
Architecture-based Design:
A Satellite On-board Software Case Study

Anastasia Mavridou1, Emmanouela Stachtiari2, Simon Bliudze1,
Anton Ivanov1, Panagiotis Katsaros2, and Joseph Sifakis1

1 École polytechnique fédérale de Lausanne, Switzerland; firstname.lastname@epfl.ch
2 Aristotle University of Thessaloniki, Greece; {emmastac,katsaros}@csd.auth.gr

Abstract. In this case study, we apply the architecture-based design ap-
proach to the control software of the CubETH satellite. Architectures are
a means for ensuring global coordination properties and thus, achieving
correctness of complex systems by construction. We illustrate the follow-
ing three steps of the design approach: 1) definition of a domain-specific
taxonomy of architecture styles; 2) design of the software model by apply-
ing architectures to enforce the required properties; 3) deadlock-freedom
analysis of the resulting model. We provide a taxonomy of architecture
styles for satellite on-board software, formally defined by architecture di-
agrams in the BIP component-based framework. We show how architec-
tures are instantiated from the diagrams and applied to a set of atomic
components. Deadlock-freedom of the resulting model is verified using
DFinder from the BIP tool-set. We provide additional validation of our
approach by using the nuXmv model checker to verify that the properties
enforced by the architectures are, indeed, satisfied by the model.

1 Introduction

Satellites and other complex systems become increasingly software-dependent.
Even nanosatellites have complexity that can be compared to scientific instru-
ments launched to Mars. Standards exist for hardware parts and designs, and
they can be found as commercial off the shelf (COTS) components. On the con-
trary, software has to be adapted to the payload and, consequently, hardware
architecture selected for the satellite. There is not a rigorous and robust way to
design software for CubeSats3 or small satellites yet.

Flight software safety is of paramount importance for satellites. In harsh
radiation environments, performance of COTS components is often affected by
proton particles. For example, the I2C bus, which is commonly used in CubeSats
due to its low energy consumption and wide availability in COTS chips, is well
known in space community for its glitches. Although error correcting algorithms
are widely implemented across all subsystems and interfaces, the use of the bus
by the components requires careful coordination to ensure correct operation.
Needless to say, software correctness must be established before launch.

3 CubeSat [15] is a standard for the design of nano- and picosatellites.



To the best of our knowledge, most flight software for university satellites is
written in C or C++, without any architectural thinking. A notable exception
is a recent effort at Vermont Tech to use SPARK, a variant of Ada amenable
to static analysis [14]. Other projects simply structure their code in C/C++
and then extensively test it, maybe using some analysis tools such as lint [26].
Others use SysML [34] to describe the system as a whole [33] and then check
some properties such as energy consumption. SysML can be a valid tool for
system engineering as a whole, but it is not rigorous enough to allow automatic
verification and validation of software behaviour.

Satellite on-board software and, more generally, all modern software systems
are inherently concurrent. They consist of components that—at least on the
conceptual level—run simultaneously and share access to resources provided by
the execution platform. Embedded control software in various domains com-
monly comprises, in addition to components responsible for taking the control
decisions, a set of components driving the operation of sensing and actuation de-
vices. These components interact through buses, shared memories and message
buffers, leading to resource contention and potential deadlocks compromising
mission- and safety-critical operations.

The intrinsic concurrent nature of such interactions is the root cause of the
sheer complexity of the resulting software. Indeed, in order to analyse the be-
haviour of such a software system, one has to consider all possible interleavings
of the operations executed by its components. Thus, the complexity of software
systems is exponential in the number of their components, making a posteriori
verification of their correctness practically infeasible. An alternative approach
consists in ensuring correctness by construction, through the application of well-
defined design principles [4, 19], imposing behavioural contracts on individual
components [8] or by applying automatic transformations to obtain executable
code from formally defined high-level models [32].

Following this latter approach, a notion of architectures was proposed in [2]
to formalise design patterns for the coordination of concurrent components. Ar-
chitectures provide means for ensuring correctness by construction by enforcing
global properties characterising the coordination between components. An ar-
chitecture can be defined as an operator A that, applied to a set of components
B, builds a composite component A(B) meeting a characteristic property Φ.
Composability is based on an associative, commutative and idempotent archi-
tecture composition operator ⊕: architecture composition preserves the safety
properties enforced by the individual architectures. Architecture styles [22, 24]
are families of architectures sharing common characteristics such as the type of
the involved components and the characteristic properties they enforce. Archi-
tecture styles define all architectures for an arbitrary set of components that
satisfy some minimal assumptions on their interfaces.

