
F. Bonchi, D. Grohmann, P. Spoletini, and E. Tuosto:
ICE’09 Structured Interactions
EPTCS 12, 2009, pp. 41–55, doi:10.4204/EPTCS.12.3

c©M. Jaber, A. Basu, and S. Bluidze
This work is licensed under the
Creative Commons Attribution License.

Symbolic Implementation of Connectors in BIP

Mohamad Jaber Ananda Basu
VERIMAG, Centre Équation, 2 av de Vignate, 38610, Gières, France

{Mohamad.Jaber,Ananda.Basu}@imag.fr

Simon Bluidze
CEA, LIST, Boı̂te Courrier 94, Gif-sur-Yvette, F-91191 France

Simon.Bliudze@cea.fr

BIP is a component framework for constructing systems by superposing three layers of modeling:
Behavior, Interaction, and Priority. Behavior is represented by labeled transition systems commu-
nicating through ports. Interactions are sets of ports. A synchronization between components is
possible through the interactions specified by a set of connectors. When several interactions are pos-
sible, priorities allow to restrict the non-determinism by choosing an interaction, which is maximal
according to some given strict partial order.

The BIP component framework has been implemented in a language and a tool-set. The execu-
tion of a BIP program is driven by a dedicated engine, which has access to the set of connectors and
priority model of the program. A key performance issue is the computation of the set of possible
interactions of the BIP program from a given state.

Currently, the choice of the interaction to be executed involves a costly exploration of enumer-
ative representations for connectors. This leads to a considerable overhead in execution times. In
this paper, we propose a symbolic implementation of the execution model of BIP, which drastically
reduces this overhead. The symbolic implementation is based on computing boolean representation
for components, connectors, and priorities with an existing BDD package.

1 Introduction

Component-based design is based on the separation between coordination and computation. Systems are
built from units processing sequential code insulated from concurrent execution issues. The isolation of
coordination mechanisms allows a global treatment and analysis.

One of the main limitations of the current state-of-the-art is the lack of a unified paradigm for describ-
ing and analyzing information flow between components. Such a paradigm would allow system designers
and implementers to formulate their solutions in terms of tangible, well-founded and organized concepts
instead of using dispersed coordination mechanisms such as semaphores, monitors, message passing,
remote call, protocols etc. A unified paradigm should allow a comparison of otherwise unrelated ar-
chitectural solutions and could be a basis for evaluating them and deriving implementations in terms of
specific coordination mechanisms. Furthermore, it should be expressive enough to directly encompass
all types of coordination as discussed in [11].

A number of paradigms for unifying interaction in heterogeneous systems have been proposed in
[2, 3, 4, 15]. In these works unification is achieved by reduction to a common low-level semantic model.
Interaction mechanisms and their properties are not studied independently of behavior.

BIP [6] is a component framework for constructing systems by superposing three layers of modeling:
Behavior, Interaction, and Priority. The lower layer consists of a set of atomic components represented
by transition systems. The second layer models Interaction between components. Interactions are sets of
ports specified by connectors [9]. Priority, given by a strict partial order on interactions, is used to enforce

42 Symbolic Implementation of Connectors in BIP

scheduling policies applied to interactions of the second layer. The BIP component framework has a
formal operational semantics given in terms of Labeled Transition Systems and Structural Operational
Semantics derivation rules.

The BIP language offers primitives and constructs for modeling and composing complex behavior
from atomic components. Atomic components are communicating automata extended with C functions
and data. Transitions are labeled with sets of communication ports. Compound components are obtained
from subcomponents by specifying connectors and priorities.

1.1 Overview of the tool-set

The BIP tool-set1 developed at Verimag includes 1) an editor, for textual description of systems in the
BIP language; 2) a parser and a deparser, for generating from a BIP program a model conforming to the
BIP meta-model2 and vice versa; and 3) a compiler for generating executable C++ code.

The execution of a BIP program is driven by a dedicated engine, which has access to the set of
connectors and priority model of the program. In a given global state, each atomic component waits for
an interaction through a set of active ports (i.e. ports labeling active transitions) communicated to the
engine. The engine computes from the connectors of the BIP program and the set of all active ports,
the set of maximal interactions (involving active ports). It chooses one of them, computes the associated
data transfer and notifies the components involved in the chosen interaction.

The BIP framework has been successfully used for modeling and analysis of a variety of case studies
and applications, such as: performance evaluation [6], modeling and analysis of TinyOS based wireless
sensor network applications [8], construction and verification of a robotic system [7]. In the latter, the
code generated by the tool-chain along with the BIP engine is used as a controller for the robot. The BIP
model also offers validation techniques for checking essential safety properties.

1.2 Problem Definition

A key performance issue is the computation of the set of possible interactions of the BIP program from
a given state. Currently, the computation of the maximal interaction involves a costly exploration of
enumerative representations for connectors. This leads to an important overhead in execution times.

In this paper, we propose a symbolic implementation of BIP, drastically reducing this overhead. This
symbolic implementation is based on computing a boolean representation for components and connectors
using an existing BDD package.3

Sets of interactions in a system with the set of ports P can be bijectively mapped to the free boolean
algebra B[P]. Ports are considered to be boolean variables (e.g., for P = {p,q}, the correspondence table
is shown in Tab. 1). Whenever an interaction has to be chosen, a value true or f alse is assigned to each
port variable according to whether it participates in the interaction or not. An interaction is possible iff
the resulting valuation satisfies the boolean function, which describes the interaction model.

