the input submitted to Z3 for each OT, we
translate the algebra presentation, the predicates and the variable assignments into Z3
(Java-API) calls.

Translation of action algebra presentation. In [41], we define the translation of an
algebra presentation into SMTlib declarations (declare-datatypes and declare-fun).
We also formalise a condition of well-formedness of pNets to ensure that the generated
code is correct and will not raise runtime errors in the SMT engine. Note that the
declare-datatypes command comprises both the action constructors from Table 1
and also the constant action names from our example. In addition, we will include the
axiomatisation of any required functions and predicates of the presentation data-types.

Translation of open transitions. In [42] we formally define all steps of the translation
of each open transition, including:
– to collect all variables in the transition, and declare them (using declare-const),
– to check the well-formedness and correct typing of expressions,
– to translate the predicate into a conjunction of assertions,
– to translate the state-variable assignments into a disjunctive assertion, if the as-

signments are present in the source state.
This translation ensures that no runtime error will occur in the SMT engine.

Figure 3 shows the decomposition of the predicate into a set of asserts, each en-
coding an elementary equality, inequality, or a guard. The result (SAT or UNSAT) of
the final check-sat command in the translation is then decoded.

19



5 Use-Cases

In this section we present the results of open automata construction for several exam-
ples, starting with three constructions from Section 2 using the Enable operator. Then
we give detailed results for the Failure Controller that was presented in [41], and show
how this sort of BIP architectures can be composed together. Finally, we give some
figures illustrating the benefits of the smart algorithm on these examples.

5.1 Enable operator

A0 A1

ot2

ot1 ot3

B0
ot′3

ot′2

ot′1

ot1 =··························································
{ a1−−→P }, [∀y1.a1 6= δ(y1)]

A0
a1−−→ A0

ot2 =············································
{ δ(x1)−−−−→P ,

acc(x1)−−−−−→Q}

A0

δ(x1)
−−−−→ A1

ot3 =······························································
{ a2−−→Q}, [∀y2.a2 6= acc(y2)]

A1
a2−−→ A1

ot′1 =··································································
{ b1−→P }, [∀y1.b1 6= δ(y1)∧v = 0]

B0
b1−→ B0

ot′2 =················································································
{ δ(x2)−−−−→P ,

acc(x2)−−−−−→Q}, [v = 0], {v ← 1}

B0

δ(x2)
−−−−→ B1

ot′3 =······································································
{ b2−→Q}, [∀y2.b2 6= acc(y2)∧v = 1]

B1
b2−→ B1

Fig. 4 The two open automata

The open automata generated for the two encodings of Enable in Figure 1 are
displayed in Figure 4. The initial transition of EnableData is transformed to the ini-
tialisation of the state variables, which is {v ← 0}, for its open automata. Note that
although these automata look very similar to the PLTS controllers from Figure 1, their
nature is very different: they represent the behaviour of the whole system, including
the holes P and Q. Their transitions do not rely on a particular implementation of the
controllers, but only encode the relations between the actions of the holes. We have
shown in [27] that the two open automata are equivalent with respect to a notion of
(symbolic) FH-bisimulation.

A10

A11

A12

OT1

OT3

OT5

OT2

OT4

OT1 = ············································
{ a1−−→P } a1 6= δ(x)

/00.
a1−−→ /00.

OT2 = ···············································
{ δ(x1)−−−−→P ,

acc(x1)−−−−−→Q}

/00.
δ(x1)
−−−−→ /10.

OT3 = ·············································
{ a2−−→Q}, a2 6= δ(x)

/10.
a2−−→ /10.

OT4 = ····················································
{ δ(x2)−−−−→Q,

acc(x2)−−−−−→R}

/10.
δ(x2)
−−−−→ /11.

OT5 = ·····························
{ a4−−→R}

/11.
a4−−→ /11.

