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A B S T R A C T

Early validation of requirements aims to reduce the need for the high-cost validation testing and corrective
measures at late development stages. This work introduces a systematic process for the unambiguous specifi-
cation of system requirements and the guided derivation of formal properties, which should be implied by the
system ’s structure and behavior in conjunction with its external stimuli. This rigorous design takes place
through the incremental construction of a model using the BIP (Behavior-Interaction-Priorities) component
framework. It allows building complex designs by composing simpler reusable designs enforcing given prop-
erties. If some properties are neither enforced nor verified, the model is refined or certain requirements are
revised. A validated model provides evidence of requirements’ consistency and design correctness. The process is
semi-automated through a new tool and existing verification tools. Its effectiveness was evaluated on a set of
requirements for the control software of the CubETH nanosatellite and an extract of software requirements for a
Low Earth Orbit observation satellite. Our experience and obtained results helped in identifying open challenges
for applying the method in industrial context. These challenges concern with the domain knowledge re-
presentation, the expressiveness of used specification languages, the library of reusable designs and scalability.

1. Introduction

1.1. Problem statement

The design problem in systems engineering concerns with defining
the architecture, modules, interfaces and data for a system, in order to
meet given requirements (Buede and Miller, 2016). Initially, require-
ments are high-level statements (conditions or capabilities that are also
called stakeholder requirements) (Fuxman et al., 2004), from which the
system requirements are derived that define what the system must do to
satisfy stakeholder requirements (Hull et al., 2010). In this article, we
focus specifically on system requirements; when we refer to stakeholder
requirements we do so explicitly.

In Sifakis (2013) and Benveniste et al. (2015), two perspectives of
rigorous system design are introduced. The term “rigorous” refers to a
formal model-based process that leads from requirements to correct
implementations. In particular, the focus is on the design problem for

systems that continuously interact with an external environment; such
systems usually involve concurrent execution and emergent behaviors.
The design process can be decomposed into two phases. During the first
phase, which is called proceduralization in Sifakis (2013), the declara-
tive system requirements are transformed into a procedure, i.e., a model
prescribing how the anticipated functionality can be realized by ex-
ecuting sequences of elementary functions. During the second phase,
which is called materialization, the procedure is implemented in a
system that meets all extra-functional requirements by using available
resources cost-effectively.

In this article, we introduce a model-based approach for the proce-
duralization phase, which aims to the systematic development of a
design solution for a set of system requirements. The design problem is
well-defined, only if the requirements fulfill essential properties, i.e., if
they are complete, consistent, correct (valid for an acceptable solution),
and attainable. However, requirements provide in principle only a
partial specification, which according to the current industrial practice
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(even for critical systems) is stated using a simplified controlled natural
language (i.e. restricted in syntax and/or lexical terms); natural lan-
guage is ambiguous (Rojas and Sliesarieva, 2010) and it is not tied to a
formal semantics. Thus, none of the essential properties can be easily
proved.

1.2. Research objectives

The main objectives of our approach is to provide the means for:

• unambiguous specification of requirements;

• early assurance of consistency between the requirements and design
correctness;

• use of correct-by-construction techniques to limit the need for a
posteriori model checking.

Some of the aforementioned objectives are related to the require-
ments formalization challenge (Baker, 1982; Miller et al., 2006) that
refers to the transformation of requirements into formal properties.
These property specifications should be implied by the system’s struc-
ture and behavior in conjunction with its external stimuli (Zave and
Jackson, 1997).

We provide a systematic stepwise design approach for transforming
declarative system requirements into procedures (proceduralization).
This happens by incrementally building a formal and executable model
of a design solution (design model), i.e., a blueprint of the system
structure and behavior. The design model provides early evidence of
design correctness and consistency. If the properties derived from the
requirements cannot be fulfilled by the design model, a different design
should be pursued or certain unsatisfied requirements have to be re-
vised. Such an approach incurs extra cost to be paid towards delivering
early evidence that the requirement specifications are realizable; on the
other hand, late-stage validation, relying on testing and requiring high-
cost corrective measures, can be drastically reduced.

1.3. Context and contributions

Fig. 1 outlines the proposed approach, where our research objec-
tives are attained in three consecutive phases. In the Requirements for-
mulation and formalization phase, we formulate requirements by in-
stantiating textual templates, called boilerplates (like in Ajitha Rajan and
Thomas Wahl, 2013; Mavin and Wilkinson, 2010; Mavin et al., 2009),
which are filled with catalogued concepts of the system’s context. The
formalization of requirements as properties occurs in a semi-automated
way, based on a predefined mapping of boilerplates to formal property
patterns and a user-defined association of the requirements’ concepts to
events of the design model. Through precisely stating how the boiler-
plates and concepts of requirements are transformed into properties
using predefined and user-defined mappings, we achieve the un-
ambiguous specification of requirements, since they are ensured to have
a consistent interpretation with respect to the design model.

In the Design model building phase, the system's components are
treated as blocks of established functionality; they have to be co-
ordinated while they are progressively assembled and integrated, so as
to fulfil the system requirements. We adopt the main principles of
Sifakis (2013):

• a component-based modeling framework for enhanced productivity

through reuse of model artifacts;

• the modeling language BIP (Behavior - Interaction - Priorities)
(Basu et al., 2011a), which provides an expressive component fra-
mework adequate for a semantically coherent process; any BIP
model can be formally analyzed and simulated with the BIP tools1;

• correctness-by-construction based on property enforcement and
property composability, while integrating the model components; to
this end, we utilize recent theoretical results (Attie et al., 2016)
together with proper automation support.

In the Model verification phase, we formally verify the obtained
design model to check that the non-enforceable properties are fulfilled.
Verification takes place, as a final step, after having applied the cor-
rectness-by-construction techniques. If the properties cannot be ful-
filled, a different design should be pursued or certain unsatisfied re-
quirements have to be revised.

The concrete research contributions of this article are:

i. The model-based process for the early validation of system re-
quirements and design.

ii. The technical approach for the formalization of requirements. This
includes the natural-like template languages for specifying re-
quirements and formal properties, as well as the associations be-
tween templates, for the derivation of properties.

iii. A library of BIP models for simple designs (Mavridou et al., 2016b;
2016c) and their associations with patterns for properties that can
be enforced using our correctness-by-construction approach. These
BIP models, called architectures, were adequate to enforce all safety
properties for two industrial studies through correct-by-construc-
tion model transformations.

iv. A brief account of the tool-support for the automation of the pro-
cess, including a new tool called RERD.

v. A report on the early validation of requirements in two studies: the
control software of the CubETH nanosatellite (Mavridou et al.,
2016b; 2016c), and an extract of software requirements for the
telecommand management of a low orbit earth observation satellite.

In the remaining of the paper, Section 2 provides necessary back-
ground on BIP modelling and BIP architectures. Related work is sur-
veyed in Section 3. Section 4 discusses the overview of the model-based
process steps, which are thoroughly seen in Sections 4.1–4.4 together
with the corresponding technical approaches. In Section 5, we refer to
the tool-support and in Section 6 we provide a brief report on the results
from the two case studies. Section 6 also includes a discussion on the
identified benefits and limitations, as well as on the further develop-
ment of our model-based process and its tool-support.

2. Background

BIP (Basu et al., 2011a) is a formal framework for building complex
models by coordinating the behavior of a set of atomic model compo-
nents. Behavior is defined as a transition system, extended with data
and functions in C/C++. The description of coordination between
components is layered. The first layer describes the interactions be-
tween components. The second layer describes dynamic priorities be-
tween interactions. BIP has a clean operational semantics that describes
the behavior of a composite component as the composition of the be-
haviors of its atomic ones (Basu et al., 2013). This allows a direct re-
lation between the underlying semantic model (transition systems) and
its implementation.

The atomic components are finite-state automata having transitions
labeled with ports and extended with data stored in local variables.
Ports form the interface of a component and are used to define

Fig. 1. The model-based approach. 1 http://www-verimag.imag.fr/BIP-Tools-93.
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interactions with other components. States denote control locations at
which the components await for interaction. A transition is an execu-
tion step from a control location to another. It might be associated with
a boolean condition (guard) and a computation defined on local vari-
ables. The model’s global state at each execution step is given as the
current control locations and the values of local variables of all atomic
components.

Connectors relate ports from different subcomponents by assigning
to them a synchronization attribute, which may be either trigger (re-
presented by a triangle, Fig. 2a) or synchron (represented by a bullet,
Fig. 2a). A connector defines a set of interactions, i.e., a non-empty set
of ports. The set of interactions of each connector is based on the
synchronization attributes it assigns. Given a connector involving a set
of ports …p p{ , , },n1 the set of its interactions is defined as follows: an
interaction is any non-empty subset of …p p{ , , }n1 which contains some
port that is assigned to a trigger (Fig. 2c); otherwise, (if all ports are
assigned to synchrons) the only possible interaction is the maximal one
that is, …p p{ , , }n1 Fig. 2b. The same principle is recursively extended to
hierarchical connectors, where one interaction from each subconnector
is used to form an allowed interaction according to the synchron/
trigger typing of the connector nodes (Fig. 2d). For instance, in the third
hierarchical connector shown in Fig. 2d, port p is assigned to a trigger,
whereas the binary subconnector −q r is assigned to a synchron. Thus
this hierarchical connector allows the singleton interaction p and any
interaction that combines p with some interaction of the binary sub-
connector. Since the latter defines interactions q and qr, the resulting
set of interactions is p, pq, and pqr.

The meaning of a BIP interaction is synchronization of ports. Recall
that transitions are labelled with ports. Thus an interaction p.q defines
synchronization constraints on the execution of the corresponding
transitions that are labelled with ports p.q. A BIP interaction is enabled
for execution if all the corresponding transitions are enabled for ex-
ecution, i.e., the current control locations of components include these
transitions as outgoing transitions and all corresponding transition
guards evaluate to true. The operational semantics of BIP is as follows.
During the execution of a BIP interaction, all components that partici-
pate in the interaction, i.e., have an associated port that is part of the
interaction, must execute their corresponding transitions simulta-
neously. All components that do not participate in the interaction, do
not execute any transition and thus remain in the same control location.

Later in the paper, we consider that BIP connectors purely define
synchronization constraints regarding component execution. Generally,
BIP connectors may additionally provide guards and data transfer, i.e.,
respectively, enabling conditions and data exchange across the ports
involved in each interaction. Nevertheless, in our case studies we do not
model data transfer, which can be very expensive for verification pur-
poses. Thus, we omit the explanation of the BIP data transfer me-
chanism, for which a detailed description can be found in
Bliudze et al. (2014).