The boolean representation of atomic components and priorities is relatively simple, whereas a
straightforward approach to computing it for connectors involves costly enumeration of its interactions.
In Sect. 2.4, we present a transformation avoiding this complex enumeration through a translation from
the Algebra of Connectors, A C(P) [9], into the Algebra of Causal Trees, C T (P) [10]. The terms of the
latter have a natural boolean representation as sets of causal rules (implications).

1 http://www-verimag.imag.fr/˜async/bip.php
2 The meta-model is developed in the Eclipse Modeling Framework

(http://www.eclipse.org/modeling/emf).
3 CUDD: CU decision diagram package (http://vlsi.colorado.edu/˜fabio/CUDD/)

M. Jaber, A. Basu, and S. Bluidze 43

Table 1: Correspondence between sets of interactions and boolean functions with P = {p,q}

Sets of interactions
(

22P
)

Boolean functions
(
B[P]

)
/0

{ /0} {p} {q} {pq}
{p, /0} {q, /0} {pq, /0} {p, q} {p, pq} {q, pq}
{p, q, /0} {pq, p, /0} {pq, q, /0} {pq, p, q}

{pq, p, q, /0}

f alse
pq pq pq pq

q p pq∨ pq pq∨ pq p q
p∨q p∨q p∨q p∨q

true

The paper is structured as follows. Sect. 2 provides a succinct presentation of the basic semantic
model for BIP and the Algebra of Connectors. Sect. 3 introduces the boolean representation of atomic
components, connectors, and priorities, which is used for an efficient implementation of the BIP engine.
Sect. 4 provides the performance comparison between the current and symbolic implementations.

2 Formal Semantic Framework

2.1 Operational Semantics

A detailed and fully formalized operational semantics [5] is beyond the scope of this paper. Here, we
provide a succinct formalization of the BIP component model focusing on the operational semantics of
component interaction and priorities, and omitting the aspects related to data transfer and conditional
operation (i.e. guards).

Definition 2.1 Let P be a set of ports. An interaction is a subset a⊆ P.

Definition 2.2 (Behavior) A labeled transition system is a triple B = (Q,P,→), where Q is a set of
states, P is a set of ports, and→⊆ Q×2P×Q is a set of transitions, each labeled by an interaction. We
abbreviate (q,a,q′) ∈→ to q a→ q′.

An interaction a is active in a state q, denoted q a→, iff there exists q′ ∈ Q such that q a→ q′. A port is
active in a state q, iff it belongs to an interaction active in this state.

Components in BIP can be atomic and compound. Atomic components are defined by their behavior.
Compound components are obtained by composition of their subcomponents (atomic or compound)
using interaction and priority models as defined below.

We require that sets of ports of atomic components are pairwise disjoint. That is, for a system
obtained as the composition of n atomic components, modeled by transition systems Bi = (Qi,Pi,→i),
for i ∈ [1,n], we have Pi∩Pj = /0, for i, j ∈ [1,n] (i 6= j).

Definition 2.3 (Interaction) Let Bi = (Qi,Pi,→i), for i∈ [1,n], be a set of components, and P =
⋃n

i=1 Pi.
An interaction model is a set of interactions γ ⊆ 2P.

The component γ(B1, . . . ,Bn) is defined by the behavior (Q,P,→γ), where Q = ∏
n
i=1 Qi and →γ is

the least set of transitions satisfying the rule

a ∈ γ ∀i ∈ [1,n], (a∩Pi 6= /0⇒ qi
a∩Pi−→i q′i)

(q1, . . . ,qn)
a→γ (q̃1, . . . , q̃n)

, (1)

with q̃i denoting q′i, if a∩Pi 6= /0, and qi otherwise.

44 Symbolic Implementation of Connectors in BIP

i
i
�
� i

i
�
� i

i
�
�

B1 B2 B3
l1

l2

l3

l4

l5

l6

p pq r rs t tu

p q r s t u

Interactions: {p, pqr, pqrst, pqrstu}

Figure 1: Modulo-8 counter

The states of components that do not participate in the interaction remain unchanged.

Example 2.4 (Modulo-8 counter) A BIP model for the modulo-8 counter is shown Fig. 1. It has three
atomic modulo-2 counter components B1, B2, and B3, each having an input port (resp. p, r, and t) and
an output port (resp. q, s, and u). In a modulo-2 counter, the output port is activated on every second
activation of the input port.

The modulo-8 counter is composed by synchronizing the output of B1 with the input of B2 and the
output of B2 with the input of B3. This is achieved by the interaction model shown in the figure.

An interaction a ∈ 2P is active in γ(B1, . . . ,Bn) iff, for all i ∈ [1,n], a∩Pi is active in Bi or empty. An
active interaction a is enabled in γ(B1, . . . ,Bn) iff a ∈ γ . For B = (Q,P,→), q ∈Q, and a ∈ 2P, we define
the predicate

Act(B,q,a)
de f
=

q a→, if B is an atomic behavior,

∀ i ∈ [1,n],
(

a∩Pi 6= /0⇒ Act(Bi,qi,a∩Pi)
)
,

if B = γ(B1, . . . ,Bn) and q = (q1, . . . ,qn),

(2)

Several distinct interactions can be enabled at the same time, thus introducing non-determinism in
the product behavior, which can be restricted by means of priorities.