Fig. 5 Open automaton for the term “P >> (Q >> R)”

Now let us revisit the Enable composition from Figure 2. Its open automaton is
shown in Figure 5. Building the symmetric system “(P >> Q) >> R” in a similar

20



tick

t:=t+1
[t<Max]

C

resume

fail

cancel

start

timeoutC

start, t:=0

timeoutT
timeoutT , [t ≥ Max]

t0 t1
resume

fail

reset

resume

s2

s1s0

reset

ti
m
eo
ut
C

reset

fail
reset

cancel

T tick

tick reset ask

cancel

Fig. 6 The BIP specification of the Failure Monitor architecture

way will allow us to prove that they are bisimilar (the Enable operator is associative),
as we have shown in [28]. This approach allows us to study the equational properties
of many operators in classical process algebras or parallel languages, even when their
semantics depends on data properties.

5.2 BIP Failure Monitor Architecture

In this section, we present a variation of the Failure Monitor architecture from the
CubETH nanosatellite on-board software case-study [37] realised using BIP.

The architecture-based design process in BIP takes as input a set of components
providing basic functionality of the system and a set of temporal properties that must
be enforced in the final system. For each property, a corresponding architecture is iden-
tified and applied to the model, thereby potentially introducing additional coordinator
components and modifying the connectors that define synchronisation patterns among
ports of components.

Figure 6 shows this modified version of the Failure Monitor architecture used
in [37].2 The architecture consists of 2 coordinator components (C and T, for Con-
trol and Timer, respectively), 5 dangling ports (fail, resume, tick, reset and ask) and 5
connectors. The behaviour of BIP components is specified by finite automata extended
with local data variables. Transitions of these automata are labelled with the ports
of the corresponding components, Boolean guards and update functions on local vari-
ables. Although this is not visible in the figure, below we will assume that the dangling
ports fail and resume belong to the operand component, whereas the dangling ports
tick, ask and reset represent actions of the environment.

2 The original CubETH case study [37] focused on the possibility of assembling a model
of a complex software system in a systematic way by applying architectures to discharge
individual system requirements. Here, we are more interested in the properties of the Failure
Monitor architecture by itself. For that reason, we provide a modified version, in particular
decomposing the coordinator into a Controller and a Timer, altering them to allow more
flexibility in the acceptable behaviours. In other words, this modification enforces essentially
the same properties, while discarding less acceptable behaviours.

21



Based on the attributes of the connected ports, which may be either triggers (tri-
angles in Figure 6) or synchrons (bullets in Figure 6), connectors specify the synchroni-
sations (also called interactions) between the transitions of the individual components.
Intuitively, triggers can initiate interactions, whereas synchrons can only join. If a con-
nector does not have triggers, all the involved ports must synchronise [9]. For instance,
the two ports T.start and C.fail are always synchronised, since they belong to the
same binary sub-connector, where they are both synchrons. In particular, this means
that whenever the transition s0

fail−−→ s1 is fired, so is the transition t0
start,t:=0−−−−−−→ t1,

initialising the timer. The binary connector T.start •−−•C.fail is a sub-connector of a
hierarchical connector, where the dangling port B.fail is a trigger. Thus, the above in-
teraction can only happen together with B.fail, forming a ternary interaction. On the
contrary, being a trigger, the port B.fail can fire alone, forming a singleton interaction.
The composition semantics of BIP systems consists in firing exactly one interaction,
enabled through at least one of the top-level connectors, at each execution round.

Notice that the model in Figure 6 allows reset to happen in any state. However,
it is implied that, when the coordinator C is in state s2, this reset is “asked for” by
the architecture (it follows the firing of ask), whereas in other states the corresponding
transition reflects an “external” reset. Although this can be formalised in the model
using data variables, we have chosen not to do so for the sake of simplicity.

Intuitively, application of the Failure Monitor architecture ensures that, whenever
a failure is registered in the operand component, the system will be reset, unless a
resumption is registered withinMax time units. Formally, this statement is decomposed
into several properties, among which 1) the safety property “A reset is never asked for
unless a failure occurs” specified using CTL as

A [¬ask W fail] (1)

and 2) the liveness property “in the absence of an external reset, a reset can always be
asked for after a non-transient failure”:

AG
(
fail → E [(¬reset ∧ ¬resume) U ask]

)
(2)

Additional properties are provided in [42]. Once we have generated the open automaton
of the architecture, such properties can be verified by model checking tools, which is
beyond the scope of the current work.