The notion of architectures proposed in [2] is based on the Behaviour-Interac-
tion-Priority (BIP) [6] framework for the component-based design of concurrent
software and systems. BIP is supported by a tool-set comprising translators from
various programming models into BIP, source-to-source transformers as well as



compilers for generating code executable by dedicated engines. Furthermore, the
BIP tool-set provides tools for deadlock detection [7], state reachability analysis
and an interface with the nuXmv model checker [10]. In the CubETH project [31],
BIP was used to design logic for the operation of a satellite, executed on the on-
board computer [29]. Although some properties were shown a posteriori to hold
by construction, due to the use of a high-level modelling language instead of
plain C/C++ code, the BIP model was designed in an ad-hoc manner, without
consideration for any particular set of requirements.

In the case study presented in this paper, we have analysed the BIP model
obtained in [29] and identified a number of recurring patterns, which we for-
malised as architecture styles. We have identified a representative sub-system
of the CubETH control software, which has a complete set of functional re-
quirements, and redesigned from scratch the corresponding BIP model using
the architecture styles to discharge these requirements by construction. We have
used the DFinder tool to verify that the resulting model is free from deadlocks.
Finally, we provide additional validation of our approach by using the nuXmv

model checker to verify that the architectures applied in the design process do,
indeed, enforce the required properties.

The rest of the paper is structured as follows. Section 2 presents a brief
overview of BIP and the architecture-based design approach. Section 3 presents
the case study, the identified architecture styles, illustrates our approach through
the design of a corresponding BIP model and presents the verification process
and results. Section 4 discusses the related work. Section 5 concludes the paper.

2 Architecture-based design approach

takenwork work

sleep free sleep

f1 b12 f12 b2 f2b1

B1 C12 B2

f1 b12 f12 f2b1 b2

Fig. 1: Mutual exclusion model in BIP

Our approach relies on the BIP frame-
work [6] for component-based de-
sign of correct-by-construction appli-
cations. BIP provides a simple, but
powerful mechanism for the coordi-
nation of concurrent components by
superposing three layers. First, com-
ponent behaviour is described by La-
belled Transition Systems (LTS) having transitions labelled with ports. Ports
form the interface of a component and are used to define its interactions with
other components. Second, interaction models, i.e. sets of interactions, define
the component coordination. Interactions are sets of ports that define allowed
synchronisations between components. An interaction model is defined in a struc-
tured manner by using connectors [9]. Third, priorities are used to impose
scheduling constraints and to resolve conflicts when multiple interactions are
enabled simultaneously.

Figure 1 shows a simple BIP model for mutual exclusion between two tasks. It
has two components B1, B2 modelling the tasks and one coordinator component
C12. Initial states of the components are shown with double lines. The four
binary connectors synchronise each of the actions b1, b2 (resp. f1, f2) of the
tasks with the action b12 (resp. f12) of the coordinator.



(b) Flat Connectors

a b c

a b c

a b c

{abc}

{a, ab,
ac, abc}

{a, b, ab,
ac, bc, abc}

Rendezvous

Broadcast

(a) Port use

synchron

trigger

(c) Hierarchical Connectors

b ca

Rendezvous

{abc}

b ca

Atomic broadcast

{a, abc}

b ca

Causality chain

{a, ab, abc}

Fig. 2: Flat and hierarchical BIP connectors

Connectors define sets of interactions based on the synchronisation attributes
of the connected ports, which may be either trigger or synchron (Fig. 2a). If
all connected ports are synchrons, then synchronisation is by rendezvous, i.e.
the defined interaction may be executed only if all the connected components
allow the transitions of those ports (Fig. 2b), If a connector has at least one
trigger, the synchronisation is by broadcast, i.e. the allowed interactions are all
non-empty subsets of the connected ports comprising at least one of the trigger
ports (Fig. 2b). More complex connectors can be built hierarchically (Fig. 2c).