Definition 2.5 (Priority) Let B = (Q,P,→) be a behavior. A priority model π is a strict partial order
on 2P. Given a priority model π , we abbreviate (a,a′) ∈ π to a≺ a′.

The component π(B) is defined by the behavior (Q,P,→π), where→π is the least set of transitions
satisfying the rule

q a→ q′ 6 ∃a′ :
(

a≺ a′ ∧ Act(B,q,a′)
)

q a→π q′
. (3)

An interaction is enabled in π(B) only if it is enabled in B and maximal according to π among the
active interactions in B.

Example 2.6 (Sender/Receivers) Fig. 2 shows a component π γ(S,R1,R2,R3) obtained by composition
of four atomic components: a sender S, and three receivers, R1, R2 and R3. The sender has a port s for
sending messages, and each receiver has a port ri (i = 1,2,3) for receiving them. The second column in
Tab. 2 specifies γ for four different coordination schemes listed below.

• Rendezvous means strong synchronization between S and all Ri. This is specified by a single
interaction involving all the ports. This interaction can occur only if all the components are in
states enabling transitions labeled respectively by s, r1, r2, r3.

M. Jaber, A. Basu, and S. Bluidze 45

i
i
? i

i
? i

i
? i

i
?

s

s

r1

r1

r2

r2

r3

r3

Interactions: γ

Priorities: π

Figure 2: A system with four atomic components

Table 2: Interaction models, connectors and causality trees for four basic coordination schemes
Scheme Interactions Connector Causal Tree
Rendezvous {sr1r2r3} sr1r2r3 sr1r2r3
Broadcast {s, sr1, sr2, sr3, sr1r2, s′r1r2r3 s→ (r1⊕ r2⊕ r3)

sr1r3, sr2r3, sr1r2r3}
Atomic Broadcast {s, sr1r2r3} s′[r1r2r3] s→ r1r2r3
Causal Chain {s, sr1, sr1r2, sr1r2r3} s′[r′1[r

′
2r3]] s→ r1→ r2→ r3

• Broadcast means weak synchronization, that is a synchronization involving S and any (possibly
empty) subset of Ri. This is specified by the set of all interactions containing s. These interactions
can occur only if S is in a state enabling s. Each Ri participates in the interaction only if it is in a
state enabling ri.

• Atomic broadcast means that either a message is received by all Ri, or by none. Two interactions
are possible: s, when at least one of the receiving ports is not active, and the interaction sr1 r2 r3,
corresponding to strong synchronization.

• Causal chain means that for a message to be received by Ri it has to be received at the same time
by all R j, for j < i.

For rendezvous, the priority model is empty. For all other coordination schemes, the maximal
progress priority model ensures that, whenever several interactions are possible, the interaction involving
a maximal number of ports has higher priority. This is achieved by taking π = {(a,a′) |a a′}.

2.2 The Engine

The operational semantics is implemented by an engine. In the basic implementation, the engine com-
putes the enabled interactions by enumerating over the complete list of interactions in the model.

During execution, on each iteration of the engine, the enabled interactions are selected from the
complete list of interactions, based on the current state of the atomic components. Then, between the
enabled interactions, priority rules are applied to eliminate the ones with low priority.

The main loop of the engine consists of the following steps:

1. Each atomic component sends to the engine its current state.

2. The engine enumerates on the list of interactions in the model, selects the enabled ones based on
the current state of the atomic components and eliminates the ones with low priority.

3. Amongst the enabled interactions, the engine selects any one and notifies the involved atoms the
transition to take.

46 Symbolic Implementation of Connectors in BIP

u u u u
s r1 r2 r3

N u u u
s r1 r2 r3

N u u uu
s r1 r2 r3

N uN
uN

u
s

r1 r2 s3

Rendezvous Broadcast Atomic broadcast Causal chain

Figure 3: Graphic representation of connectors

The time to compute the enabled interactions by engine is proportional to the number of interactions in
the model.

2.3 The Algebra of Connectors

In [9], the Algebra of Connectors, A C(P), is introduced formalizing the concept of connector supported
by the BIP language. Connectors are used to define the Interactions layer of the composed system. They
can express complex coordination schemes combining synchronization by rendezvous and broadcast.

In [9], the Algebra of Connectors has two binary operations: union and fusion. Union operation
allows to combine several connectors into a single expression, whereas fusion is used to merge two
connectors. Although here, for the sake of simplicity, we only consider the A C(P) terms that do not
involve union (monomial connectors in [9]), the presented results can be extended to the general case
(see Sect. 3.2).

Let P be a set of ports, such that 0,1 6∈ P. The syntax of the Algebra of Connectors, A C(P), is
defined by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x ,

(4)

for p ∈ P, and where · is a binary fusion operator, and brackets [·] and [·]′ are unary typing operators.
Typing is used to form hierarchically structured connectors: [·]′ defines triggers (which can initiate

an interaction), and [·] defines synchrons (which need synchronization with other ports). In order to
simplify notation, we omit brackets on 0, 1, and ports p ∈ P, as well as ‘·’ for the fusion operator.