2.1. Architecture-based design in BIP

An architecture in BIP is a model that characterizes the structure of
the interactions between a set of component types. Such an architecture
is defined with respect to a set of parameter components and a set of
coordinators. The structure is specified as a relation, i.e. connectors
between component ports. The components to which an architecture is
applied are the operands that replace the architecture’s parameters.

Fig. 3 shows a BIP model for mutual exclusion between two tasks.
Each component on the two outer sides models a task, which enters its
critical section (i.e., the control location work) only when its corre-
sponding port bi ( =i 1, 2) is invoked and leave it when port fi ( =i 1, 2)
is invoked. The model has also one coordinator component C that al-
lows the execution of bi ports only when itself is in the free control
location. The coordinator is in free after a task has left its critical
section. Four binary connectors are used for the aforementioned co-
ordination. Two connectors synchronize each of the b1, b2 ports with
the t port and two others synchronize each of the f1, f2 ports with the r
port. The connectors essentially constrain the behavior of the system so
that whenever the shared resource, managed by the coordinator, is
taken by e.g., the first task, it cannot be accessed by the second task
unless it is first released by the first task. Initial control locations of the
components are indicated with an arc and show that both tasks are
outside their critical section. Fig. 4 shows an architecture that enforces
the mutual exclusion property on two parameter components with in-
terfaces {b1, f1} and {b2, f2}.

Composition of architectures is the conjunction of the induced
synchronisation constraints. It takes the form of an associative, com-
mutative and idempotent architecture composition operator ‘⊕’
(Attie et al., 2016), as illustrated by an example in
Mavridou et al. (2016b). If two architectures �1 and �2 respectively
enforce the safety properties Φ1 and Φ2, the composed architecture
� �⊕1 2 enforces the property Φ1∧Φ2, that is, both properties are pre-
served by architecture composition. Combined application of archi-
tectures can generate deadlocks and the resulting model has to be
checked for deadlock-freedom.

Although the architecture in Fig. 4 can be applied to precisely two
components, it is clear that an architecture of the same style— with n

Fig. 2. BIP connectors and their associated interaction sets.

Fig. 3. Mutual exclusion model in BIP.
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parameter components and 2n connectors— could be applied to n op-
erand components satisfying the interface assumptions. We specify such
architecture styles with architecture diagrams Mavridou et al. (2016a). An
architecture diagram consists of a set of component types with cardin-
ality constraints for the expected number of instances and a set of
connector motifs. Connector motifs are non-empty sets of port types. Each
port type has a cardinality constraint representing the expected number
of port instances per component and two additional constraints: multi-
plicity and degree, represented as a pair m: d. Additionally, each port
type is typed as either trigger or synchron.

Fig. 5 shows the architecture style of the architecture in Fig. 4. The
unique— due to the cardinality being 1— coordinator component,
Mutex manager, manages the shared resource, while n parameter
components of type B can access it. The connector motifs have multi-
plicities of 1 (i.e., in 1: _) in all port types, denoting that all connectors
are binary. The degrees of 1 (i.e., in :1) require that each port instance
of a component of type B is attached to a single connector with the
coordinator. Similarly, the degrees of n require that each port instance
of the coordinator is attached to n connectors. The behaviors of the two
component types enforce that once the resource is acquired by a com-
ponent of type B, it can only be released by the same component. This
happens because the begin port of a B component interacts with the
take port of Mutex Manager leading the latter to the control location
taken. Afterwards, no other B component can fire begin, until Mutex
Manager returns to the control location free ,which happens when
the finish port of the former B component is fired.

Cardinalities, multiplicities and degrees may also be intervals. Let us
consider, a port type p with its multiplicity defined as interval. By the
interval attributes ‘ x ysc[ , ]’ (single choice) and ‘ x ymc[ , ]’ (multiple
choice), we mean that the same (resp. a different) multiplicity is applied
to each port instance of p, provided that it lies in the interval.

3. Related work

The early validation of system requirements and its design using
formal methods has attracted the interest of noteworthy industrial re-
search initiatives (Miller et al., 2006; Bozzano et al., 2014). On the
other hand, the principles of correctness-by-construction in system
design have been introduced in Benveniste et al. (2015) and
Sifakis (2013). In all technical approaches for correct-by-construction
system design it is assumed that requirements and early design coevolve
through iterative cycles (Whalen et al., 2013), and the process con-
verges into a design model, which (provably) fulfills all formal prop-
erties that are derived from the requirements. Existing works following
the principles in Benveniste et al. (2015) advocate a top-down

hierarchical decomposition of the system into components. Correctness
by construction is based on assume-guarantee contracts, where as-
sumptions are either assertions on component inputs or invariants, and
guarantees correspond to component requirements. Such top-down de-
sign flows (Whalen et al., 2013; Murugesan et al., 2014; 2013; Bozzano
et al., 2015) are concerned with the allocation of system requirements to
system components (as in Ingham et al., 2012), so that higher level
requirements are established. System decomposition leads to the de-
composition of contracts through a formal refinement relation
(Cimatti et al., 2013). When allocating requirements to a component, it
should be ensured that the assumptions made for its environment (as-
sertions or invariants) can be fulfilled. Developing assumptions manu-
ally is hard and the advantages when compared with monolithic ver-
ification have been questioned (Cobleigh et al., 2008).

Our work aims at a bottom-up rigorous design flow (Sifakis, 2013).
Important differences from the top-down approaches are: (i) we focus
on requirements formalization, rather than their allocation to compo-
nents, (ii) we aim at the transformation of system requirements into a
procedure, as opposed to the ad hoc design of components that should
meet their contracts. Architectures in BIP drive the choice of system
decomposition, component coordination and behavior transformation.
In the top-down design flows, these choices should be validated through
a posteriori verification; finding a solution in such approaches has a
non-negligible complexity (Cobleigh et al., 2008).

The use of natural language boilerplates in the formalization of
requirements is not new. In Böschen et al. (2016), the authors target the
specification and analysis of stakeholder requirements, referred to as
early requirements (Fuxman et al., 2004). Our approach for the use of
boilerplates resembles those in Lin et al. (1996) and
Wagner et al. (2012) and the CESAR reference technology platform
(Ajitha Rajan and Thomas Wahl, 2013). CESAR introduces the Re-
quirements Specification Language (RSL) that combines boilerplates of
three clauses, namely the prefix, the main part and the suffix. Boiler-
plate attributes are defined in an attribute ontology and their place-
holders must be filled with concepts from a domain-specific ontology. In
Damm et al. (2011), the authors introduce contracts with assumptions
and guarantees built up from instances of RSL property patterns. A tool
called DODT (Farfeleder et al., 2011) allows for projectional require-
ment editing and for checking pairwise ontology-related contradictions
(Kaiya and Saeki, 2005) among requirements. Finally, properties are
specified based on a recommendation of patterns with formal seman-
tics, although no exact association of boilerplates with patterns is
proposed.

The Easy Approach to Requirements Syntax (EARS) (Mavin and
Wilkinson, 2010; Mavin et al., 2009) has introduced a set of structural
rules (templates) for natural language requirements. The authors of
EARS admit that their technique is mostly suitable for high-level sta-
keholder requirements and it is not applicable to all types of system
requirements. Empirical evidence from industrial application showed
improvement or, in some cases, complete elimination of problems re-
lated to ambiguity, vagueness, omissions and others. The EARS-CTRL
tool (Lúcio et al., 2017) aims to ensure well-formedness in EARS re-
quirements by construction and checks whether a controller can be
synthesized from the provided set of requirements. If a controller
cannot be synthesized, possibly conflicting requirements exist. The tool
allows for projectional requirements’ editing, based on a glossary de-
fined on the domain of controller synthesis. Requirements are analyzed
as LTL (Linear Temporal Logic) formulas. The analysis effectiveness
depends on user-defined semantic information (e.g. simple predicates)
for the given glossary. Moreover, model synthesis is limited to a frag-
ment of LTL that involves the universal path quantifier (G), the next-
step operator (X) and the weak until temporal operator (W)
(Cheng et al., 2016). Synthesis for such specifications is in PSPACE,
whereas full LTL synthesis is intrinsically complex (2EXPTIME-com-
plete).

Instead of automated model synthesis, we opt for incremental

Fig. 4. Mutual exclusion architecture.

Fig. 5. Mutual exclusion style.
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system construction that maintains the traceability of requirements up
to the final design solution that discharges the derived properties. In
this incremental process, designers can (re-)use “ready-made” solutions
formally encoded in BIP architectures, which have been proven correct.
In essence, the architectures represent design patterns (e.g. for mutual
exclusion, clock synchronization, scheduling, resource management,
security) that are defined independently of the components which make
up the system. We can thus ensure correctness-by-construction with
respect to properties, while avoiding computationally expensive tech-
niques that imply state explosion.

The importance of software architecture has been greatly ac-
knowledged by the industry and academia. As a result, there has been
an increasing interest in defining languages that support the archi-
tecture-based approach, e.g. UML and architecture description lan-
guages (ADLs) (Medvidovic and Taylor, 2000; Woods and Hilliard,
2005). All these works rely on the distinction between behaviors of
individual components and their coordination in the overall system
organization. These languages, however, often lack formal semantics
(UML, Oussalah et al., 2004; Van Ommering et al., 2000). As a result,
analysis is carried out on models that cannot be rigorously related to
system development formalisms. This introduces gaps in the design
process which reduce productivity and limit the ability for ensuring
correctness. In fact, in a survey conducted in the industrial sector re-
garding architecture description languages, it is stated that practicing
architects nowadays emphasize the need to reconcile informal notations
with more formal and analysable ones (Malavolta et al., 2013).

Similarly to the aforementioned approaches, BIP architectures also
provide a clear separation of concerns between functional and co-
ordination aspects. BIP architectures have rigorous semantics; the un-
derlying theory of components and their interactions is inspired from
the BIP framework (Basu et al., 2011b). In essence, BIP architectures
are operators restricting component behavior for enforcing a char-
acteristic property. Their composition has some similarities with ar-
chitecture composition in architecture languages with CSP-like se-
mantics, e.g., Wright ADL (Allen and Garlan, 1997). Nevertheless, in
contrast to these approaches application of BIP architectures does not
require any modification of the components it is applied on. Ad-
ditionally, as explained above, BIP architectures are tightly related with
characteristic properties, which are preserved through composition.