taken

free

f1 b12 f12 b2 f2b1

C12

b12 f12

Fig. 3: Mutual exclusion architecture

An architecture can be viewed as a
BIP model, where some of the atomic
components are considered as coordi-
nators, while the rest are parameters.
When an architecture is applied to a
set of components, these components
are used as operands to replace the pa-
rameters of the architecture. Clearly,
operand components must refine the corresponding parameter ones—in that
sense, parameter components can be considered as types.4 Figure 3 shows an
architecture that enforces the mutual exclusion property AG¬(cs1 ∧ cs2) on any
two components with interfaces {b1, f1} and {b2, f2}, satisfying the CTL for-
mula AG

(
fi → A[¬csi U bi]

)
, where csi is an atomic predicate, true when the

component is in the critical section (e.g. in the state work, for B1, B2 of Fig. 1).
Composition of architectures is based on an associative, commutative and idem-
potent architecture composition operator ‘⊕’ [2]. If two architectures A1 and
A2 enforce respectively safety properties Φ1 and Φ2, the composed architecture
A1 ⊕A2 enforces the property Φ1 ∧Φ2, that is both properties are preserved by
architecture composition.

Although the architecture in Fig. 3 can only be applied to a set of precisely
two components, it is clear that an architecture of the same style—with n pa-
rameter components and 2n connectors—could be applied to any set of operand
components satisfying the above CTL formula. We use architecture diagrams [24]
to specify such architecture styles, as described in the next section. (See Fig. 6
in Sect. 3.1 for the diagram of the style generalising the architecture in Fig. 3.)

4 The precise definition of the refinement relation is beyond the scope of this paper.



Modelling 
architecture 

styles

Requirements 
formulation & 
formalisation

Pre-design Design

Architecture 
application

Model 
verification

Verification

Fig. 4: Architecture-based design flow

The architecture-based
design approach consists of
the three stages illustrated
in Fig. 4. First, architec-
ture styles relevant for the
application domain—in our
case, nano- and picosatellite on-board software—are identified and formally mod-
elled. Ideally, this stage is only realised once for each application domain. The
remaining stages are applied for each system to be designed. In the second, design
stage, requirements to be satisfied by the system are analysed and formalised,
atomic components realising the basic functionality of the system are designed
(components previously designed for other systems can be reused) and used as
operands for the application of architectures instantiated from the styles defined
in the first stage. The choice of the architectures to apply is driven by the require-
ments identified in the second stage. Finally, the resulting system is checked for
deadlock-freedom. Properties, which are not enforced by construction through
architecture application, must be verified a posteriori. In this case study, we
illustrate all steps of this process, except the requirement formalisation.

In the first stage, we use architecture diagrams [24] to model the architec-
ture styles identified in the case study. An architecture diagram consists of a
set of component types, with associated cardinality constraints representing the
expected number of instances of each component type and a set of connector
motifs. Connector motifs, which define sets of BIP connectors, are non-empty
sets of port types, each labelled as either a trigger or a synchron. Each port type
has a cardinality constraint representing the expected number of port instances
per component instance and two additional constraints: multiplicity and degree,
represented as a pair m : d. Multiplicity constrains the number of instances of
the port type that must participate in a connector defined by the motif; degree
constrains the number of connectors attached to any instance of the port type.

Cardinalities, multiplicities and degrees are either natural numbers or inter-
vals. The interval attributes, ‘mc’ (multiple choice) or ‘sc’ (single choice), specify
whether these constraints are uniformly applied or not. Let us consider, a port
type p with associated intervals defining its multiplicity and degree. We write
‘sc[x, y]’ to mean that the same multiplicity or degree is applied to each port
instance of p. We write ‘mc[x, y]’ to mean that different multiplicities or degrees
can be applied to different port instances of p, provided they lie in the interval.

For the specification of behavioural properties enforced by architecture styles,
as well as those assumed for the parameter components, we use the Computation
Tree Logic (CTL). We only provide a brief overview, referring the reader to the
classical textbook [3] for a complete and formal presentation. CTL formulas
specify properties of execution trees generated by LTSs. The formulas are built
from atomic predicates on the states of the LTS, using the several operators,
such as EX, AX, EF, AF, EG, AG (unary) and E[· U ·], A[· U ·], E[· W ·], A[· W ·] (binary).
Each operator consists of a quantifier on the branches of the tree and a temporal
modality, which together define when in the execution the operand sub-formulas