Complete and formal presentation of the Algebra of Connectors and its properties can be found in
[9]. Here we only give the intuitive semantics.

The semantics of A C(P) is given in terms of sets of interactions. Intuitively, it consists in recursively
applying the following rule: For a connector of the form

[x1]′ . . . [xn]′[y1] . . . [ym]

a possible interaction is a union of interactions from the sub-connectors x1, . . . ,xn,y1, . . . ,ym, comprising
an interaction from at least one of the triggers x1, . . . ,xn. When there are no triggers, an interaction from
every synchron sub-connector y1, . . . ,ym is required to form an interaction of the complete connector.

Graphically, connectors are represented as trees with ports at their leaves. We use triangles and disks
to represent types: triggers and synchrons, respectively.

Example 2.7 (Sender/Receivers continued) The A C(P) connectors for the four coordination schemes
of Ex. 2.6 are given in the third column of Tab. 2 and illustrated in Fig. 3.

M. Jaber, A. Basu, and S. Bluidze 47

sr1r2r3

s

r1 r2 r3

�
�	 ?
@
@R

s

r1 r2 r3
?

s
r1

r2
r3

Qs

Qs

Qs

Rendezvous Broadcast Atomic broadcast Causal chain

Figure 4: Causal trees representation of connectors

2.4 Causal Trees

In [10], the Algebra of Causal Trees, C T (P), is introduced, which allows the efficient computation of
the boolean representation of the A C(P) connectors. This is achieved by rendering explicit the causal
dependencies between ports participating in the interactions of a given A C(P) connector.

In a fusion of typed connectors, triggers are mutually independent, and can be considered parallel
to each other. Synchrons participate in an interaction only if it is initiated by a trigger. This introduces
a causal relation: the trigger is a cause that can provoke an effect, which is the participation of a syn-
chron in an interaction. For example, for connectors involving ports p and q, there are essentially three
possibilities:

1. A strong synchronization pq.
2. One trigger p′q, i.e. p is the cause of an interaction and q a potential effect, which we will denote

in the following by p→ q.
3. Two triggers p′q′, i.e. p and q are independent (parallel), which we will denote in the following by

p⊕q.
The syntax of the Algebra of Causal Trees, C T (P), is defined by

t ::= a | t→ t | t⊕ t , (5)

where a ∈ 2P is an interaction, → and ⊕ are respectively the causality and the parallel composition
operators. Causality binds stronger than parallel composition.

Although the causality operator is not associative, for t1, . . . , tn ∈ C T (P), we abbreviate t1→ (t2→
(. . .→ tn) . . .)) to t1→ t2→ . . .→ tn. We call this construction a causal chain.

Complete and formal presentation of the Algebra of Causal Trees and its properties can be found in
[10]. Here we only give the intuitive semantics.

The semantics of C T (P) is given in terms of sets of interactions. Intuitively, it consists in applying
the causal rule: For a node of a causal tree to participate in an interaction, it is necessary that its parent
participate also.

Example 2.8 (Sender/Receivers continued) The causal trees for the four coordination schemes of the
Ex. 2.6 are given in the last column of Tab. 2 and illustrated in Fig. 4.

The function τ : A C(P)→ C T (P) associating a causal tree with a connector is defined by the
following equations:

τ(p) = p , (6)

τ

(
[x]′

n

∏
i=1

[yi]

)
= τ(x)→

n⊕
i=1

τ(yi) , (7)

τ

(
[x1]′[x2]′

)
= τ(x1)⊕ τ(x2) , (8)

τ

(
[y1][y2]

)
=

m1⊕
i=1

m2⊕
j=1

a1
i a2

j →
(

t1
i ⊕ t2

j

)
, (9)

48 Symbolic Implementation of Connectors in BIP

where x,x1,x2,y1, . . . ,yn ∈ A C(P), p ∈ P∪{0,1}, and, in (9), we assume τ(yk) =
⊕mk

i=1 ak
i → tk

i , for
k = 1,2.

The equations above are sufficient to define τ . Indeed, denoting by ‘'’ the equivalence relation
induced on A C(P) by the semantics presented in Sect. 2.3, one can observe that

[x1]′ . . . [xn]′[y1] . . . [ym] '
[[

. . .
[
[x1]′[x2]′

]′
. . .
]′

[xn]′
]′

[y1] . . . [ym]

[y1] . . . [ym] '
[[

. . .
[
[y1][y2]

]
. . .
]
[ym−1]

]
[ym] ,

which means that for any connector in A C(P) there is a uniquely defined equivalent representation, to
which one of the equations (7)–(9) is applicable directly.

Example 2.9 Consider P = {p,q,r,s, t,u} and p′q′
[
[r′s][t ′u]

]
∈A C(P). We have

τ

(
p′q′
[
[r′s][t ′u]

])
de f
= τ

([
p′q′
]′[

[r′s][t ′u]
])

= τ(p′q′)→ τ

(
[r′s][t ′u]

)
= (p⊕q)→

(
rt→ (s⊕u)

)
=
(

p→ rt→ (s⊕u)
)
⊕
(

q→ rt→ (s⊕u)
)

.

3 Symbolic Implementation

In the enumerative BIP engine, for each connector, the engine needs to compute all the possible inter-
actions, check which ones are enabled in the current global state of the system, and select a maximal
enabled one to be executed. As interactions are sets of ports, their number is potentially exponential in
the number of ports in the connector. Hence, in the worst case, the performance of this engine can be
extremely poor.