4. The model-based process

Any system under design is intended to accomplish a set of functions
with each of them defining a stateful processing of input. The system’s
functional architecture is a top-down decomposition of its functions

(using e.g. function trees (Group, 2009a)). The functions must fulfill
certain requirement specifications, i.e. statements that delimit the
problem of system design. In effect, this is only a partial specification
which assumes some common and often tacit knowledge for the pro-
blem domain (domain knowledge (Mannion et al., 1998)), such as
physical laws for the system’s external stimuli (Jackson, 2000), stan-
dardized protocols, services and libraries.

On the side of the design solution space, a design is defined based on
a hierarchical description (using e.g. product trees (Group, 2009b)) of
the system’s hardware and software components, known as physical ar-
chitecture. The functions and their associated requirements are then
allocated to the components of the physical architecture.

For the specification of requirements and properties, we employ two
natural-like languages with precisely defined semantics. Requirements
are specified using composable boilerplates (Hull et al., 2010), i.e., semi-
complete specifications, with placeholders to be filled with concepts
that adhere to a conceptual model of the system under design. The
conceptual model encodes the relationships among the concepts used in
the placeholders. With proper tool-support, the engineer avoids in-
determinate references and maintains links between concepts that exist
in requirements. In order to derive the properties that capture each
requirement, we have mapped each boilerplate to one or more property
patterns, that are also natural-like language templates with place-
holders. These patterns associate the properties with a formal re-
presentation in a logic language.

If requirements (and derived properties) are simultaneously sa-
tisfied by the design model, then early assurance of consistency and
correctness is provided (we do not cope though with inconsistencies
between requirements at the specification level, which are treated e.g.
in Mahmud et al. (2017) and other works). The design model is in-
crementally built using correct-by-construction model transformations,
which integrate reusable BIP architectures (Attie et al., 2016). The in-
tegrated architectures provably discharge the specified properties
through coordinating the model components. This is an automated step
aiming to preserve the previously established properties. Only the
properties that cannot be enforced by design need to be verified by
model checking.

Fig. 6 introduces the overall process by showing the steps along with
their input and output data:

Input: (i) the functional architecture (ii) the physical architecture
Output: a design model satisfying the derived properties OR re-
quirements that are not satisfied
Step 1. Requirement specification: Requirements for each function of
the functional architecture are specified based on predefined

Fig. 6. The model-based process for the formalization of requirements and design.
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boilerplates (cf. Section 4.1).
Step 2. Initial design: An initial design model is manually built with
BIP components representing the physical architecture (cf.
Section 4.2). BIP components implement behavior for the actions
performed by the allocated functions; the interactions among the
components encode the invocation of actions.
Step 3. Property derivation: Properties are derived from the specified
requirements (cf. Section 4.3). To this end, we have associated each
boilerplate with the predefined property patterns that can formally
capture it. Then, for each requirement, properties are derived by
filling in the patterns with elements of the design model that re-
present the concepts used in the boilerplate.
Step 4. Architecture instantiation: Properties which can be enforced
by design are identified; every such property is provably enforced by
a BIP architecture. The architecture to be used is instantiated (cf.
Section 4.4) by defining the operands of an existing architecture style
(Mavridou et al., 2017; 2016b), i.e., components of the design model
in place of the style parameters, which fulfill assumed properties.
Step 5. Property enforcement:The architectures are incrementally
applied to the design model (cf. Section 4.4) (Attie et al., 2016). The
properties assumed by definition for the operands of an architecture
are verified locally by inspecting the corresponding components,
before the architecture is applied to the design model. If an assumed
property is not satisfied, the component behavior will have to be
refined to ensure property satisfaction.
Step 6. Model checking: Properties that could not be enforced using
existing architecture styles are verified on the final design model. If
these properties are satisfied, then so is the whole set of require-
ments; otherwise, the design model should be refined or certain
unsatisfied requirements have to be revised.

The steps 1, 3, 4 and 5 are supported by the RERD tool, which is
described in Section 5. The BIP design model is compiled and simulated
with the BIPtools, whereas its deadlock freedom is checked with the D-
Finder tool (Bensalem et al., 2011). DesignBIP2 (Mavridou et al., 2018)
is a web-based graphical editor for BIP models, which can be used for
building the initial design model. For the verification of properties
(Step 6) by model checking, it is possible to use the nuXmv model
checker (Cavada et al., 2014). Additionally, safety properties can be
expressed as observer automata (Halbwachs et al., 1994), which are
then verified with the BIPtools. Three engineering roles are involved in
the process, namely the Requirement Engineer for the specification of
requirements (Step 1), the System Software Engineer for the system
design (Steps 2, 4, 5) and the Verification Engineer for the property
derivation and the model checking (Steps 3, 6).

4.1. Requirement specification

One of the main objectives of our approach is to tackle the ambi-
guity of natural language requirement specifications through the use of
boilerplates in combination with a conceptual model. According to
Ajitha Rajan and Thomas Wahl (2013), a boilerplate consists of attri-
butes and fixed syntax elements, such as:

function

shall action

where “shall” is a fixed syntax element, while ⟨function⟩ and ⟨action⟩
are attributes of placeholders for user input.

In order to avoid indeterminate values in boilerplate attributes, we
link these values with uniquely identified concepts from the conceptual
model, where each concept is an instance of a class with precisely de-
fined relationships. The conceptual classes are defined in Table 1 and the

essential relationships for supporting the modeling steps of the process
are shown in Fig. 7. Each function performs actions in order to interact
with other functions or the environment. In particular, actions can in-
voke actions of other functions or generate events. Moreover, actions
are of different granularity, hence some actions are action containers i.e.
their execution involves the execution of more fine-grained actions.
Events are either generated as the effect of actions or by the environ-
ment. Specifically, an event occurs upon the end of one of its associated
actions. The occurrence of ceratin events triggers a change (set) in the
state of one or more state-sets. Notice that the diagram doesn’t show
two reasonable constraints for the actions, i.e., that they can invoke
only actions of other functions and that they can contain only actions of
their own function. Also, a constraint for the states is that they are set
by events generated by actions and not by external stimuli.

Our boilerplate language is similar to the one used in
Ajitha Rajan and Thomas Wahl (2013) and Mitschke (2010), where a
boilerplate consists of at most three clauses: (i) the prefix clause, which
specifies a stimulation or a condition, (ii) the main clause, which spe-
cifies an expected system action or state and (iii) the suffix clause,
which specifies various additional constraints. Moreover, each boiler-
plate attribute is associated with a specific class of our conceptual
model. The definition of boilerplates as a sequence of different clauses
offers modularity, simplifies the problem of boilerplate definition and
their interpretation using formal properties.

Example 1. Let us consider the following natural language
requirement:

Log-001 Every time a hardware error is detected,
it shall be stored in a memory region in the RAM.

This requirement is expressed in active voice, using a prefix and a
main clause for defining the triggering event and the system’s action,
respectively, as follows:

Log-
001

Prefix: If event: a hardware error is detected by a function ,

Main: function: the function shall action: store the error
in a memory region in the RAM .

Table 3 defines the syntax for the main clauses of our boilerplate
language, whose subject is a function, that may (i) execute an action
(M1), or (ii) execute a sequence of actions (M2), or (iii) be in a certain
state (M3). The main clause is mandatory. It is the core of the re-
quirement.

Prefixes (Table 2) refer to hypothetical conditions on events and/or
states. They specify conditions for the main specification, i.e., for the
action, the sequence of actions or the state observation mentioned in
the main clause. According to the prefixes, the main clause shall occur:
(i) if an event has occurred (P1), (ii) if an event has occurred and a state
is observed (P2), or (iii) throughout an interval, where a state can be
observed (P3). The conditions that involve events are necessary
and sufficient, while those consisting only of states simply represent a
necessity.

Table 1
Conceptual classes.

Class Definition

⟨function⟩ A function of the functional architecture.
⟨action⟩ A processing step of a function.
⟨state⟩ A condition that enables/disables actions.

−state set A set of mutually exclusive states.
〈event〉 A nominal or failure effect of an action or an external stimulus.

2 https://github.com/DesignBIP/DesignBIP .
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A suffix is used to constrain the main specification. The suffix
clauses shown in Table 4 specify that each time the main specification
(action, sequence of actions or state observation) is activated, it shall:
(i) have ended before an event occurs (S1), or (ii) occur sequentially
(i.e., consecutive activations do not overlap in time) (S2)

Let us consider the boilerplate consisting of the P1, M1 and S2
templates, specifying that “if event, function shall action sequentially”.
Such a boilerplate expresses that: (i) event is a necessary and sufficient
precondition for one action occurrence and (ii) consecutive action oc-
currences are constrained to be executed sequentially. The remaining
prefix-suffix combinations are interpreted accordingly.

During the specification of each requirement, the conceptual model
is enriched with new concepts, if the existing concepts are not suffi-
cient. At the end of the specification step, the conceptual model will
contain the concepts used in the requirements and additional concepts
that are related to them. For example, events used in the requirements
will be related to their generating actions, even if these actions are not
explicitly mentioned in requirements. The conceptual model’s quality is
a responsibility of the Requirement Engineer. This matter has been
examined in related works (Lindland et al., 1994; Leung and Bolloju,
2005) that are further discussed in Section 6.3.

Example 2. Let us consider the requirements in Table 5, which have
been defined for the function that handles the housekeeping of the
payload (PL) subsystem (abbreviated as HK PL). The concepts in
requirements and other concepts related to them are depicted in the
conceptual model of Fig. 8, which shows that:

• states s001 and s002 belong to the state-set st001, thus, only one of
them can be observed at a given instant. Each of these states is set by

the events e001 and e002, respectively (states s003 and s004 are
similarly related).

• the used action a004 represents an action container that consists of
a001, a002 and a005.

• events e003 and e004 are neither generated by an action nor do they
set any states.

For brevity, Fig. 8 omits the invokes relationships that relate these
actions to actions of other functions. These relationships are shown at
later steps of the running example.

The templates in Tables 2–4 in no way form a complete set of boi-
lerplates adequate for all kinds of system requirements, since the boi-
lerplate language is not the primary goal of this article. Thus, our
prefixes can only express necessary and sufficient conditions based on
one state or event, even though requirements are often subjected to
more complex conditions (e.g. based on two events) or to conditions
that are either necessary or sufficient. However, we opted to keep the
boilerplate language simple enough for illustrating the main principles
behind its design, while covering the specification needs for the two
case studies in Section 6. Our considerations for the evolution of the
current language are discussed in Section 6.3.