Fig. 5: The high-level interaction model

must hold. The intuition behind the letters is the following: the branch quantifiers
are A (for “All”) and E (for “Exists”); the temporal modalities are X (for “neXt”),
F (for “some time in the Future”), G (for “Globally”), U (for “Until”) and W (for
“Weak until”). A property is satisfied if it holds in the initial state of the LTS.
For instance, the formula A[p W q] specifies that in all execution branches the
predicate p must hold up to the first state (not including this latter), where the
predicate q holds. Since we used the weak until operator W, if q never holds, p
must hold forever. As soon as q holds in one state of an execution branch, p
need not hold any more, even if q does not hold. On the contrary, the formula
AG A[p W q] specifies that the subformula A[p W q] must hold in all branches at all
times. Thus, p must hold whenever q does not hold, i.e. AG A[p W q] = AG (p ∨ q).

3 Case study

CubETH is a nanosatellite based on the CubeSat standard [15]. It contains the
following subsystems: EPS (electrical power subsystem), CDMS (command and
data management subsystem), COM (telecommunication subsystem), ADCS (atti-
tude determination and control subsystem), PL (payload) and the mechanical
structure including the antenna deployment subsystem.

This case study is focused on the software running on the CDMS subsystem
and in particular on the following subcomponents of CDMS: 1) CDMS status that
is in charge of resetting internal and external watchdogs; 2) Payload that is
in charge of payload operations; 3) three Housekeeping components that are
used to recover engineering data from the EPS, PL and COM subsystems; 4) CDMS
Housekeeping which is internal to the CDMS; 5) I2C sat that implements the I2C
protocol; 6) Flash memory management that implements a non-volatile flash
memory and its write-read protocol; 7) the s3 5, s3 6, s15 1 and s15 2 ser-
vices that are in charge of the activation or deactivation of the housekeeping



component actions; 8) Error Logging that implements a RAM region that is
accessible by many users and 9) the MESSAGE LIBRARY, MEMORY LIBRARY and
I2C sat LIBRARY components that contain auxiliary C/C++ functions.

A high-level BIP model of the case-study is shown in Fig. 5. For the sake
of simplicity, we omit some of the connectors. In particular, we show the con-
nectors involving the HK to MEM, HK to I2C and HK to I2C NOFAIL interfaces
of the HK COM subsystem, but we omit the respective connectors involving the
other three Housekeeping subsystems. The MESSAGE LIBRARY, MEMORY LIBRARY,
I2C sat LIBRARY, s3 5, s3 6, s15 1 and s15 2 components are atomic. The rest
are composite components, i.e. compounds.

The full BIP model of the case study can be found in the technical report [23].
It comprises 22 operand components and 27 architectures that were generated
from the architecture styles presented in the next subsection.

3.1 A taxonomy of architecture styles for on-board software

We have identified 9 architecture styles from the BIP model obtained in [29].
In this section, we present 5 styles (all styles are presented in the technical
report [23]). Since the identified architecture styles represent recurring patterns
of satellite on-board software, the usage of the presented taxonomy is not limited
to this case-study. The identified styles can also be used for the design and
development of other satellite on-board systems.

For each architecture style, we have studied two groups of properties: 1) as-
sumed properties that the operand components must satisfy so that the archi-
tecture can be successfully applied on them and 2) characteristic properties that
are properties the architecture imposes on the system. In this case study, all
characteristic properties are safety properties. Due to space limitations, in the
next subsections, for all architecture styles except for Mutual exclusion, we omit
their assumed properties. These can be found in the technical report [23].

The styles are specified by using architecture diagrams. Below, for the sake
of clarity, we omit the port type cardinality if it is equal to 1. The cardinality of
a component type is indicated right next to its name.

The Mutual exclusion style (Fig. 6) generalises the architecture in Fig. 3. It
enforces mutual exclusion on a shared resource (see Sect. 2).

Fig. 6: Mutual exclusion style

The unique—due to the cardi-
nality being 1—coordinator com-
ponent, Mutex manager, manages
the shared resource, while n pa-
rameter components of type B can
access it. The multiplicities of all
port types are 1, hence, all connectors are binary. The degree constraints require
that each port instance of a component of type B be attached to a single connec-
tor and each port instance of the coordinator be attached to n connectors. The
behaviours of the two component types enforce that once the resource is acquired
by a component of type B, it can only be released by the same component. The
assumed and characteristic properties of this style were presented in Sect. 2.