The boolean BIP engine leverages on representing component behavior, connector interactions, and
priorities as boolean functions.4 For an atomic component, all ports and control states are represented by
boolean variables. This allows to encode behavior as a boolean expression of these variables. Similarly,
each connector is represented by the boolean expression on its ports. The global behavior is obtained as
a boolean operation on the expressions representing atomic components, connectors, and priorities.

The choice of an interaction to be executed boils down to evaluating the control states, substituting
their respective boolean variables, and picking a valuation of the port variables satisfying the boolean
expression that represents the global behavior.

The boolean representation of connectors replaces the costly enumeration step by efficient BDD
manipulations. In comparison to the exponential cost of the enumerative engine, this renders a more
efficient engine with evaluation that, in practice, remains linear. The following sections describe in detail
the boolean representation of the individual BIP elements and its evaluation by the engine.

3.1 Atomic Components

For each atomic component Bi = (Qi,Pi,→) and each state q ∈Qi, we define boolean functions fq, fBi ∈
B[Qi,Pi]

fq = q∧
∧

q′ 6=q

q′ ∧
∨
q a→

a∧
∧

p∈Pi\a
p

 , fBi =
∨

q∈Qi

fq∨
∧
p∈Pi

p . (10)

4 The implementation of the boolean functions is made using the BDD package CUDD.

M. Jaber, A. Basu, and S. Bluidze 49

There are two possibilities for a valuation on Qi and Pi satisfying fBi : 1) exactly one state variable
q ∈ Qi is set to true and valuations of port variables in Pi correspond to possible transitions of Bi from
the state q; 2) all port variables are set to f alse, which means that the component does not change its
state.

The boolean function, representing all the possible transitions of the product automaton, is then the
conjunction fB =

∧n
i=1 fBi .

Example 3.1 Consider the first Modulo-2 counter component in the Modulo-8 counter (Ex. 2.4). To
avoid confusion in notations, we denote the states of this component by l1 and l2. The boolean function
representing this component is then fB1 = l1 l2 pq∨ l1l2 pq∨ pq, and the functions representing the other
two Modulo-2 counters are computed similarly. Taking the conjunction, we obtain the boolean function
representing the product of the three atomic components:

fB = (l1 l2 pq∨ l1 l2 pq∨ pq)∧ (l3 l4 r q∨ l3 l4 r s∨ r s)∧ (l5 l6 t q∨ l5 l6 t u∨ t u) . (11)

3.2 Connectors

Connectors are represented in boolean form as conjunctions of causal rules [10]. A causal rule is a
boolean formula over a set of ports taking the form of an implication p⇒

∨n
i=1 ai, where p is a port

and ai, for i ∈ [1,n], are monomials representing interactions. An interaction a satisfies a causal rule
if the valuation that it defines on the set of ports satisfies the boolean expression defining the causal
rule. Notice, that this also means that either p does not belong to a or at least one of ai does, i.e.
a |= p⇒

∨n
i=1 ai iff p ∈ a⇒∃i ∈ [1,n] : ai ⊆ a.

Assume now that P is the set of all ports in the system. In order to obtain a boolean representation for
connectors, we first compute, for each connector x, the corresponding causal tree t = τ(x) (cf. Sect. 2.4).
The boolean function fC ∈ B[P] representing a connector is the conjunction of causal rules obtained
from the causal tree essentially by inverting the arrows and the disjunction of roots of t (see Ex. 3.2
below). Adding this last disjunction ensures that at least one of the nodes forming the roots of causal
trees participate in the interaction.

Example 3.2 The connector x = p′[[qr]′[[st]′u]] realizes exactly the interaction model of the Ex. 2.4 (cf.
[9]). The corresponding causal tree is τ(x) = p→ qr → st → u. Inverting the arrows and taking in
account strong synchronizations (e.g., for q to participate in the interaction, r also has to participate), we
obtain the causal rules

q⇒ pr, r⇒ pq, s⇒ qrt, t⇒ qrs, u⇒ st .

The boolean function representing this connector is the conjunction of these rules together with p, which
is the root of τ(x):

fx = p∧ (q⇒ pr)∧ (r⇒ pq)∧ (s⇒ qrt)∧ (t⇒ qrs)∧ (u⇒ st) .

For a system having several connectors C1, . . . ,Cm, boolean functions are individually computed as
above for each of the Ci and combined by taking fC =

∨m
i=1
(

fCi ∧
∧

p6∈Ci
p
)
, where p 6∈Ci means that the

port p is not used in Ci.

50 Symbolic Implementation of Connectors in BIP

3.3 Priorities

To obtain a boolean representation of a priority model, given by a strict partial order π on 2P, we define
a function fP ∈ B[P,P′], where P′ = {p′|p ∈ P}.5 Abbreviating (a,a′) ∈ π to a≺ a′, we put

fP =
∨

a≺a′

(∧
p∈a

p∧
∧
p6∈a

p∧
∧
p∈a′

p′∧
∧
p6∈a′

p′
)

. (12)

Clearly, a pair of interactions (a,a′) belongs to π (i.e. a has lower priority than a′) iff the corresponding
boolean valuation (a,a′) satisfies fP.