4.2. Initial design

The initial design step generates the design model in its initial form,
which is a manually built blueprint of the system’s functional behavior.
All the concepts of actions and events mentioned in the requirements
should be traceable in ports of the initial design model.

The model consists of BIP components that implement functions of
the functional architecture. Each action of the conceptual model, which
is an identifiable block of functionality within a function, is represented
by a list of ports of a component. Events that are generated by actions
are also represented by the action’s ports, whereas environmental
events are non-deterministic inputs which are not explicitly modeled.
Components may enclose one or more atomic subcomponents in order
to enable ports within separate threads of control. The number of
atomic components to be used and the placement of actions is a design
choice that depends on possible order dependencies among the actions.
For instance, actions which are executed alternatively should be en-
abled at the same control location of a component, whereas actions that
are independent with each other should be placed in different compo-
nents.

The invocation of actions, which is reflected by the “invokes” re-
lationship in the conceptual model, is represented by component in-
teractions. Separate interactions are included for issuing an invocation
and receiving the output. Rendezvous connectors (all ports assigned to
synchrons) can model synchronous invocations, where the caller has to
wait for the output. For asynchronous invocations, an additional atomic

Fig. 7. Conceptual diagram of classes.

Table 2
Prefix clauses.

ID Template

P1 if 〈event〉
P2 if 〈event〉 and ⟨state⟩
P3 while ⟨state⟩

Table 3
Main clauses.

ID Template

M1 ⟨function⟩ shall ⟨action⟩
M2 ⟨function⟩ shall ⟨action⟩ (and ⟨action⟩)+
M3 ⟨function⟩ shall ⟨state⟩

Table 4
Suffix clauses.

ID Template

S1 before 〈event〉
S2 sequentially

Table 5
Requirements for the HK PL function.

ID Requirement

HK-02 P2: if ⟨event-e003: [TBD] sec pass ⟩ and ⟨state-s003: HK collection is
enabled for PL ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a004: handle HK data from the PL ⟩

HK-03 P3: if ⟨state-s002: PSa for PL is not enabled ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a002: transmit HK data through the
TC/TM service ⟩

HK-04 P3: while ⟨state-s001: PS for PL is enabled ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a001: write HK data to the flash
memory ⟩

HK-05 P1: if ⟨event-e004: a PL failure persists for [TBD] sec ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a003: contact the EPS for a restart
of the PL ⟩

a PS stands for a packet store structure.

E. Stachtiari et al. The Journal of Systems & Software 145 (2018) 52–78

58



component should be used for buffering the output before the caller can
get it. Actions may return a nominal output or possible failures. The
caller may receive all outputs with the same port or using different
ports, if it needs to distinguish among them (e.g. if it should be trans-
ferred to different control locations).

The design choices at this step incur a limited complexity and risk to
the whole process, since components of the initial design model should
have elementary behaviors. More complex behaviors are only built with
architecture instantiation in a controlled and rigorous way.

Example 3. The initial design model shown in Fig. 9 corresponds to the
requirements in Table 5. It includes the following three components of
the physical architecture:

• the HK PL, which handles the Housekeeping for the PL subsystem
function;

• the I2C_sat, which handles the communication through the I2C bus
(NXP, 2007) function;

• the Flash Memory, which handles the flash memory data manage-
ment function.

Fig. 8 shows the actions of the function allocated to the HK PL

component. The other two components are included in the model since
their actions are invoked by HK PL. The HK PL actions have been placed
into two atomic subcomponents of the HK PL, namely the HK PL read ,
which reads Housekeeping data, and the HK PL restart, which acti-
vates a restart of the PL subsystem. Actions are mapped to lists of ports
as follows:

a001 → [mem_write_req , mem_res]
a002 → [I2C_ask_TTC , I2C_res_TTC]
a003 → [I2C_ask_EPS , I2C_res_EPS]
a004 → [beginHK , finished]
a005 → [I2C_ask_PL, I2C_res_PL , I2C_fail_PL]

The use of two atomic components is driven by existing de-
pendencies among actions. For example, in HK PL read, the action of
reading housekeeping data (a004) should precede their transmission
(a002) or storage (a001). On the other hand, the subsystem’s reset
(a0005) occurs independently of other actions.

In Fig. 9 a simplified presentation of BIP connectors is shown by
using the diamond shapes in component interfaces. Each diamond is
attached with ports that participate in one action’s invocation and the

Fig. 8. Conceptual model for the requirements of the HK PL function.

Fig. 9. Initial design model example.
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receipt of the result/failures and the link between two diamonds de-
notes that BIP connectors exist between these ports. All actions of the
HK PL function invoke actions of the I2C_sat and Flash Memory
components3. Specifically, the action of subsystem communication of
the I2C_sat is invoked by three actions that need to contact other
subsystems:

a004, which reads housekeeping data from the PL subsystem;
a002, which submits data to the TC subsystem for transmission to
the ground;
a005, which contacts the EPS subsystem for the restart of the PL
subsystem.

Moreover, the memory write action of the Flash Memory is invoked
by a003 for writing the data to the flash memory storage. Note here that
a failure in reading the housekeeping data from PL leads to a different
control location than the nominal output and it is therefore received by
a different port (i.e. I2C_fail_PL) than the port receiving the nom-
inal output (i.e. I2C_res_PL). In contrast, both outputs of the memory
write action can be received with the mem_res port, since they lead to
the same control location.

4.3. Property derivation

Formal properties are bound to a unique interpretation specified in
an analyzable language. For design models in BIP, we usually use the
Computational Tree Logic (CTL) (Baier and Katoen, 2008) for beha-
vioral properties and configuration logics (Mavridou et al., 2017) for
architectural properties. However, since we aim at a general approach
for specifying properties, we use the specification framework of
Dwyer et al. (1999) with patterns that are formally defined in CTL and
in other languages4. These patterns have been found expressively suf-
ficient to capture requirements written with our boilerplates.

Each property specification consists of two templates, a scope and a
pattern. The pattern defines an expected occurrence or the order of one
or more events. The scope selects the subset of the model state-space,
where the pattern is expected to hold true. For the rest of the state-
space, the property is undefined. For the set of our boilerplates, it
suffices to derive properties using the existence, absense, precedence and
response patterns of Dwyer et al. (1999). Also we needed two scopes,
namely the Global scope or the Between... And scope that refers to a part
of the state-space. The templates for the patterns and the scopes are
shown in Table 6. Their placeholders are filled with logical propositions
(beh), that are specified as follows:

• Atomic propositions are defined over firings of component ports: a
port p of a component A is denoted by A.p and holds true at a global
state in which the port has fired.

• Logical connectives & (and), | (or) combine atomic propositions
with their usual meaning.

• Temporal modalities are used to build more complex propositions.
In particular, with the next operator (X) in front of a beh, we refer to
the next global state after beh occurs (the next operator can be
formally expressed in CTL as AX).

We derive properties from requirements, based on a mapping from
the requirement’s boilerplate to combinations of scope and pattern
templates that are shortly referred as “property patterns”. This asso-
ciation, which is shown in Table 7, refers to a set of symbols, which map
the boilerplate attributes to beh propositions. The mappings have to be
manually created by the System Software Engineer, as follows:

• The beg and end symbols map actions to the beh propositions that
define their beginning (resp. ending). For instance, the beginning of
an action is the port with which it can be invoked and its ending is
the port of sending its response or a disjunction of ports (e.g. when
alternative endings exist).

• The occ symbols map events to beh propositions that define each
event’s occurrence. An internal event is generated by one or more
action(s), hence a beh is the disjunction of end symbols of alternative
actions generating the event. The occurrence of an external event is
a port that generates external stimuli. Such ports are not part of the
initial model; instead, we consider them as “virtual ports” of a
“virtual component” named Environment, in order to assign them
to occ symbols in property derivation.

• The obs symbols map states to ports, which are enabled when the
design model is in each particular state. These ports are not part of
the initial model; instead, they are placed in coordinating compo-
nents of architectures that are added during property enforcement.
Hence, we consider them “virtual ports” in property derivation.

In addition to the aforementioned symbols, the beg(M) and end(M)
symbols (see the footnote b in Table 7) are automatically evaluated
based on the used main clause template.

The semantics for M1 and M3 templates, alone, do not yield any
correctness properties. On the other hand, M2 specifies a sequential
execution of N actions, which is expressed by the conjunction of
properties, M2.1.i (see Table 7), defined for each action a[i] in the se-
quence (except for the last one). The property expresses that:

Table 6
Templates for scopes and patterns.

ID Template Description

Global globally, throughout the whole execution
Between... And between ⟨beh⟩ and

⟨beh⟩,
from a ⟨beh⟩ to another ⟨beh⟩

Existence ⟨beh⟩ exists a ⟨beh⟩ is observed
Absense ⟨beh⟩ is absent a ⟨beh⟩ is not observed
Precedence ⟨beh⟩ precedes ⟨beh⟩ a ⟨beh⟩ is observed before another

⟨beh⟩
Response ⟨beh⟩ responds to ⟨beh⟩ a ⟨beh⟩ is observed after another

⟨beh⟩

Table 7
Boilerplate templates and their associated patterns.

Boilerplate Derived patterns

P1: if e1, ... a P1.1: globally, occ(e1) precedes beg(M) b

P1.2:globally, beg(M) responds to occ(e1)
P2: if e1 and s1, ... P2.1: globally, occ(e1) ∧ obs(s1) precedes beg(M)

P2.2: globally, beg(M) responds to occ(e1) ∧ obs
(s1)

P3: while s1, ... P3.1: globally, obs(s1) precedes beg(M)
M1: f1 shall a1 –
M2: f1 shall a1 and ... and aN M2.1.i: globally, end(a[i]) precedes beg(a[i+1])
M3: f1 shall s2
S1: ... before e2 S1.1: between obs(P) and beg(M), occ(e2) is

absentc

S2: ... sequentially S2.1: between beg(M) and beg(M), end(M) exists

a The enumerated fi, ai, ei and si denote a function, action, event and state
mentioned in the requirement.

b beg(M) and end(M) are replaced according to the used main clause M as

follows: = ⎧
⎨⎩

= =
=

beg M
beg a
obs s

( )
( 1) if M M1 or M M2
( 2) if M M3

=
⎧

⎨
⎩

=
=

¬ =
end M

end a
end aN

obs s
( )

( 1) if M M1
( ) if M M2
( 2) if M M3

c obs(P) is replaced according to the used prefix P as follows:

=
⎧

⎨
⎩

=
∧ =

=
obs P

occ e
occ e obs s
obs s

( )
( 1) if P P1
( 1) ( 1) if P P2
( 2) if P P3

3 the invokes relationship is not shown in the conceptual model of Fig. 8
4 http://patterns.projects.cs.ksu.edu/ .
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• the end of action a[i] enables the beginning of action a[i+1], i.e.,
“globally, a[i] should end before a consecutive beginning of a[i+1]”,
formulated as:
M2.1.i: globally, end(a[i]) precedes beg(a[i+1]).