Figure 7 shows a pNet encoding of the above Failure Monitor architecture. This
encoding is structural: each coordinator component is encoded as a PLTS; dangling
ports belonging to the operand component are encoded as actions of the hole; connec-
tors of the BIP model are encoded as synchronisation vectors, with ports representing
the actions of the environment used as global actions. Each connector that does not
involve triggers is trivially encoded by a synchronisation vector comprising the same
ports (SV 2, SV 3 and SV 4). In order to encode the semantics of the connectors involv-
ing triggers, we use (in SV 0 and SV 1) the classical approach where non-participation
of a port in an interaction is simulated by an additional loop transition [38]. To this
end, we consider an action algebra involving additional Boolean variables: the effec-

tive transitions carry the value true (e.g. s0
fail(true)−−−−−−→ s1), whereas the added loops

carry the value false (e.g. s2
fail(false)−−−−−−→ s2). In the synchronisation vectors, we use

these variables to encode the connector structure as a Boolean predicate. For example,
SV 0 encodes the connector discussed above: the predicate (b1 = b2) ∧ (b1 ∨ b2⇒ b0)

22



s2

s0 s1

t0 t1

B

Timer

t,Max : Int

Control

timeoutreset

fail(false)resume(false)

fail(true)

timeout[t ≥ Max]

{t := 0}

{t := t+ 1}

start(false)

[t < Max]

tick

start(true)

SV4 <reset, cancel(b2), -> → reset [b2]

SV3 <timeout, timeout, -> → ask

SV2 <-, tick, -> → tick

SV1 <resume(b1), cancel(b2), resume(b0)> → resume(b0) [(b1 = b2) ∧ (b1 ∨ b2 =⇒ b0)]

SV0 <fail(b1), start(b2), fail(b0)> → fail(b0) [(b1 = b2) ∧ (b1 ∨ b2 =⇒ b0)]

resume(true)

reset

resume(false)

reset

fail(false) cancel(b)

start(false)

resume(false)

fail(false)

cancel(true)

Fig. 7 pNet encoding of the Failure Monitor architecture

00

fail(true) [hB = fail(true)] {t←Max}

ask [t ≥Max]

20

reset

resume [hB = resume(true)]
11 tick [t < Max]

{t← t+ 1}

resume [hB = resume(b0)]

resume
[hB = resume(b0)]

reset

fail(b0) [hB = fail(b0)]

fail(b0) [hB = fail(b0)]

reset

fail(b0) [hB = fail(b0)]

Fig. 8 Open automaton for the Failure Monitor architecture

means that the “true” transitions C.fail and T.start can only fire together (b1 = b2)
and whenever one of them fires, B.fail must fire also (b1∨ b2⇒ b0). This encoding can
be systematically obtained for any hierarchical BIP connector [10].

Computed open automaton. For this example, the tool (using Algorithm 1) builds 408
open transitions, whereof 396 are detected unsatisfiable by Z3. The resulting open au-
tomaton, with 3 reachable global states (out of the possible 6) and 12 open transitions,
is shown in Figure 8.

The satisfaction of the safety property (1) could be established by applying symbolic
model checking techniques. However, in this example, it is obvious by inspection of the
open automaton. The satisfaction of the liveness property relies on the observation that
the only loop starting in the state /s1, t1. and involving neither reset , nor resume or
ask , is the self-loop fail(b0 ). By further inspecting the synchronisation vector SV 0, we
observe that this self-loop corresponds to the transitions fail(false) and start(false) in
the two PLTSs. Recall that these transitions (carrying the value false) are introduced
by the encoding. That is, none of the two coordinating components are involved in the
joint transition. Therefore, under resonable scheduling assumptions, the transition ask

will eventually be fired.

23



5.3 Composing Two Failure Monitor BIP Architectures

In this section, we use a combination of two Failure Monitor architectures shown in
Figure 9 as a slightly larger example to show how the approach scales up. In this
example, each of the two instances of the architecture is applied to a corresponding
operand component. Hence, the dangling ports fail and reset are duplicated accordingly.
On the contrary, the environment actions tick, ask and reset are shared. For a detailed
presentation of the architecture composition, we refer the reader to [3].