Notice that, according to (3), in a given state q of a behaviour B, a priority is only applied if the triple
(B,q,a′) satisfies the predicate Act. However, it can be easily verified that

Act(B,q,a′) ⇐⇒ (a′,q) |= fB∧
n∧

i=1

qi ,

where the conjunction in the right-hand side represents the global state of the system, and fB is the
function computed in (11).

3.4 The Engine Protocol

The following protocol is used at each step of the execution to choose an interaction to be fired. It starts
with an initialization phase, where the following boolean functions are computed: fB ∈B[

⋃n
i=1 Qi,P] rep-

resenting the atomic components; fC ∈ B[P] representing the connectors; and fP ∈ B[P,P′] representing
the priorities. The conjunction fS = fB∧ fC is also computed at this stage.

The main loop of the engine consists of the following steps:

1. Each atomic component Bi sends to the engine its current state qi ∈ Qi.

2. The engine picks any valuation a on P, such that(
(a,q) |= fS∧

n∧
i=1

qi

)
∧ 6 ∃a′ :

(
(a,a′,q) |= fP∧ fB[x′/x]∧

n∧
i=1

qi

)
, (13)

where q is the valuation on
⋃n

i=1 Qi representing the global state of the system and a′ is a valuation
on P′ (cf. Sect. 3.3). The function fB[x′/x] is obtained by substituting p′, for each port variable p
in fB.

3. The engine notifies components by communicating to each Bi the label a∩Pi of the transition to
take.

In (13), (a,q) |= fS implies a |= fC, which means that a ∈ γ , i.e. the interaction a is authorized by
the interaction model (cf. Def. 2.3). Similarly, (a,a′,q) |= fB and (a,a′,q) |= fB[x′/x] mean that a and a′

respectively are active in the current global state q of the system. Finally, (a,a′,q) |= fP means a ≺ a′.
Thus, any interaction a, satisfying (13), represents an enabled interaction.

5 The primes here are not related to those in the A C(P) syntax.

M. Jaber, A. Basu, and S. Bluidze 51

P2

P1P1P1

Q2

Q1

Qn

q1

q2

qn

q2

qn

q1

(a) (b)

Figure 5: Schematic representation of the fS BDD (a) and the BDD
∧n

i=1 qi representing the current state
of the system (b)

3.5 Complexity of the Engine Protocol

Observe that the BDDs for all the involved functions (fB, fC, fS, and fP) are only computed once and
remain constant throughout the execution of the BIP model. Thus, the only operations performed at each
iteration of the engine loop are the conjunctions and the existence check in (13).

First consider the conjunction of fS with state variables representing current states of atomic compo-
nents. In general, the complexity of computing a conjunction of two BDDs is proportional to the product
of their sizes [13]. Consequently, the complexity of the restriction of a BDD by substituting a value for
one of the variables (e.g., computing fS ∧ qi) is linear in the size of the BDD. However, it can also be
shown that the complexity of taking the conjunction fS ∧

∧n
i=1 qi is also linear in the size of fS. This is

due to two reasons: 1) the BDD
∧n

i=1 qi encoding the current state of the system has one node for each
atomic component (see Fig. 5(b)), and 2) the variables q1, . . . ,qn appear in the same order in the BDDs
for both fS and

∧n
i=1 qi. Thus, when the size of the BDD for fS is small, so is the complexity of the

symbolic engine.
When constructing the BDD for fS, we alternate the port and control state variables, as presented

schematically in Fig. 5(a). Indeed, it is well known that the order of variables in a BDD has an important
influence on the complexity of boolean operations. Clearly, the variables representing ports and control
states of an atomic component are strongly correlated.

As the main goal of this paper is to demonstrate the feasibility of the presented approach, the current
implementation is limited to the boolean representation of atomic components and connectors. It does not
include priorities. Observe, however, that the combination of the existence check with the conjunction
of BDDs, in (13), has been widely used for symbolic model checking [14]. The same argument as above
shows that the complexity of the conjunction is linear in the size of fP∧ fB[x′/x] (this BDD can also be
precomputed), whereas the complexity of the existence check is constant.

4 Experimental Results

We compare the engine execution times of the enumerative and boolean engines for two examples. The
BIP models for both examples are limited to synchronization, i.e. do not have any data transfer. We
present below the two examples and the simulation results.

52 Symbolic Implementation of Connectors in BIP

i i
-

�

H

i i
-

�

H

i i
-

�

H

i i
-

�

H

uN N N

s1

c1

s2

c2

s3

c3

s4

c4

s1

c1

s2

c2

s3

c3

s4

c4

Figure 6: A unit cluster for the Bus example

isic1

iw1

ic4 iw4ic2iw2 ic3iw3

b1 f1p1r1

b4

f4

p4
r4

b3 f3p3r3

b2

f2

p2
r2

6
b1?f1

6
p1?r1

6f3
?b3

6
r3?p3

-b4
�

f4

-p4

�r4

-f2

�b2

-r2

�p2

il0
il1 il26

e ?s
-s
�
e

s

e

u
u

u
u

u
u

T1

b
r

f
p P

s

e
T2

p

b
r

f

N

H

(a) (b) (c)

Figure 7: BIP models of a task (a) and a processor (b); connectors (c)

4.1 Bus

In this example, we consider a system consisting of N independent clusters of components commu-
nicating through a “bus”, i.e. a single common connector (see Fig. 6). Each cluster consists of four
components that alternate some computation (transitions labeled ci, for i ∈ [1,4]) and communication
(transitions labeled si, for i ∈ [1,4]).