Another example is the P2 prefix template, from which patterns
P2.1 and P2.2 are derived. The patterns express that:

• the observation of an event while being in a state enables beg(M),
i.e., “globally, the event and the state are observed at some time instant
before beg(M)”, formulated as:
P2.1: globally, obs(e1) ∧ obs(s1) precedes beg(M)

• the observation of an event while being in a state triggers beg(M),
i.e.,“globally, beg(M) follows the observation of the event and the
state at some time instant”, formulated as:
P2.2: globally, beg(M) responds to occ(e1) ∧ obs(s1)

The rationale of the other derived properties is discussed in
Appendix A.

Example 4. Let us consider the requirement HK-02 of our running
example, which is captured by the P2.1 and P2.2 property patterns. For
these patterns, the following symbols have to be assigned with ports:

• occ(e1), is assigned with the “virtual port”
Environment.HKPL_TBDpass port modeling the occurrence of
the external event e1;

• obs(s1) is assigned with the “virtual port” HK_PL.enabledHK_PL
modeling the observation of the state s1;

• beg(a1) is assigned with the HK_PL.beginHK port modeling the
begining of action a1.

4.4. Architecture instantiation and property enforcement

Nine architecture styles from those introduced in Mavridou et al.
(2016b,c) were adequate to enforce the safety properties of our case
studies. In this section, we outline how property enforcement is
achieved using four out of these nine styles, namely:

• the Action flow, which enforces an ordering of actions;

• theMode management, which restricts the set of actions performed in
a mode (state);

• the Event monitoring, which reports upon monitored events;

• the Mutual exclusion management, which ensures mutually exclusive
access to a critical section.

While these styles represent recurring patterns of satellite on-board
software, we believe that they are not tied to the given problem do-
main.

In order to apply an architecture, the architecture style’s parameters
have to be defined. Then, the architecture is instantiated and combined
with other architectures that have already been applied to the same
operand components (using the ⊕ operator as described in Section 2).
In our design process this is an automated step, which merges the
connectors of architectures applied on common ports. The result of
applying multiple architectures to the design model has to be verified
for deadlock-freedom.

4.4.1. Action flow
The Action flow architecture style, shown in Fig. 10, enforces a

sequential flow on N actions allocated to n components of type B, using
an Action Flow Manager coordinator component. Assuming that na
actions of the flow belong to one component, the component has na
instances of the actBegin and actEnd port types, which represent the
beginning and end of each action. The coordinator resets the action
flow only after the N-th action has ended. Connector degrees imply that

each action can only be involved in one action flow.
The Action flow style is used to enforce a collection of properties of

the M2.1.i pattern ( = …i N1, , ) derived from the same requirement.
Such patterns specify that, given a set of actions a[1] … a[N], the end of
action a[i] enables the beginning of a[i+1]. For each action a[i], the port
instances that should be mapped to each actBegin[i] (resp. actEnd
[i]) are the port(s) that correspond to the beg(a[i]) (resp. end(a[i])):

→
→

beg a i
end a i

actBegin[i] ( [ ])
actEnd[i] ( [ ])

Example 5. Let us consider the requirement CDMS-02 of the CubETH
case study:

P1: e1: if [TBD] seconds pass

M2: f1: CDMS_status shall a1: reset the internal and external
watchdogs and a2: contact the EPS subsystem with a
“heartbeat”

from which the following property of the M.2.1 pattern is derived:
CDMS-02-M.2.1: globally, end(a1) precedes beg(a2)
Let us assume that actions a1 and a2 are placed in the Watchdog

reset and the Heartbeat components, respectively. For the en-
forcement of the property, an Action flow architecture was instantiated
using the two components as operands of type B. Table 8 shows the
mapping of their ports for actions a[1] and a[2] to port type para-
meters. Fig. 11 presents the result of applying the architecture, which
adds the coordinator and two connectors shown with dashed lines.
Since the coordinator represents the Heartbeat component (i.e., all its
ports are synchronized with ports of the coordinator), the latter is re-
moved as redundant. Moreover, any symbols that refer to the removed
component’s ports are updated to refer to the ports of the coordinator.

4.4.2. Mode management
The Mode management architecture style (Fig. 12) restricts the set of

actions which can be executed (i.e., enabled) based on a set of modes. It
consists of one coordinator of type Mode Manager, n parameter com-
ponents of type B1 and k parameter components of type B2. Each B2
component triggers the transition of the Mode Manager to a specific
mode. B1 components have actions that should be enabled in specific
mode(s) of the Mode Manager. Mode Manager has one control location
for each mode, one port type toMode with cardinality k and k port
types inMode with cardinality 1. Each toMode port is connected with
the changeMode port of a dedicated B2 component.

B1 has k port types modeBegin with cardinality mc[0, 1]. In other

Fig. 10. Architecture diagram of the Action flow style.

Table 8
Action flow architecture style parameters.

a[1] a[2]

actBegin Watchdog_reset.internal_watchdog Heartbeat.send

actEnd Watchdog_reset.done Heartbeat.res ,
Heartbeat.fail
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words, a component instance of B1 might have any number of port
instances of modeBegin from 0 to k. B1 has also a modeEnd port type
with cardinality k. m[i]b stands for “mode i begin” and indicates that
an action that is enabled in mode i has begun its execution. The m[i]e
ports stand for “mode i end” and indicate that an action that is enabled
in mode i has ended. Such ports are exported as modeEnd in the in-
terface of the B1 components. Each inMode port instance of the Mode
Manager must be connected with the corresponding m[i]b port in-
stances of all B1 components through an n-ary connector, where a
different multiplicity in the interval [1, n] is considered for each port
instance.

This architecture style enforces sets of properties of the P3.1 pattern
that refer to states of the same state-set. According to each such prop-
erty, “the main specification shall begin only if a state is observed”. The
style is parameterized by setting k equal to the number of states in the
state-set. To identify instances of m[i]b ports, we use a new symbol
enforce_beg(M), which is evaluated as follows:

• if =M M1 or =M M2, enforce_beg(M)=beg(M)

• if =M M3, in which case beg(M)=obs(s2), enforce_beg(M) is
the beg of each action that triggers state s2; these actions are found
in the conceptual model by backward tracing the relationships ac-
tion⎯ →⎯⎯⎯⎯⎯⎯⎯⎯

generates
event⎯→⎯

sets
state.

The second evaluation case reflects that the restriction of being in a
state can only be ensured by restricting the event of entering in that
state. Operands of type B1 are the components having the ports mapped
to the m[i]b ports. The changeMode port type is mapped to the ports of
the occ of each event that sets the state. Operands of type B2 are the
components having these ports. After having applied a mode manage-
ment architecture, each “virtual port” assigned to the obs of the re-
presented states is replaced by an inMode[i] port of the Mode Manager.

The Mode management style is also used in combination with the
Event monitoring style to enforce the P2.1 pattern. Specifically, we
apply the Mode management after having applied the Event mon-
itoring, by mapping the m[i]b port type to the port of the event mon-
itoring coordinator that observes the event.

Example 6. Let us consider the requirements HK-03 and HK-04 in
Table 5, from which the following two properties are respectively
derived:

• HK-03-P3.1: globally, obs(s002) precedes beg(a002)

• HK-04-P3.1: globally, obs(s001) precedes beg(a001)

States s001 and s002 belong to the same state-set, hence, they can be
enforced through a single Mode management architecture in which

=k 2. The style parameters shown in Table 9 associate state s001 with
mode[1] and state s002 with mode[2]. The m[1]b and m[2]b port
types are mapped to the beg(M) of each pattern, namely the beg(a001)
(evaluated as HK_PL_read.mem_write_req) and beg(a002). Since
Fig. 8 shows that each mode is set by the events e001 and e002, re-
spectively, the changeMode port type is mapped to the ports assigned
to the occ(e001) (evaluated as s15_1.PL) and the occ(e002) (evaluated
as s15_2.PL). The result of architecture application is presented in
Fig. 13, where the added connectors are shown with dashed lines.

4.4.3. Event monitoring
The Event monitoring architecture style, shown in Fig. 14, provides a

coordinator component of type Event Monitor that tracks events of n
components of type B and reports them to a component of type service.
Each B component has an instance of the sndEvent port type, while the
service component has an instance of the getRep port type.

The event monitoring architecture style is used to enforce the P1.1

Fig. 11. Application of an Action flow architecture.

Fig. 12. Architecture diagram of the Mode management style (component behavior is shown for k = 3).
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and P2.1 patterns, according to which “the main specification shall begin
only if a certain event occurs”. For each such pattern, a separate archi-
tecture is applied, where the getRep port type is mapped to the ports
assigned to enforc_beg(M) and the sndEvent port type is mapped to the
set of ports given in the occ of the event. Moreover, the P2.1 pattern
requires the additional application of a mode management architecture,
as it has been already explained in Section 4.4.2.

Under the assumption that the action is enabled whenever the event
is observed, the coordinator’s behavior is reduced to a single control
location and the transitions observe, report are seen as indivisible
(replaced by a single port). For simplicity, the coordinator is omitted,
and it is replaced by bipartite rendezvous connectors between the port
(s) of the event occurrence and the action’s beginning. Fig. 15 shows the
architecture diagram of the bipartite connectors’ simplification.

Example 7. Let us consider the requirement HK-01 in Table 5, from
which the following property is derived:

HK-02-P2.1: globally, occ(e003) ∧ obs(s003) precedes beg(a004)

The property is enforced through a combination of an event mon-
itoring and a mode management architecture, but here we focus on the
event monitoring. The used parameters are shown in Table 10. The

Table 9
Mode management architecture style parameters.

mode[1] mode[2]

changeMode s15_1.PL s15_2.PL
m[i]b HK_PL_read.mem_write_req HK_PL_read.I2C_res_TTC

Fig. 13. Application of a Mode management architecture.

Fig. 14. Architecture diagram of the Event monitoring style.

Fig. 15. Architecture diagram of the bipartite connectors’ simplification.