tick
[t<Max2]
t:=t+1

cancel

start, t:=0

timeoutT , [t ≥ Max2]

t0 t1

tick

t:=t+1
[t<Max1]

fail1

start

timeoutCtimeoutT

resume

fail

reset

resume

s2

s1s0

reset

ti
m
eo
ut
C

reset

fail
reset

cancel

tick

resume2

start

timeoutCtimeoutT

resume

fail

reset

resume

s2

s1s0

re
se
t

tim
eout

C

reset

fail
reset

tick askreset

resume1

fail2

C2
tick

C1

cancel

T2

T1

cancel

cancel

start, t:=0

timeoutT , [t ≥ Max1]

t0 t1

cancel

Fig. 9 The BIP specification of two composed Failure Monitor architectures

In Figure 10 we show the open automaton computed for the combined architecture
of Figure 9. Comparing the guards of the transitions tick and ask leaving state 1111, we
see that ask can never be taken, unless Max1 = Max2. This illustrates the interference
phenomenon discussed in [3], showing that the liveness property (2) is not preserved
when two copies of the Failure Monitor architecture are composed together.3 In this
example, the interference is caused by the strong synchronisation of the tick ports
of the two architectures. It can be avoided by replacing the tick •−−•T.tick connector
in Figure 6 by tick I−−•T.tick and applying the so-called maximal progress whereby,
whenever possible, the interaction {tick, T.tick} is preferred to the firing of tick alone.
However, this fix goes beyond the scope of the current paper.

3 One of the main results of [3] states that in a system obtained by an application of sev-
eral architectures, liveness properties are preserved if these architectures are pair-wise non-
interfering. However, no results were provided to check whether two architectures are interfer-
ing or not.

24



0000

1010

0101

1111

2200

reset

resume1(*)

fail1(true)

fail2(true)

resume2(*)

fail1(*)

reset
fail2(*)

resume2(true)

resume1(true)
tick
[t1 < Max1 & t2 < Max2]
{t1:=t1+1; t2:=t2+1}

ask
[t1 ≥ Max1 & t2 ≥ Max2]

reset

resume1(true)

fail2(true)

fail1(*)resume2(*)

reset

resume2(true)

fail1(true)

fail2(*)resume1(*)

reset fail2(*)

fail1(*)
resume2(*)

resume1(*)

Fig. 10 The resulting automaton

5.4 Benefits from the Smart Algorithm

In each cell of the following table, we display the number of OTs whose predicates were
found SAT/UNSAT by the SMT engine, and the overall time spent for the execution
of the whole algorithm.

All tests are run on HP EliteBook 840 laptop under Windows 10 x64, with an Intel
quad-Core i7-6600U processor, and 32Gb of RAM. The software platform is VerCors4,
running on top of Eclipse Equinox, with Java 1.8.

Use-case Brute force Smart algorithm

Enable operator 3/6 OTs 3/6 OTs
State-based 125 ms 110 ms

Enable operator 3/6 OTs 3/6 OTs
Data-based 141 ms 205 ms

Enable Composition 5/55 OTs 5/42 OTs
State-based 359 ms 297 ms
FailureTimer 12/396 OTs 12/192 OTs

1220 ms 687 ms
FailureTimer X 2 25/8964 OTs 25/1255 OTs

18088 ms 3266 ms

In the basic cases (EnableState, EnableData) there is no benefit, and even an
overhead in the case of EnableData, because of the extra step of checking SAT at the
end of the algorithm.

But as soon as there are more OTs in the system and not all states are reach-
able, these tests show a significant benefit of the “smart” strategy, in the considered
use-cases, with 50% of time saving for the FailureT imer, over to 80% for the compo-

4 Available at https://team.inria.fr/scale/software/vercors/.

25

https://team.inria.fr/scale/software/vercors/


sition, depending on the nature of the examples, but increasing significantly with their
complexity.

6 Conclusion and Discussion

The formal definitions and properties of the open pNets model were given in [27].
In the current work we describe an implementation of the model and its semantics
construction, including its interaction with the Z3 SMT engine. The implementation
has two parts: the first is an algorithm that builds all possible combinations of syn-
chronisations through the pNet hierarchical structure. The result is a so-called open
automaton, whose transitions contain predicates relating the actions of the pNet holes
and controllers. Some of the open transitions obtained at this step may contain pred-
icates which do not represent any possible concrete instantiations. In the second part
of the tool we use the SMT solver Z3 to check the satisfiability of the predicate in
each open transition. To this end, we encode into Z3 the representations of the action
algebra and the predicates before submitting them to the Z3 solver. We have used a
running example based on two possible encodings of the Enable operator of LOTOS.
The automata computed with the algorithm can be used to prove equational properties
of the operator.