Computations of the four components in a cluster are completely independent and cannot be synchro-
nized. Thus, for each i ∈ [1,4], there is a singleton connector ci. On the other hand, communications si
are weakly synchronized by the connector s′1s′2s′3s4. In this connector, the ports s1, s2, and s3 are triggers,
whereas s4 is a synchron. This means that communication is only possible through s4 when at least one
other component is ready to communicate—the fourth component is an observer.

A system with N clusters (i.e. 4N components) has 5N connectors. We say that connectors are sparse
in this system, which favors the enumerative engine as its execution time becomes linear in the number
of components.

4.2 Preemptable Tasks

This example originates from [1], where a performance evaluation problem is considered with timed
tasks running concurrently on shared processors. Here, we disregard the timed aspects of this example
and only consider the task behavior concerned with processor sharing.

Consider M processors and N tasks that can be executed on any processor. A processor can have at
most two tasks assigned to it at a time: one running and one preempted. On arrival of a new task, the
running one is preempted. A task is resumed, when the one that has preempted it terminates.

The BIP model of the task component type is shown in Fig. 7(a). It has an “idle” state s, and, for
each processor i ∈ [1,M], a “compute” state ci and a “wait” state wi. An idle task (in state s) can begin
execution on the processor i by taking the transition labeled bi from the state s to the state ci. It can finish
execution by taking the transition labeled fi from the state ci back to the state s.

A task running on the processor i can be preempted (transition labeled pi from the state ci to the state
wi) and, subsequently, resumed (transition labeled ri from the state wi to the state ci).

M. Jaber, A. Basu, and S. Bluidze 53

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25

M
ea

su
re

d
T

im
e

(S
ec

on
ds

)

Number of Components

Tasks: boolean
enumerative

Bus: boolean
enumerative

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80

S
iz

e
of

 B
D

D
 (

no
. o

f n
od

es
)

Number of components

Bus
Tasks

(a) (b)

Figure 8: Engine execution times (a) and BDD size (b)

The BIP model of the processor component type is shown in Fig. 7(b). A processor i is free in the
control state l0, and can start executing a new task by taking a transition labeled s to the state l1. To do
so, it must synchronize with the “begin” port bi of the task to be allocated.

From the state l1, the processor can move back to state l0, if the running task finishes (transition
labeled by e). Otherwise, it can preempt the running task and start a newly arriving task by taking a
transition to l2, labeled by the port s. To do so, it must synchronize with the “begin” port bi of the newly
arrived task and “preempt” port pi of the currently running task. Similarly, for a processor with two tasks
(state l2) an interaction e firi ends the running task and resumes the preempted one.

Each task is connected with every processor and all other tasks. Fig. 7(c) shows the corresponding
connectors [bs]′p and [f e]′r between a task T1, a processor P, and another task T2. For the sake clarity,
we show only the relevant ports.

Thus, in a system of N tasks and M processors, there are 2N(N − 1)M connectors. We say that
connectors are dense in this system, which favors the boolean engine: execution time of the boolean
engine is linear in the number of components (cf. Sect. 4.3 and Fig. 8(b)), whereas that of the enumerative
engine is linear in the number of connectors and quadratic in the number N of tasks.

Observe that e.g., connector [bs]′p has two interactions bs and bsp. Whenever a task is already
running on a processor, it has to be preempted before a new one can be started. This is realized by
the maximal progress rule, i.e. giving priority to bsp over bs. Both enumerative and boolean engines
automatically pick the maximal interaction, which does not increase computational complexity of the
underlying algorithms (contrary to arbitrary priorities).

4.3 Simulation results

We measured the engine execution times for both examples for 106 iterations of the engine loop. Fig. 8(a)
shows the engine execution times obtained with both the enumerative and boolean engines, related to the
number of components in the system. Fig. 8(b) shows the size of the system BDD fS. Observe that for
both examples, the size of this BDD is linear in the number of components.

As expected, for the Bus example, the execution times of both engines are close and linear in the
number of components (dashed lines in Fig. 8(a)). The enumerative engine outperforms the boolean
one. This is due to the fact that the basic operation of the boolean engine (BDD conjunction in (13)) is
more expensive than that of the enumerative engine (connector evaluation).

54 Symbolic Implementation of Connectors in BIP

In the Preemptable Tasks example, we fixed the number of processors to M = 4. The execution
time of the enumerative engine is linear in the number of connectors, i.e. quadratic in the number of
components (solid lines in Fig. 8). The execution time of the boolean engine is linear in the number of
components. Thus boolean engine considerably outperforms the enumerative one.

5 Conclusion

We presented the symbolic implementation of the BIP execution framework. This implementation is
based on computing boolean representation for components and connectors by using an existing BDD
package. The boolean representation is used by the engine at runtime to compute the interaction to be
executed at each iteration of the engine loop. The aim of the symbolic implementation is to reduce
the overhead observed in the original enumerative engine due to this computation. The main goal of
this paper is to demonstrate the feasibility of this approach. Therefore, even though we provide an
implementation technique for priorities, the main focus of this paper is on the boolean representation of
connectors.