The Client-Server style (Fig. 7) ensures that only one client can use a service
offered by the server at each time. It consists of two parameter component types
Server and Client with 1 and n instances, respectively. In the diagram of Fig. 7,
the Server provides two services through port types offer and offer2. The
Client has two port types use and use2. Since the cardinalities of offer and
offer2 are k and k′, respectively, each component instance of type Server has
k port instances of type offer and k′ port instances of type offer2. Similarly,
each component instance of type Client has m port instances of type use and
m′ port instances of type use2.

Fig. 7: Client-Server style

Two connector motifs connect
use (resp. use2) with offer (resp.
offer2). The multiplicity:degree con-
straints of offer and use are 1 : nm
and 1 : k, respectively. Since both
multiplicities are 1, all connectors are
binary. Because of the degree constraints, each port instance of use must be
attached to k connectors, while each port instance of offer must be attached to
nm connectors, i.e. all port instances of use are connected to all port instances
of offer. An architecture of this style is shown in Fig. 12.

The characteristic property of this style is ‘only one client can use a provided
service at each time’, formalised by the CTL formula:

∀ i, j 6 n, ∀ p 6 k, AG
(
¬Client [i].use[p] ∧ Client [j].use[p]

)
,

∀ i, j 6 n, ∀ p 6 k, AG
(
¬Client [i].use2 [p] ∧ Client [j].use2 [p]

)
.

The Action flow style (Fig. 8) enforces a sequence of actions. It has one
coordinator component of type Action Flow Manager and n parameter compo-
nents of type B. The cyclic behaviour of the coordinator enforces an order on
the actions of the operands. In the manager’s behaviour, abi and aei stand for
“action i begin” and “action i end”.

Fig. 8: Action flow style

Each operand component c of
type B provides nca port instances
of type actBegin and of type
actEnd. Notice that nca might be
different for different operands of
type B. The cardinalities of port
types ab and ae are both equal to
N =

∑
c:B n

c
a, where the sum is over all operands of type B. The multiplicity and

degree constraints require that there be only binary connectors. An architecture
of this style is shown in Fig. 11.

The characteristic property of this style is the conjunction of a) ‘on each
action flow’s execution, every action begins only after its previous action has
ended ’ b) ‘on each flow execution, every action occurs at most once’ c) ‘the flow
finishes only after the last action has ended ’, formalised by the following CTL
formulas, in which the index i denotes the position of an action in the action
flow. We consider the following mappings:



– from indices to components seqc : [1, N ] → C, where C is a set containing
all operands that execute an action;

– from indices to actions seqa : [1, N ] → A, where A is a set containing all
actions of the operands,

such that the action seqa(i) belongs to the component seqc(i).

∀1 < i 6 N, AG
(
start →

AX A
[
¬B [seqc(i)].actBegin[seqa(i)] W B [seqc(i)].actEnd [seqa(i− 1)]

])
,

∀1 6 i 6 N, AG
(
B [seqc(i)].actBegin[seqa(i)]→

AX A
[
¬B [seqc(i)].actBegin[seqa(i)] W start

])
,

AG
(
start → AX A[¬finish W B [seqc(i)].actEnd [N ]

])
.

The Failure monitoring style (Fig. 9) provides monitor components that
observe the state of other components. It consists of n coordinator components of
type Failure Monitor and n parameter components of type B1. The cardinality
of all port types is 1. Multiplicities and degrees require that each B1 component
instance be connected to its dedicated Failure monitor instance.

Fig. 9: Failure monitoring style

A B1 component may enter the
following three states: NOMINAL,
ANOMALY and CRITICAL FAILURE.
When in NOMINAL state, the com-
ponent is performing correctly. If
the component cannot be reached,
or if the engineering data is not
correct the component enters the
ANOMALY state. If a fixed time has passed in which the component has remained
in ANOMALY, the component enters the CRITICAL FAILURE state. An architecture
of this style is shown in Fig. 13.

The characteristic property of this style is ‘if a failure occurs, a finish happens
only after a resume or reset ’, formalised by the following CTL formula:

∀c 6 n, AG
(
B1 [c].fail → AX A

[
¬B1 [c].finish W (B1 [c].resume ∨ reset)

])
.

The Mode management style (Fig. 10) restricts the set of enabled actions
according to a set of predefined modes. It consists of one coordinator of type Mode
Manager, n parameter components of type B1 and k parameter components of
type B2. Each B2 component triggers the transition of the Mode Manager to a
specific mode. The coordinator manages which actions of the B1 components can
be executed in each mode.