Table 10
Event monitoring architecture style parameters.

sndEvent Environment.HKPL_TBDpass

getRep HK_PL_read.beginHK
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getRep port is mapped to the enforc_beg(M), namely the beg(a004)
(evaluated as HK_PL_read.beginHK). The sndEvent is mapped to
the occ(e003) (evaluated as Environment.HKPL_TBDpass).

In this example, the event represented by the port
Environment.HKPL_TBDpass can be reported anytime after a
deadline expires. Hence, the assumption that the reporting action is
enabled whenever the event occurs is true and the bipartite connector
simplification is used without affecting event occurrences (Fig. 16).

4.4.4. Mutual exclusion management
The Mutual exclusion management architecture style, shown in Fig. 5,

has a coordinator component of type Mutex Manager, which ensures
that the actions of n parameter components of type B are executed in a
mutually exclusive manner. The beginning and end of actions are re-
presented by the begin and finish port types of B components.

Mutual exclusion management is used to enforce the S2.1 pattern,
according to which “consecutive executions of the main specification occur
in a sequential manner”. The style is parameterized by mapping the
begin and finish ports to the set of ports in enforc_beg(M) and the set
of ports in end(M).

Example 8. A mutual exclusion architecture applied to the Flash
Memory component is used to enforce that the read and write requests
should be processed in a mutually exclusive manner. The parameters
for the architecture are those in Table 11. The begin is mapped to the
ports for the invocation of a read/write request and the finish is
mapped to their results. The obtained model is shown in Fig. 17.

4.4.5. Liveness
In general, the enforcement of liveness properties requires addi-

tional assumptions of fair execution scheduling. Furthermore, in order
to guarantee the preservation of liveness properties by architecture
composition, one has to verify the architectures’ pair-wise non-inter-
ference (Attie et al., 2016).

However, liveness properties of the patterns P1.2 and P2.2, can,
indeed, be enforced by the bipartite connectors’ simplification of the
Event monitoring architecture style. Let us consider the safety property
“the main specification begins atomically upon the occurrence of event e”,

formulated as follows:
P1.2’: between occ(e) and X occ(e), beg(M) exists.5

It can be easily shown that P1.2 is implied by P1.2’, which can be
enforced by the bipartite connectors’ simplification if the assumptions
for its application hold (cf Section 4.4.3).

Another way to indirectly enforce P1.2 through the Event monitoring
architecture style is by considering the following safety property: “after
an occurrence of event e, another such event does not occur before the be-
ginning of the main specification”, formulated as follows:

P1.2”: between occ(e) and occ(e), beg(M) exists.6

It can be easily shown that P1.2”, which is enforceable by the Event
monitoring architecture style, implies P1.2, if it can be verified or as-
sumed that occ(e) occurs infinitely often:

P1.2.asm: globally, occ(e) responds to occ(e)

4.4.6. Decision flows for property enforcement
Finding the suitable approach for enforcing a given property in-

volves a decision-making process. Algorithm 1 introduces such a pro-
cess for properties of the P1.1 pattern. The first conditional (line 1)
checks whether the bipartite connector simplification can be applied,
the second conditional (line 3) checks whether Event monitoring is
necessary, and the else statement (line 6) is reached if the property
should be verified, through inspection or model checking.

The direct or indirect enforcement of the P1.2 pattern is guided by
the process shown in Algorithm 2. The flow takes into account the ar-
chitecture that enforces P1.1, if such an architecture has been applied.
The decision of the flow is either that the P1.2 property has been en-
forced by the architecture, or that it has to be verified through model
checking. Similar processes are followed for the remaining patterns.

5. Tool support

The RERD tool supports the requirement specification, property
derivation, architecture instantiation and property enforcement, i.e. the
steps 1, 3, 4 and 5 of the model-based process, whereas in step 6 the D-
Finder tool is used and the nuXmv model checker (Cavada et al., 2014),
if there is need for verifying CTL properties. For step 1, the Require-
ments Engineer selects among the predefined boilerplate clauses and
then inserts in each placeholder a textual description referring to a
uniquely identified concept. The concept can be selected from the
previously defined concepts (search support is provided) or if a new
concept is needed it is entered along with its relationships. The con-
ceptual model is stored, shared and is accessed through an underlying
ontology architecture, whose design does not need to be known to the
Requirement Engineer (the concept classes in Fig. 7 suffice for

Fig. 16. Application of the bipartite connectors’ simplification of the Event
monitoring architecture.

Table 11
Mutual exclusion management architecture style parameters.

begin Flash_Memory.read, Flash_Memory.write

finish Flash_Memory.return, Flash_Memory.fail

Fig. 17. Application of a Mutual exclusion management architecture.

5 The semantics of this property in CTL is given by the formula
→occ e beg MAG ( ( ) ( )]).

6 The semantics of this property in CTL is given by the formula
→ ¬occ e occ e beg MAG ( ( ) AX A[ ( ) W ( )]).
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specifying requirements).
Fig. 18 shows the Requirement Editing screen of the RERD tool. The

upper part of the screen allows selecting among the available boiler-
plate clauses, which are displayed in separate tables. In the middle part,
requirements are shown in an editable form, that is, their placeholders
and additional information for the requirement (e.g. id, category) can
be filled in this panel. The lower part of the screen is used for browsing
and searching requirements that match string(s) given in a search box.
The table displays the requirements returned by each search (all re-
quirements match an empty string), with buttons attached to each row
for editing/deleting them.

The RERD tool also stores the user-defined values for the symbols
used in patterns. Specifically, the System Software Engineer assigns
ports to the symbols that are necessary for the properties of the speci-
fied requirements. These symbols may be reused in more than one
property. Hence, when the Verification Engineer uses the tool during
the property derivation (step 3), the necessary properties are auto-
matically created by retrieving the values of symbols.

For architecture instantiation and property enforcement (steps 4
and 5), the System Software Engineer can choose among the available
architecture styles and parameterize them for creating architectures
that enforce a set of properties. The architectures are then auto-
matically applied to their operand components and the design model is
updated as appropriate.

DesignBIP (Mavridou et al., 2018) is a web-based graphical
editing tool, which can be used for the specification of BIP models and
BIP architectures. The tool can assist the creation of the initial design
model in step 1. Moreover, it allows for the creation of new architecture
styles to be integrated in the RERD tool, whenever RERD is extended
with new boilerplates (and enforcement opportunities).

The D-Finder tool (Bensalem et al., 2011) is used by the Ver-
ification Engineer for verifying the deadlock-freedom of the design

Algorithm 1. Decision-making process for the P1.1
pattern.

Algorithm 2. Decision-making process for the P1.2 pattern.

Fig. 18. RERD’s screen for requirements editing.
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model (step 6). D-Finder is capable of analyzing very large BIP
models using compositional verification on an over-approximated set of
reachable states. For model checking CTL properties, the BIP model has
to be transformed with the BIP-to-NuSMV tool 7 into the input language
of the nuXmv model checker.

6. Evaluation case studies

6.1. CubETH case study

The CubETH nanosatellite (Rossi et al., 2015) is comprised of: the
electrical power subsystem (EPS), the command and data management
subsystem (CDMS), the telecommunication subsystem (COM), the atti-
tude determination and control subsystem (ADCS) and the payload
(PL). Our early validation study is focused on the software for the
following subcomponents of the CDMS subsystem (cf. (B.1)): 1) the
CDMS status that resets internal and external watchdogs; 2) the
Payload that is in charge of payload operations; 3) three House-
keeping components that recover engineering data from the EPS, PL
and COM subsystems; 4) the CDMS Housekeeping which is internal to
the CDMS; 5) the I2C_sat that implements the I2C bus protocol; 6) the
Flash memory management that implements a non-volatile flash
memory and its write-read protocol; 7) the s3_5, s3_6, s15_1 and
s15_2 services that activate or deactivate the housekeeping component
actions; 8) the Error Logging that implements a shared RAM region.
The case study comprises 38 requirements, from which 57 properties
were derived. The complete BIP model can be found in (B.5).

Table 12 summarizes statistics that characterize the property en-
forcement step. In total, the integrated architectures for enforcing
safety properties that were derived from our boilerplates' requirements
are 1 Action Flow, 11 Mode management, 5 Event monitoring, 10
Mutual Exclusion Management and 3 Failure Monitoring. Since safety
properties enforced by each architecture are preserved by architecture
composition (see Section 2), these safety properties are satisfied by the
design model by construction.

Combined application of architectures can generate deadlocks. We
verified the deadlock-freedom of the design model using the D-Finder
tool (Bensalem et al., 2011). D-Finder’s compositional analysis is
sound, but incomplete: due to the employed over-approximation of
reachable states, it can produce false positives, i.e., potential deadlock
states that are in fact unreachable in the concrete system. However, our
design model was found to be deadlock-free without any potential
deadlocks. Thus, no additional reachability analysis was needed. The
verification of deadlock-freedom was completed in 12 seconds, for our
model consisting of 46 atomic components and 155 connectors.

The key advantage of our architecture-based approach is that the
burden of verification is shifted from the final design to architectures,
which are considerably smaller in size and can be reused. In particular,
we managed to enforce 47 out of 57 derived properties using our simple
architecture styles. The remaining 10 derived properties were verified
by inspection and 4 fairness assumptions were left for verification using
the nuXmv model checker.

Table 13 summarizes the duration of each process step for the input
of the problem size shown in each row; the three roles of the process
were performed by an engineer who was fully familiarized with the
process’s tool support. The property derivation and property enforce-
ment steps are not shown, since they are automated and the time
needed was negligible. We note that the time spent is not evenly dis-
tributed across the steps and it tends to be less towards the end of the
process. Also, it is essential to clarify for the shown times that the ar-
chitecture styles had already been configured in the RERD tool and the
input forms for the style parameters had been defined. This takes 1–2

hours per style. Much greater effort was needed, though, to create the
taxonomy of our architecture styles which took about 1 man-month.
However, this taxonomy serves as a knowledge base in abstract form
that we have acquired, and which can be reused to build other models
of satellite on-board software.

6.2. Telecommand management of an earth observation satellite

In a second case study, our model-based approach was also applied
to an extract of 29 software requirements for the Telecommand
Management function of a low orbit earth observation satellite. The
requirements and the BIP model of this study cannot be disclosed, due
to confidentiality liability terms. We derived 58 properties from the
requirements and 34 (58%) of them were eventually enforced through
architectures.

More specifically, during this case study we identified the need for
and formulated an architecture style for Priority Management
(Mavridou et al., 2016c). In overall, the integrated architectures were
10 Action Flows, 3 Mutual Exclusion Management, 13 Mode manage-
ment and 1 Priority Management. The number of components in the BIP
model was 25.