We have compared the execution times of the two engines. For the enumerative engine, the worst-
case complexity of the engine protocol is proportional to the number of connectors, whereas, for the
symbolic implementation it is proportional to the size of the BDD for the function fS representing the
system.

The engine execution times were evaluated for two examples favoring respectively the two engines.
For systems with dense connectors (as in the Preemptable Tasks example), the execution time of the
enumerative engine explodes, whereas that of the boolean engine remains small due to the small size of
the BDD for fS. For systems where connectors are sparse (as in the Bus example), the execution times
of both engines are close, with the enumerative one potentially outperforming the symbolic one.

The size of the BDD is influenced by the order of variables. Hence, we alternate port and state
variables (cf. Fig. 5(a)), as these are strongly correlated—the active ports of each atomic component are
determined by its current state. Using this variable ordering we obtained system BDDs linear in the
number of components for both examples that we have considered.

One of the directions for future work is to determine the optimal order of atomic components de-
pending on the topology of the connectors. Indeed, graph-theoretical methods like clique detection could
allow keeping strongly interconnected atomic components close to each other in order to further reduce
the size of the system BDD.

We believe that the techniques presented in this paper can improve the efficiency of the BIP engine
in many practical situations. Furthermore, they can be adapted for other frameworks with structured
multi-way communication, like Reo [2], Lotos [12], etc.

Acknowledgements

The authors would like to thank Marius Bozga, Joseph Sifakis, and Chaouki Zerrari for constructive
remarks and valuable discussion concerning symbolic implementation of priority models. Marius’ advice
on the usage of BDDs was crucial to the completion of this work.

References

[1] (2005). Workshop on Distributed Embedded Systems, Lorentz Center, Leiden. Http://www.tik.ee.ethz.ch/ lei-
den05.

M. Jaber, A. Basu, and S. Bluidze 55

[2] Farhad Arbab (2005): Abstract Behavior Types: a foundation model for components and their composition.
Sci. Comput. Program. 55(1-3), pp. 3–52. Available at http://dx.doi.org/10.1016/j.scico.
2004.05.010.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone & A.L. Sangiovanni-Vincentelli (2003):
Metropolis: An Integrated Electronic System Design Environment. IEEE Computer 36(4), pp. 45–52.

[4] K. Balasubramanian, A.S. Gokhale, G. Karsai, J. Sztipanovits & S. Neema (2006): Developing Applications
Using Model-Driven Design Environments. IEEE Computer 39(2), pp. 33–40.

[5] Ananda Basu, Philippe Bidinger, Marius Bozga & Joseph Sifakis (2008): Distributed Semantics and Imple-
mentation for Systems with Interaction and Priority. In: Kenji Suzuki, Teruo Higashino, Keiichi Yasumoto &
Khaled El-Fakih, editors: FORTE, Lecture Notes in Computer Science 5048. Springer, pp. 116–133. Avail-
able at http://dx.doi.org/10.1007/978-3-540-68855-6_8.

[6] Ananda Basu, Marius Bozga & Joseph Sifakis (2006): Modeling Heterogeneous Real-time Components in
BIP. In: 4th IEEE Int. Conf. on Software Engineering and Formal Methods (SEFM06). pp. 3–12. Invited
talk.

[7] Ananda Basu, Matthieu Gallien, Charles Lesire, Thanh-Hung Nguyen, Saddek Bensalem, Félix Ingrand &
Joseph Sifakis (2008): Incremental component-based construction and verification of a robotic system. In:
ECAI. pp. 631–635.

[8] Ananda Basu, Laurent Mounier, Marc Poulhiès, Jacques Pulou & Joseph Sifakis (2007): Using BIP for
Modeling and Verification of Networked Systems — A Case Study on TinyOS-based Networks. Technical
Report TR-2007-5, VERIMAG.
http://www-verimag.imag.fr/index.php? page=techrep-list.

[9] Simon Bliudze & Joseph Sifakis (2008): The Algebra of Connectors—Structuring Interaction in BIP. IEEE
Transactions on Computers 57(10), pp. 1315–1330.

[10] Simon Bliudze & Joseph Sifakis (2008): Causal Semantics for the Algebra of Connectors (Extended ab-
stract). In: Frank de Boer & Marcello Bonsangue, editors: FMCO 2007, number 5382 in LNCS. Springer-
Verlag, Berlin Heidelberg, pp. 179–199.

[11] Simon Bliudze & Joseph Sifakis (2008): A Notion of Glue Expressiveness for Component-Based Systems.
In: Franck van Breugel & Marsha Chechik, editors: CONCUR 2008, LNCS 5201. Springer, pp. 508–522.

[12] Tommaso Bolognesi & Ed Brinksma (1987): Introduction to the ISO specification language LOTOS. Comput.
Netw. ISDN Syst. 14(1), pp. 25–59.

[13] R.E. Bryant (1986): Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on
Computers 35(8), pp. 677–691.

[14] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill & L. J. Hwang (1992): Symbolic model checking: 1020

states and beyond. Information and Computation 98(2), pp. 142–170.
[15] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs & Y. Xiong (2003):

Taming Heterogeneity: The Ptolemy Approach. Proceedings of the IEEE 91(1), pp. 127–144.