Mode Manager has k states—one state per mode—a port type toMode with
cardinality k and k port types inMode with cardinality 1. Each port instance of
type toMode must be connected through a binary connector with the changeMode
port of a dedicated B2 component. B1 has k port types modeBegin with cardinal-
ity mc[0, 1]. In other words, a component instance of B1 might have any number
of port instances of types modeBegin from 0 until k. B1 has also a modeEnd port



Fig. 10: Mode management style (component behaviour is shown for k=3)

Table 1: Representative requirements for CDMS status and HK PL
ID Description

CDMS-007 The CDMS shall periodically reset both the internal and external watchdogs and contact
the EPS subsystem with a “heartbeat”.

HK-001 The CDMS shall have a Housekeeping activity dedicated to each subsystem.

HK-003 When line-of-sight communication is possible, housekeeping information shall be trans-
mitted through the COM subsystem.

HK-004 When line-of-sight communication is not possible, housekeeping information shall be writ-
ten to the non-volatile flash memory.

HK-005 A Housekeeping subsystem shall have the following states: NOMINAL, ANOMALY and
CRITICAL FAILURE.

type with cardinality k. mib stands for “mode i begin” and indicates that an
action that is enabled in mode i has begun its execution. mie stands for “mode
i end” and indicates that an action that is enabled in mode i has finished its
execution. Each inMode port instance of the Mode Manager must be connected
with the corresponding modeBegin port instances of all B1 components through
an n-ary connector. An architecture of this style is shown in Fig. 14.

The characteristic property of this style is ‘an action is only performed in a
mode where it is allowed ’, formalised by the following CTL formula:

∀i 6 k, AG
(
B1.m[i ]b → ModeManager .inMode[i]

)
.

3.2 BIP model design by architecture application

We illustrate the architecture-based approach on the CDMS status, MESSAGE
LIBRARY and HK PL components. In particular, we present the application of
Action flow, Mode management, Client-Server and Failure monitoring architec-
tures to discharge a subset of CubETH functional requirements (Tab. 1). We
additionally present the result of the composition of Client-Server and Mode
management architectures. The full list of requirements is provided in [23].

Application of Action flow architecture Requirement CDMS-007, pre-
sented in Tab. 1, describes the functionality of CDMS status. The corresponding
BIP model is shown in Fig. 11. Watchdog reset is an operand component, which
is responsible for resetting the internal and external watchdogs. CDMS status

ACTION FLOW is the coordinator of the architecture applied on Watchdog reset

that imposes the following order of actions: 1) internal watchdog reset; 2) exter-
nal watchdog reset; 3) send heartbeat and 4) receive result.



Fig. 11: Application of Action flow architecture

(a) Architecture application (b) Hexagons of Fig. 12a

Fig. 12: Application of Client-Server architecture

Application of Client-Server architecture Requirements HK-001 and HK-
003, presented in Tab. 1, suggest the application of the Client-Server architecture
on the HK PL, HK CDMS, HK EPS and HK COM housekeeping compounds (Fig. 5).
The four housekeeping compounds are the clients of the architecture. In Fig. 12a,
we show how Client-Server is applied on the HK PL process component, which
is a subcomponent of HK PL. HK PL process uses the composeMessage and
decodeMessage C/C++ functions of the MESSAGE LIBRARY component to encode
and decode information transmitted to and from the COM subsystem. Thus, the
MESSAGE LIBRARY is a server used by the HK PL process client. To enhance
readability of figures in Fig. 12a, we use hexagons to group interaction patterns
of components. The meaning of these hexagons is explained in Fig. 12b.

Application of Failure monitoring architecture Requirement HK-005, pre-
sented in Tab. 1, suggests the application of the Failure monitoring architecture
as shown in Fig. 13. The BIP model comprises the HK PL process operand
and the HK PL FAILURE MONITORING coordinator. The success port of HK PL

FAILURE MONITORING is connected with the mem res and I2C res TTC ports of
HK PL process. The failure port of HK PL FAILURE MONITORING is connected
with the I2C fail PL port of HK PL process. The HK PL process component
executes 6 actions in the following order: 1) start procedure; 2) ask Payload for
engineering data; 3) receive result from Payload or (in case of fail) abort; 4) if
line of sight communication is possible send data to COM, if line of sight commu-



Fig. 13: Application of Failure monitoring architecture

Fig. 14: Application of Mode management architecture

nication is not possible make a write request to the memory; 5) depending on
action 4 either receive COM result or memory result and 6) finish procedure.