Then we define a “smart” version of the algorithm that explores, as much as possible,
only the reachable part of the open automaton. The handling of assignments makes
the reachable computation more challenging. We show that the result is equivalent to
the original algorithm.

We validate the approach on a larger example, based on a BIP architecture taken
from an earlier nanosatellite case study [37]. This example shows that open-automata-
based semantics can be instrumental in verifying the properties enforced by the archi-
tectures through an encoding into open pNets. In order to evaluate the potential of
our approach to scale to larger systems, we also apply the proposed techniques to a
BIP architecture obtained by combining two instances of the Failure Monitor archi-
tecture. Our results show that, even though, the performance of the smart algorithm
degrades more than linearly, execution times remain reasonably small. It should be
noted that the aim of our approach, particularly in the case of BIP architectures, is
to allow symbolic verification of design patterns to show that they do impose corre-
sponding properties. Safety of the system is obtained compositionally, whereas liveness
is verified by checking pair-wise non-interference. In both cases, the main character-
istic of the approach is compsitionality, so we can compute the behavior and analyse
the properties on small open systems, and use these properties independently when
composing bigger systems.

The results presented in this paper open a number of avenues for future work. Nat-
urally, our next goals after the generation of the open automata will be to model-check
logical properties, and to check equivalences of pNets. While model-checking open au-
tomata seems easy to define, equivalence checking is more challenging. In [27], we have
already found the FH-bisimulation to be a suitable definition. But weak equivalences,
or refinements, will definitely be useful when comparing different pNets with different
structures. For both model-checking and bisimulation, SMT methods will be the basis
for comparing open transitions.

BIP architectures in this paper and in the CubETH case study [37] involved data
in the BIP components behaviour but not in the interactions among components. We

26



have shown in [8] how to overcome this limit, allowing data transfer in BIP architecture
connectors and providing an encoding of such architectures in terms of open pNets.
To push the study of BIP architecture verification using open pNets even further,
one can observe that there is a certain “regularity” in the structure of the composed
architecture in Figure 9. Indeed, both architectures in Figures 6 and 9 are instances
of the same architecture style [36] for 1 and 2 monitored processes, respectively. The
question then naturally arises of whether some version of open pNets (e.g. extended
to accommodate a parameterised number of sub-pNets) can be used to verify certain
architectural styles without instantiating them with fixed parameter values. Although
this problem is known to be undecidable in the general case (see, e.g. [31]), it would
be interesting to study the interplay of existing techniques, such as well structured
transition systems [21], with open pNet extensions.

References

1. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal guards, relativization
of quantifiers, and failure models in model checking modulo theories. JSAT 8(1/2), 29–61
(2012). URL https://satassociation.org/jsat/index.php/jsat/article/view/93

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular inte-
gration of sat/smt solvers to coq through proof witnesses. In: International Conference on
Certified Programs and Proofs, pp. 135–150. Springer (2011)

3. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for archi-
tecture composability. Formal Aspects of Computing 18(2), 207–231 (2016)

4. Baranov, E., Bliudze, S.: Offer semantics: Achieving compositionality, flattening and full
expressiveness for the glue operators in BIP. Science of Computer Programming 109(0),
2–35 (2015). DOI 10.1016/j.scico.2015.05.011

5. Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,
Tinelli, C.: Cvc4. In: Computer aided verification. Springer (2011)

6. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). Available at
www.SMT-LIB.org

7. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis, J.:
Rigorous component-based system design using the BIP framework. IEEE Software 28(3),
41–48 (2011). DOI 10.1109/MS.2011.27

8. Bliudze, S., Henrio, L., Madelaine, E.: Verification of concurrent design patterns with data.
In: H. Riis Nielson, E. Tuosto (eds.) Coordination Models and Languages, pp. 161–181.
Springer International Publishing, Cham (2019)