6.3. Discussion

The applicability of our approach in an industrial context depends
on a number of factors that we discuss henceforward. First, we assume
the availability of a conceptual model like the one depicted in Fig. 8.
Such a model represents the structural elements and their conceptual
constraints comprising the problem domain (Greenspan et al., 1994); its
adequacy and completeness determines the range of available concepts
and relationships for the boilerplate attributes, the initial design, and
the property derivation steps. We consider that conceptual modeling is
performed by the Requirement Engineers in cooperation with the do-
main experts in charge of system design. This activity also includes
capturing the domain assumptions, i.e., common and often tacit knowl-
edge for the problem domain, and in spite of the system under design
(Mannion et al., 1998; Lisboa et al., 2011). The so-called domain
knowledge (cf. Section 4) may concern with standardized protocols,
services, libraries or physical laws, and can provide additional semantic
information about the nature of the concepts in question. This in-
formation is essential, in order to conclude e.g. that certain events or
data ranges that respect the conceptual model syntactically, are not
relevant semantically. Some assumptions may be related to physics, e.g.
“mass cannot be negative”, and some assumptions may be mission-
specific, e.g. “the temperature within the orbiting range of the space-
craft cannot rise above N degrees”. Elicitation of domain knowledge, as
a collaborative effort, could be facilitated by the use of templates for
each ontology class (Alebrahim et al., 2014).

The conceptual model and all assumptions related to domain
knowledge are encoded into domain-specific and system-specific
ontologies, which are accessed through the RERD tool. New concepts
may be created from within the tool and the user is notified for viola-
tions of constraints related to the model integrity (e.g. undefined re-
lationships). The model quality (syntactic, semantic, pragmatic)
(Lindland et al., 1994; Leung and Bolloju, 2005) is a responsibility of
the Requirement Engineers, who should aim for models that can be
reused to significant extent in multiple projects. Certainly, the reusa-
bility depends on the abstraction level of design, since the requirements
are usually specified at different abstraction levels along the develop-
ment lifecycle (for space systems we have the spacecraft, avionics and
software levels) and a conceptual model is pertinent only to a specific
level (Mahmud et al., 2015). The aforementioned problems and the
right ontology in relation to our model-based design process need to be
further researched in future work.

A second important issue is the expressiveness of the boilerplate
language, and whether it can be sufficient for specifying the full range

7 The tool is available from http://risd.epfl.ch/bip2nusmv. It is based on the
encoding presented and proven correct in Bliudze et al. (2015, Section 4).
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of requirement types found in the design of, say, space systems. This of
course depends on the expressiveness of the property patterns, and on
the analyzability of BIP models with extended semantics for the various
property types, because correctness-by-construction does not vanish the
need for a posteriori verification. The structure of the boilerplate lan-
guage in Section 4.1 resembles that of RSL in the CESAR reference
technology platform (Ajitha Rajan and Thomas Wahl, 2013). We cur-
rently support fewer templates than RSL for the prefix, main and suffix
clauses, but this set of templates was sufficient for expressing the re-
quirements of the case studies. Moreover, the RERD tool was designed
such that new templates may be added; the only prerequisite is that the
additional templates must be associated with property patterns, as in
Table 7. The adopted framework of patterns from Dwyer et al. (1999) is
well-established and stems from industrially-relevant studies, but it
only covers functional property specifications. We certainly foresee the
need for boilerplates with templates for non-functional aspects, which
call for support by e.g. timing patterns (Reinkemeier et al., 2011) and
probabilistic patterns (Grunske, 2008). Here, it is worth to note:

• the extension of BIP (Nouri et al., 2015) that allows specifying
probabilistic aspects of BIP components, while providing a sto-
chastic semantics for the parallel composition of components
through interactions and priorities;

• the RT-BIP extension for modeling timing constraints as a timed
automaton, and a real-time engine for computing the schedules
meeting the timing constraints, given the underlying platform’s real-
time clock (Abdellatif et al., 2013).

These extensions are accompanied by advanced verification tools,
some of which implement scalable compositional verification techni-
ques (Rayana et al., 2016).

However, a matter of vital importance is how expressive can be a
boilerplate language with a controlled vocabulary for the attributes
with respect to today’s industrial practice of natural language specifi-
cations. The loss of expressiveness is inevitable though necessary to
avoid ambiguity. However, the true question is whether it is still pos-
sible and whether we really need to cover the same system aspects with
those in today’s specifications. This question also matters for languages
like EARS (Mavin and Wilkinson, 2010; Mavin et al., 2009), which
insist on natural language specifications using a fixed set of structural
rules (though the EARS-CTRL analysis works with a user-defined glos-
sary of terms). From our experience with the case studies, which were
based on natural language requirements, we believe that only a subset

of them needs to be validated. This set includes requirements that are
suspected for consistency issues and have to be established or checked
with respect to the system’s structure and behavior. The Requirement
Engineers tend to classify the requirements in project documentation
into categories (e.g. at the software level of space systems there are
various classes of interface requirements, performance requirements,
functional requirements and design/construction requirements). Any
boilerplate language is considered adequate only if it can express all
representative forms of natural language requirements that need to be
validated, for all categories of requirements in project documentation
(e.g. the design/construction requirements is not necessary to be ex-
pressed using boilerplates). This may imply changes to the scope of
individual requirements (e.g. a natural language requirement may be
broken into multiple boilerplate requirements). To this end, the RERD
tool displays the set of applicable boilerplates, for each category of
requirements found in a user-defined catalogue of categories (Fig. 18).

Our emphasis lies on precisely capturing the requirements by
properties which— ideally— can be enforced through BIP architectures
or— if not enforced— could be verified. As we aim to a semi-automated
formalization of requirements, we are intentionally limited to specific
types of requirements and templates. Our approach can accommodate
additional templates for requirement boilerplates, provided that they
are associated with property patterns, for which it is known how they
can be enforced or verified.

The applicability of the correctness-by-construction approach
throughout our model-based process depends on a library of BIP ar-
chitecture styles for enforcing a worthwhile set of properties in the
different categories of requirements. We have implicitly adopted the
commonly accepted perception that the requirement specification and
the system’s architectural design are in some sense intertwined
(Swartout and Balzer, 1982; Nuseibeh, 2001). While specifying system
requirements, the Requirement Engineers have in mind the overall
structure of the system under design (functional and physical archi-
tecture inputs shown in Fig. 6), whereas a significant part of their
specifications comes from adapting requirements found in previous
projects. Our notion of architecture styles provides the means to for-
mally capture common solutions to recurring design problems in an
abstract and reusable form. This certainly incurs a non-negligible in-
vestment cost towards developing adequate and organized libraries of
architecture styles, especially since the set of property patterns that
they can enforce has to be precisely defined. The set of styles in this
article was derived by identifying commonalities in the base of natural
language requirements of the case studies. Additional effort is required
to this respect, whereas a recent research work opens prospects for
defining styles which enforce quantitative properties (Paraponiari and
Rahonis, 2017).

Another important issue is the scalability and the effort needed for
applying our model-based process. Indicative figures for problems of
the size of our case studies have been previously mentioned. We ac-
knowledge that in industrial problems of moderate size additional
challenges may arise. More specifically, it may be trickier to identify
and uniquely determine— on a team basis— the concepts for specifying

Table 12
Statistics of requirement formulation and property enforcement.

Model Flow Mode Event Mutex Failure Requir. Deriv. Prop. Assum. Prop. Enforced By inspect.

Payload 0 2 0 4 0 12 16 0 16 0
HK PL 0 2 1 1 1 4 6 0 6 0
HK EPS 0 2 1 1 1 4 6 0 6 0
HK COM 0 2 1 1 1 4 6 0 6 0
HK CDMS 0 2 1 1 0 3 4 0 4 0
Flash memory 0 1 0 1 0 8 13 4 3 10
CDMS status 1 0 0 0 0 1 3 0 3 0
Error logging 0 0 1 1 0 2 3 0 3 0
Total 1 11 5 10 3 38 57 4 47 10

Table 13
Durations and input sizes of the process steps.

Step Duration Input size

Requirement specification 8 h 38 requirements
Initial design 5 h 12 components
Architecture instantiation 3 h 47 enforced properties
Verification of deadlock freedom 12 s 46 components
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requirements, as well as to verify properties against a large-scale design
model. The a posteriori verification with model checking does not scale
well and it can be rendered infeasible for large-scale models. With the
architecture-based design a key advantage is, in particular, that the
burden of verification is shifted from the final design to architectures,
which can be reused. Moreover, as was illustrated in the case studies,
the verification of deadlock freedom— which is essential when com-
bining architectures— with the compositional approach of D-Finder is
very fast. However, when a non-enforceable property is not verified in
Step 6 of our process, identifying a relevant sub-model for corrective
action is complex. An important issue is how to present the resulting
BIP model to engineers in a cognisable manner. In any case, the com-
plexity of locating a design error is not inherent to the process proposed
in the present paper: it arises for any design process involving ver-
ification. In that sense, our proposal, improves the current state of
practice by reducing the number of properties that must be verified.
Although additional techniques could be applied to better identify the
source of an error, such as fault localisation (Wang et al., 2015) and
reduction (Noureddine et al., 2015) techniques for BIP models, or
analysis techniques similar to that used for the cone-of-influence re-
duction (Darvas et al., 2014) 8, we consider this direction as out of
scope of the present paper and leave it for future research.

7. Conclusion

We presented a model-based approach for the formalization of

system requirements, and their early validation with respect to system
design. Our model-based process constitutes a novel approach built on
top of correctness-by-construction techniques, which open a new per-
spective in the field. The incrementally built design model in BIP pro-
vides evidence of design correctness and consistency or else it can guide
the revision of requirements. It can also form a baseline for formal re-
finement (Kurki-Suonio, 2010) towards introducing requirements/
properties at a lower design abstraction level, while ensuring that the
already established requirements and properties are preserved. Sig-
nificant challenges remain to be addressed, if our approach is to be
adopted in a realistic industrial context. However, although difficulties
remain, which might be addressed in future work, the process presented
in the paper is an advance towards reducing the validation testing
during the late stages of development.
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Appendix A. Derived property patterns

A1. Prefixes

The prefixes that contain events define necessary and sufficient preconditions that trigger beg(M).
States are used in prefixes as additional necessary preconditions that enable beg(M).