Application of Mode management architecture Requirements HK-003
and HK-004, presented in Tab. 1, suggest the application of a Mode management
architecture with two modes: 1) TTC mode, in which line of sight communication
is possible and 2) MEMORY mode, in which line of sight communication is not
possible. The corresponding BIP model, shown in Fig. 14, comprises the HK

PL process, s15 1 and s15 2 operands and the Packet store MODE MANAGER

coordinator. During NOMINAL operation, the Payload subsystem is contacted
to retrieve engineering data. Depending on the mode of Packet store MODE

MANAGER, those data is then sent to the non-volatile memory, i.e. mem write req

transition, or directly to the COM subsystem, i.e. ask I2C TTC transition. The
mode of Packet store MODE MANAGER is triggered by the s15 1, s15 2 services.



Fig. 15: Composition of Client-Server and Mode management architectures

Composition of architectures The architecture composition was formally de-
fined in [2]. Here, we provide only an illustrative example. Combined application
of architectures to a common set of operand components results in merging the
connectors that involve ports used by several architectures. For instance, Fig. 15
shows the composition of Client-Server and Mode management architectures.
The HK PL process component is a sub-component of HK PL. The application
of the Client-Server architecture (Fig. 12) connects its port ask with the port
composeMessage of MESSAGE LIBRARY through the MES LIB-HK to I2C interface
with a binary connector. Similarly, the application of the Mode management
architecture (Fig. 14) connects the same port with the port ask I2C TTC of
Packet store MODE MANAGER with another binary connector. The composition
of the two architectures results in the two connectors being merged into the
ternary connector ask-ask I2C TTC-composeMessage (Fig. 15).

3.3 Model verification

Recall (Sect. 2) that safety properties imposed by architectures are preserved by
architecture composition [2]. Thus, all properties that we have associated to the
CubETH requirements are satisfied by construction by the complete model of
the case study example, which is presented in [23].

Architectures enforce properties by restricting the joint behaviour of the
operand components. Therefore, combined application of architectures can gen-
erate deadlocks. We have used the D-Finder tool [7] to verify deadlock-freedom
of the case study model. D-Finder applies compositional verification on BIP
models by over-approximating the set of reachable states, which allows it to
analyse very large models. The tool is sound, but incomplete: due to the above



mentioned over-approximation it can produce false positives, i.e. potential dead-
lock states that are unreachable in the concrete system. However, our case study
model was shown to be deadlock-free without any potential deadlocks. Thus, no
additional reachability analysis was needed.

3.4 Validation of the approach

The key advantage of our architecture-based approach is that the burden of ver-
ification is shifted from the final design to architectures, which are considerably
smaller in size and can be reused. In particular, all the architecture styles that we
have identified for the case study are very simple. Their correctness—enforcing
the characteristic properties—can be easily proved by inspection of the coordi-
nator behaviour. However, in order to increase the confidence in our approach,
we have conducted additional verification, using the nuXmv to verify that the
characteristic properties of the architectures are, indeed, satisfied. To this end,
we used the BIP-to-NuSMV tool5 to translate our BIP models into NuSMV—the
nuXmv input language [10].

Verification of the complete case study model with nuXmv did not succeed.
Therefore, we have repeated the procedure (BIP-to-NuSMV translation and veri-
fication using nuXmv) on individual sub-systems. All connectors that crossed sub-
system boundaries were replaced by their corresponding sub-connectors. This in-
troduces additional interactions, hence, also additional execution branches. Since
no priorities are used in the case study model, this modification does not sup-
press any existing behaviour. Finally, notice that the CTL properties enforced
by the presented architecture styles only use universal quantification (A) over ex-
ecution branches. Hence, the above approach is a sound abstraction, i.e. the fact
that the properties were shown to hold in the sub-systems immediately entails
that they also hold in the complete case study model. The complete list of CTL
formulas is provided in [23]. Table 2 presents the complexity measures of the
verification. Notice that the component count in sub-systems adds up to more
than 49, because some of the components contribute to several sub-systems.