9. Bliudze, S., Sifakis, J.: The algebra of connectors—Structuring interaction in BIP. IEEE
Transactions on Computers 57(10), 1315–1330 (2008). DOI 10.1109/TC.2008.26

10. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal Methods
in System Design 36(2), 167–194 (2010). DOI 10.1007/s10703-010-0091-z

11. Bruni, R., de Frutos-Escrig, D., Martí-Oliet, N., Montanari, U.: Bisimilarity congruences
for open terms and term graphs via tile logic. In: C. Palamidessi (ed.) CONCUR 2000,
pp. 259–274. Springer, Berlin (2000)

12. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Verification of data-
aware processes via array-based systems (extended version). CoRR abs/1806.11459
(2018). URL http://arxiv.org/abs/1806.11459

13. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S.,
Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: A. Biere, R. Bloem (eds.)
CAV, pp. 334–342. Springer, Cham (2014)

14. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The kind 2 model checker. In:
S. Chaudhuri, A. Farzan (eds.) Computer Aided Verification, pp. 510–517. Springer Inter-
national Publishing, Cham (2016)

15. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit predicate
abstraction. CoRR abs/1310.6847 (2013). URL http://arxiv.org/abs/1310.6847

16. De Simone, R.: Higher-level synchronising devices in MEIJE-SCCS. Theoretical Computer
Science 37, 245–267 (1985)

27

https://satassociation.org/jsat/index.php/jsat/article/view/93
http://arxiv.org/abs/1806.11459
http://arxiv.org/abs/1310.6847


17. Déharbe, D.: Integration of smt-solvers in b and event-b development environments. Sci-
ence of Computer Programming 78(3), 310–326 (2013)

18. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating smt solvers in rodin. Science
of Computer Programming 94, 130–143 (2014)

19. Deng, Y., Fu, Y.: Algorithm for verifying strong open bisimulation in full π calculus.
Journal of Shanghai Jiaotong University E-5(2), 147–152 (2001)

20. Feng, Y., Deng, Y., Ying, M.: Symbolic bisimulation for quantum processes. ACM Trans-
actions on Computational Logic 15(2), 1–32 (2014)

21. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical
Computer Science 256(1), 63 – 92 (2001). DOI 10.1016/S0304-3975(00)00102-X

22. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT model checking of array-
based systems. In: Automated Reasoning, 4th International Joint Conference, IJCAR
2008, Sydney, Australia, 2008, pp. 67–82 (2008). DOI 10.1007/978-3-540-71070-7\_6.
URL https://doi.org/10.1007/978-3-540-71070-7_6

23. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science 138(2),
353–389 (1995). DOI 10.1016/0304-3975(94)00172-F. URL http://dx.doi.org/10.1016/
0304-3975(94)00172-F

24. Hennessy, M., Rathke, J.: Bisimulations for a calculus of broadcasting systems. Theoretical
Computer Science 200(1-2), 225–260 (1998). DOI 10.1016/S0304-3975(97)00261-2. URL
http://dx.doi.org/10.1016/S0304-3975(97)00261-2

25. Henrio, L., Kulankhina, O., Liu, D., Madelaine, E.: Verifying the correct composition
of distributed components: Formalisation and Tool. In: FOCLASA, no. 175 in EPTCS.
Rome, Italy (2014). URL https://hal.inria.fr/hal-01055370

26. Henrio, L., Madelaine, E., Zhang, M.: pNets: an Expressive Model for Parameterised Net-
works of Processes. In: 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP’15). IEEE (2015)

27. Henrio, L., Madelaine, E., Zhang, M.: A Theory for the Composition of Concurrent
Processes. In: Formal Techniques for Distributed Objects, Components, and Systems
(FORTE), vol. LNCS-9688. Heraklion, Greece (2016). URL https://hal.inria.fr/
hal-01432917

28. Henrio, L., Madelaine, E., Zhang, M.: A theory for the composition of concurrent processes
– extended version. Rapport de recherche RR-8898, INRIA (2016)

29. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
30. ISO: Information Processing Systems – Open Systems Interconnection – LOTOS – A

Formal Description Technique based on the Temporal Ordering of Observational Be-
haviour. ISO/IEC 8807, International Organisation for Standardization, Geneva, Switzer-
land (1989). URL citeseer.ist.psu.edu/338220.html