P1: if e1, .... From the P1 template, the properties P1.1 and P1.2 are derived, expressing that

• the observation of the event enables beg(M), i.e., “globally, the event should be observed before an observation of beg(M), formulated as:
P1.1: globally, occ(e1) precedes beg(M)

• the observation of the event triggers beg(M), i.e., “globally, beg(M) is observed after the observation of the event”, formulated as:
P1.2: globally, beg(M) responds to occ(e1)P3: while s2, .... From the P3 template, the property P3.1 is derived, expressing that the state is a

necessary precondition, i.e., “beg(M) is observed only whenever the state is observed”, formulated as:
P3.1: between beg(M) and X beg(M),obs(s1) exists

A2. Suffixes

Suffixes impose additional constraints to the occurrence of beg(M).

S1: ... before e2. From the S1 suffix, which should be used always in combination with a prefix, the S1.1 property is derived, expressing that event e2
is a deadline for the occurrence of beg(M), i.e.,“after an observation of the prefix, the event e2 is not observed before beg(M).”, which is formulated as:

S1.1: between obs(P) and beg(M), occ(e2) is absentS2: ... sequentially. From the S2 suffix, the S2.1 property is derived, expressing that the main
specification is executed in a sequential manner, i.e., “after the observation of beg(M), end(M) is observed before a consecutive observation of beg(M).”,
which is formulated as:

S2.1: between beg(M) and beg(M), end(M) exists

Appendix B. Case study

B1. Functional architecture

• CDMS status: CDMS’s status reporting to the EPS subsystem

• HK PL: HK data generation for the PL subsystem

• HK COM: HK data generation for the COM subsystem

• HK EPS: HK data generation for the EPS subsystem

8 According to Biere et al., cone of influence reduction seems to have been discovered and utilized by a number of people independently (Biere et al., 1999). We cite
here the work by Darvas et al., which is closest in spirit to the present paper.
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• HK CDMS: HK data generation for the CDMS internals

• Payload: payload operations’ management

• Error Logging: hardware errors’ logging

• Flash Memory: data management in flash memory

• I2C_sat: communication through I2C_sat bus

B2. Physical architecture

The physical architecture for the case study is identical to the functional architecture (cf. (B.1)).

B3. Initial design model

Fig. B.19 shows a high level view of the initial design model. Such a high level design model depicts the component ports and their in-between
connectors.

Fig. B19. The high level initial design model for the CubETH case study.
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B4. Requirements and properties of the running example

We present here the requirements and the derived properties of the CubETH running example.
HK-02: ‘ HK_PL shall handle HK data from the PL subsystem every TBD seconds, as long as the handling of HK data is enabled. ’

P2: if ⟨e1: [TBD] seconds pass ⟩ and ⟨s1: HK for PL is enabled ⟩
M1: ⟨f1: HK PL ⟩ shall ⟨a1: handle HK data from PL ⟩

Derived properties:

HK-02-P2.1 globally, occ(e1)∧ obs(s1) precedes beg(a1)
HK-02-P2.2 globally, beg(a1) responds to occ(e1)∧ obs(s1)

Attribute values based on the resulting model:

obs(s1): HK_PL.enabledHK_PL,
occ(e1): Environment.HKPL_TBD_pass,
beg(a1): HK_PL.beginHK

HK-03: ‘ While the PS for the PL subsystem is not enabled, HK_PL shall transmit the HK data of the PL subsystem through the TC/TM service. ’

P3: while ⟨s1: PS for PL is not enabled ⟩
M1: ⟨f1: HK PL ⟩ shall ⟨a1: transmit HK data through the TC/TM service ⟩

Derived properties:

HK-03-P3.1 globally, obs(s1) precedes beg(a1)
HK-03-P3.2 globally, beg(a1) responds to obs(s1)

Attribute values based on the resulting model:

obs(s1): HK_PL.disabledPS_PL,
beg(a1): HK_PL.ask_I2C_TTC

HK-04: ‘ HK_PL shall write HK data to the flash memory, if PS for the PL subsystem is enabled. ’

P3: while ⟨s1: PS for PL is enabled ⟩
M1: ⟨f1: HK PL ⟩ shall ⟨a1: write HK data to the flash memory ⟩

Derived properties:

HK-04-P3.1 globally, occ(e1) precedes beg(a1)
HK-04-P3.2 globally, beg(a1) responds to obs(s1)

Attribute values based on the resulting model:

• obs(s1): HK_PL.enabledPS_PL,

• beg(a1): HK_PL.mem_write_req

HK-05: ‘ HK_PL shall contact the EPS for a restart of the PL subsystem after a failure persists for [TBD] sec.’

P1: if e1: a failure of subsystem * persists for [TBD] sec ,
M1: f1: HK PL shall a1: contact the EPS for a restart of PL

Derived properties:

HK-05-P1.1 globally, occ(e1) precedes beg(a1)
HK-05-P1.2 globally, beg(a1) responds to obs(s1)

Attribute values based on the resulting model:

occ(e1): Environment.HKPL_failurePers
beg(a1): HK_PL.I2C_ask_EPS

and their properties
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B5. Final design model

In the high level view of the final design model, compared to that of the initial design in Fig. B.19, additional connectors have been added for
property enforcement. Specifically, these connectors were added between the Error Logging component and other components of the model.
(Figs. B.20–B.27)

B5.1. HK PL
The requirements for the HK PL component are shown in Section B.4.

B5.2. HK CDMS
The requirements for the HK CDMS component are similar to the HK-02, HK-03 and HK-04 requirements (of HK PL component) shown in

Section B.4.

Fig. B20. The high level final design model for the CubETH case study.
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B5.3. CDMS status
CDMS-02: ‘ The CDMS_status shall periodically reset the internal and external watchdogs and contact the EPS subsystem with a “heartbeat”. ’

P1: e1: if [TBD] seconds pass
M2: f1: CDMS_status shall a1: reset the internal and external watchdogs and a2: contact the EPS subsystem with a “heartbeat”

B5.4. Error logging
Log-02: ‘ Error_logging shall log each hardware error to the RAM.’
P1: if e1: a hardware error is produced
M1: f1: Error_logging shall a1: log the error to the RAM
Log-03: ‘ Error_logging shall not log two errors simultaneously. ’
M1: f1: Error_logging shall a1: log the error to the RAM
S3: sequentially

B5.5. Payload
PL-01: ‘ When in IDLE mode, PL shall load a scenario to the board. ’
P3: while s1: in IDLE mode
M1: f1: PL shall a1: load a scenario to the board
PL-02: ‘ In SCENARIO_READY, PL has loaded a scenario to the board. ’
P1: if e1: PL has finished loading a scenario to the board
M3: f1: PL shall s2: be in SCENARIO_READY mode
PL-03: ‘ In SCENARIO_READY, PL shall execute a scenario to the board. ’
P3: while s2: in SCENARIO_READY mode
M1: f1: PL shall a12: execute a scenario to the board
PL-04: ‘ In STARTED mode, a PL scenario has been executed. ’
P1: if e2: PL has finished executing a scenario
M3: f1: PL shall s3: be in STARTED mode

Fig. B21. The HK PL component (The HK COM and HK EPS are also like HK PL).
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PL-05: ‘ In STARTED mode, PL shall check the status of the board’s internals. ’
P3: while s3: in STARTED mode
M1: f1: PL shall a3: check the status of the board’s internals
PL-06: ‘ If the board status is full, PL shall be in the RESULT_READY mode. ’
P2: if e3: the board status is found full and s5: there is data to be transferred from the board
M3: f1: PL shall s4: be in RESULT_READY mode

Fig. B22. The HK CDMS component.

Fig. B23. The CDMS status component.
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PL-07: ‘ In RESULT_READY, PL shall transfer data from the board to the flash memory. ’
P3: while s4: in RESULT_READY
M1: f1: PL shall a4: transfer data from the board to the flash memory
PL-08: ‘ PL shall be back to IDLE mode, whenever PL aborts a board operation. ’
P1: if e4: PL has finished aborting a board operation

Fig. B24. The Error Logging component.

Fig. B25. The Payload component.
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M1: f1: PL shall s1: be in IDLE mode
PL-09: ‘ PL shall not be processing two (128,1) telecommands simultaneously. ’
M1: f1: PL shall a6: process (128,1) telecommands
S2: sequentially
PL-10: ‘ PL shall not be processing two (128,4) telecommands simultaneously. ’
M1: f1: PL shall a7: process (128,4) telecommands
S2: sequentially
PL-11: ‘ PL shall not be processing two (128,5) telecommands simultaneously. ’
M1: f1: PL shall a8: process (128,5) telecommands

Fig. B26. The flash memory component.

Fig. B27. The I2C_sat component.
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S2: sequentially
- PL-12: ‘ PL shall not perform two status verification tests simultaneously. ’
M1: f1: PL shall a9: perform status verification tests
S2: sequentially

B5.6. Flash memory
Mem-01: ‘ Flash memory shall process read and write operations sequentially. ’
M1: f1: Flash_memory shall a1: process operations
S2: sequentially
Mem-02: ‘ For a write operation, the flash memory writes blocks of data the device, until all data has been written. ’
P3: while s1: a write operation is being processed
M1: f1: Flash_memory shall a2: write data to the device
Mem-03: ‘ For a read operation, the flash memory reads each block of data from the device and performs the Cyclic redundancy check (CRC), until all

data has been read. ’
P3: while s2: a read operation is being processed
M2: f1: Flash_memory shall a3: read data from the device and a6: perform the CRC
Mem-04: ‘ Each read operation returns its finishing status. ’
P1: if e1: a read operation begins
M1: f1: Flash_memory shall a4: return the operation’s finishing status
S1:before e4: it has finished
Mem-05: ‘ Each write operation returns its finishing status.’
P1: if e2: a write operation begins
M1: f1: Flash_memory shall a5: return the operation’s finishing status
S1:before e5: it has finished
Mem-07: ‘ If CRC fails, the Flash memory shall reread the data from the flash memory, as long as the number of read attempts is less or equal to

[MAX_FM_READS]. ’
P2: if e3: CRC fails and s3: the same data has been read [MAX_FM_READS] times or less
M1: f1: Flash_memory shall a6: continue reading data from the device
Mem-08: ‘ If CRC fails, the Flash memory shall abandon the reading operation, as long as the number of read attempts exceeds [MAX_FM_READS]. ’
P2: if e3: CRC fails and s4: the same data has been read more than [MAX_FM_READS] times
M1: f1: Flash_memory_read shall a7: abort the read operation

B5.7. I2C_sat
The funcitonality of the I2C_sat component is taken into account in the model, though it is not specified in the requirements. The component

implements the I2C protocol, which is specified in NXP (2007).
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