31. Konnov, I.V., Kotek, T., Wang, Q., Veith, H., Bliudze, S., Sifakis, J.: Parameterized sys-
tems in BIP: design and model checking. In: 27th International Conference on Concurrency
Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, LIPIcs, vol. 59, pp.
30:1–30:16 (2016). DOI 10.4230/LIPIcs.CONCUR.2016.30

32. Larsen, K.G.: A context dependent equivalence between processes. Theoretical Computer
Science 49, 184–215 (1987)

33. Li, Z.: Theories and algorithms for the verification of bisimulation equivalences in value-
passing CCS and π-calculus. Ph.D. thesis, Changsha Institute of Technology (1999)

34. Lin, H.: Symbolic transition graph with assignment. In: U. Montanari, V. Sassone (eds.)
Concur’96, LNCS, vol. 1119, pp. 50–65. Springer, Heidelberg (1996)

35. Lin, H.: Model checking value-passing processes. In: 8th Asia-Pacific Software Engineering
Conference (APSEC’2001). Macau (2001)

36. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Architecture diagrams: A graphical lan-
guage for architecture style specification. In: Proceedings 9th Interaction and Concurrency
Experience (ICE), EPTCS, vol. 223, pp. 83–97 (2016). DOI 10.4204/EPTCS.223.6

37. Mavridou, A., Stachtiari, E., Bliudze, S., Ivanov, A., Katsaros, P., Sifakis, J.: Architecture-
based design: A satellite on-board software case study. In: 13th Int. Conf. on Formal
Aspects of Component Software (FACS 2016) (2016)

38. Milner, R.: Calculi for synchrony and asynchrony. TCS 25(3), 267–310 (1983). DOI
10.1016/0304-3975(83)90114-7

39. Milner, R.: Communication and Concurrency. Int. Series in Computer Science. Prentice-
Hall, Englewood Cliffs, New Jersey (1989). SU Fisher Research 511/24

40. Milner, R.: Communicating and mobile systems - the Pi-calculus. Cambridge University
Press (1999)

28

https://doi.org/10.1007/978-3-540-71070-7_6
http://dx.doi.org/10.1016/0304-3975(94)00172-F
http://dx.doi.org/10.1016/0304-3975(94)00172-F
http://dx.doi.org/10.1016/S0304-3975(97)00261-2
https://hal.inria.fr/hal-01055370
https://hal.inria.fr/hal-01432917
https://hal.inria.fr/hal-01432917
citeseer.ist.psu.edu/338220.html


41. Qin, X., Bliudze, S., Madelaine, E., Zhang, M.: Using SMT engine to generate symbolic
automata. In: 18th International Workshop on Automated Verification of Critical Systems
(AVOCS 2018). Electronic Communications of the EASST (2018)

42. Qin, X., Bliudze, S., Madelaine, E., Zhang, M.: Using SMT engine to generate Symbolic
Automata – Extended version. Rapport de recherche RR-9177, INRIA (2018)

A Semantic Rules of pNets

To facilitate the understanding of the two algorithms, we briefly recall the semantic rules of
pNets, more details can be found in [27].

We build the semantics of an open pNet as an open automaton where LTSs are the PLTSs
at the pNet leaves, and the states of the automaton are structured. To build an open transition
we first projects the global state into states of the leaves, then apply PLTS transitions on these
states, and compose them with actions of holes using synchronisation vectors.

The semantics regularly instantiates fresh variables, and uses a clone operator that clones
a term replacing each variable with a fresh one. The variables in each synchronisation vector
are considered local: for a given pNet expression, we must have fresh local variables for each
occurrence of a vector. Similarly, the state variables of each copy of a given PLTS in the system
must be distinct, and those created for each application of Tr2 have to be fresh and all distinct.

The reader may notice that the structure of OTs produced by these rules is richer than the
one from the definitions in Section 4, as they contain information about the leaves transitions
in each OT. This is also the case in the implementation, and provides us with tracability and
debugging features in the tool.

Definition 6 (Operational semantics of open pNets) The semantics of a pNet p is an
open automaton A = 〈Leaves(p), J,S, s0, T 〉 where:
– J is the indices of the holes: Holes(p) = Hj∈J

j .
– S = States(p) and s0 = InitState(p)
– T is the smallest set of open transitions satisfying the rules below:

The first rule (Tr1) for a PLTS p checks that the guard is verified and transforms assign-
ments into post-conditions:

Tr1:
s
〈α, eb, (xj:=ej)

j∈J 〉
−−−−−−−−−−−−−−→ s′ ∈→ fresh(v) Pred = eb ∧ (v = α)

p = 〈S, s0,→〉 |= ····································································
{s α−→p s

′}, ∅, P red, {xj ← ej}j∈J

/s.
v−→ /s′.

The second rule (Tr2) deals with pNet nodes: for each possible synchronisation vector
applicable to the rule subject, the premisses include one open transition for each sub-pNet
involved, one possible action for each hole involved, and the predicate relating these with the
resulting action of the vector. A key to understand this rule is that the open transitions are
expressed in terms of the leaves and holes of the pNet structure, i.e. a flatten view of the pNet.
For example, in the rule, L is the index set of the leaves of the open pNet, Lk is the index set
of the leaves of one subnet, thus all Lk are disjoint subsets of L.
Tr2:

k∈K SV=clone(SVk)=α
m∈Ik]Jk
m →α′k, Gk

Leaves(p)=pLTSl∈Ll ∀m ∈ Ik.pNetm |= ·························································································
{si

ai−→i s
′
i}i∈I

′
m , {

bj−→j}j∈J
′
m ,Predm,Postm

/si∈Lm
i .

vm−−→ /s′ i∈Lm
i .

I′ =
⊎
m∈Ik

I′m J ′ =
⊎
m∈Ik

J ′m ] Jk Pred =
∧
m∈Ik

Predm ∧MkPred(SV, vm∈Ikm , b
j∈Jk
j , v)

∀j∈Jk.fresh(bj) fresh(v) ∀i ∈ L\I′. s′i = si

p = 〈pNeti∈Ii , Sj∈Jj ,SVk∈Kk 〉 |= ································································································
{si

ai−→i s
′
i}i∈I

′
, {

bj−→j}j∈J
′
,Pred,]m∈IkPostm

/si∈Li .
v−→ /s′i∈Li .

In rule TR2, the generated predicate is composed of the conjunction of the predicates of the
subnets’ OTs, with the additional part encoding the application of the chosen synchronisation

29



vector. In [27] this last part is defined as:

MkPred(SVk, ai∈Ii , bj∈Jj , v)⇔ SVk = (ai)
i∈I , (bj)

j∈J → v

Within Algorithm 1, these subsets have been computed by the Combining method and
passed as arguments to the Matching method (cf. Section 4)

To have some practical interest, it is important to know when Algorithm 1 terminates. The
following theorem shows that if an open pNet has finite synchronisation sets, finitely many
leaves and holes, and each PLTS at its leaves has a finite number of states and (symbolic)
transitions, then Algorithm 1 terminates and the operational semantics of the open pNet is a
finite automaton.

Theorem 4 (Finiteness) [27] Let pnet = 〈pNet, S,SVk∈Kk 〉 be an open pNet with leaves li∈Ii

and holes hj∈Jj , where the sets I and J are finite. Suppose the synchronisation vectors of all
pNets included in pnet are finite, and li has a finite number of state variables for each i ∈ I.
Then the semantics of pnet is an open automaton with finitely many states and transitions.

Proof The possible set of states of the open automaton is the cartesian product of the states of
the pNet PLTSi∈Ii , which is finite by hypothesis. So the top-level residual loop of Algorithm 1
terminates provided each iteration terminates. The enumeration of open-transitions in line 5 of
Algorithm 1 is bounded by the number of applications of rule Tr2 on the structure of the pNet
tree. Since a finite number of synchronisation vectors are applied at each node, the number
of global open transitions is finite. Similarily, if the number of transitions of each PLTS is
finite, rule Tr1 is applied a finite number of times. Therefore, each internal loop of Algorithm 1
terminates, and we obtain finitely many deduction trees and open transitions. ut

30


	Introduction
	Preliminaries
	Operational Semantics of Open pNets
	Generation of Open Automata
	Use-Cases
	Conclusion and Discussion
	Semantic Rules of pNets 