4 Related work

The European Space Agency (ESA) advocates a model-based design flow rather
than a document-centric approach. To this end, a series of funded research ini-
tiatives has delivered interesting results that are worth mentioning. The Space
Avionics Open Interface Architecture (SAVOIR)6 project introduces the On-
board Software Reference Architecture (OSRA) [20] that imposes certain struc-
tural constraints through the definition of the admissible types of software com-
ponents and patterns of interaction among their instances. The ASSERT Set
of Tools for Engineering (TASTE)7 [30] is more appropriate for the detailed
software design and model-based code generation. In TASTE, the architectural
design is captured through a graphical editor that generates a model in the

5 http://risd.epfl.ch/bip2nusmv
6 http://savoir.estec.esa.int/
7 http://taste.tuxfamily.org/.



Table 2: Statistics of models and verification
Model Tool Components Connectors RSS Deadlocks Properties

CubETH D-Finder 49 155 - 0 -

Payload nuXmv 13 42 8851 0 9

I2C sat nuXmv 4 12 52 0 1

HK PL nuXmv 11 12 77274 0 5

HK EPS nuXmv 11 12 77274 0 5

HK COM nuXmv 11 12 77274 0 5

HK CDMS nuXmv 10 9 12798 0 5

Flash Memory nuXmv 6 15 44 0 3

CDMS status nuXmv 3 6 8 0 4

Error Logging nuXmv 2 2 2 0 1

RSS = Reachable State Space

Architecture Analysis & Design Language (AADL). However, the AADL se-
mantics is not formally defined, which inhibits it from being used for rigorous
design or formal verification purposes. The Correctness, Modeling and Perfor-
mance of Aerospace Systems (COMPASS)8 toolset relies on an AADL variant
with formally defined semantics called SLIM and provides means for a posteri-
ori formal verification [13]. A formal semantics for the AADL has been defined
in BIP, along with a translation of AADL models into the BIP language [16].
The rigorous design approach based on correct-by-construction steps is applied
in the Functional Requirements and Verification Techniques for the Software
Reference Architecture (FoReVer)9 and the Catalogue of System and Software
Properties (CSSP) projects. The former initiative advocates a top-down design
flow by imposing behavioural contracts on individual components [8], while the
latter adopts our architecture-based design flow relying on BIP.

Although a number of frameworks exist for the specification of architectures
[25, 28, 35], model design and code generation [1, 6, 12, 34], and verification [11,
17, 21], we are not aware of any that combine all these features. In particular, to
the best of our knowledge, our approach is the first application of requirement-
driven correct-by-construction design in the domain of satellite on-board soft-
ware, which relies on requirements to define a high-level model that can be
directly used to generate executable code for the satellite control [29].

BIP has previously been used for the design of control software. The appli-
cations closest to ours are the initial design of the CubETH [29] and the DALA
robot [5] control software. While the latter design followed a predefined software
architecture (in the sense of [4]), the former was purely ad-hoc. Neither was
driven by a detailed set of requirements.

In [18], the authors describe the interfacing of Temporal Logic Planning tool-
box (TuLiP) with the JPL Statechart Autocoder (SCA) for the automatic gener-
ation of control software. The TuLiP toolbox generates from statechart models

8 http://compass.informatik.rwth-aachen.de/.
9 https://es-static.fbk.eu/projects/forever/



from high-level specifications expressed as formulas of particular form in the
Linear Temporal Logic (LTL). SCA is then used to generate Python, C or C++
code from the obtained statecharts. This approach is grounded in formal se-
mantics, it provides correctness guarantees through the automatic synthesis of
control behaviour. Furthermore, the transition through statecharts allows the
use of graphical tools to visualise the controller behaviour. However, it also has
some limitations. Most notably, it focuses exclusively on the synthesis of one con-
troller component and is not easily amenable to the holistic design of complete
software systems involving concurrent components.

5 Conclusion and future work

Based on previous work [29], we have analysed the command and data man-
agement sub-system (CDMS) of the CubETH nanosatellite on-board software
(OBSW), concentrating primarily on safety and modularity of the software.
Starting from a set of informal requirements, we have used the architecture-
based approach [2] to design a BIP model of the CDMS sub-system. We have
illustrated the key steps of the BIP model design, discussed and evaluated the
verification and validation procedures.

The architecture-based approach consists in the application of a number of ar-
chitectures starting with a minimal set of atomic components. Each architecture
enforces by construction a characteristic safety property on the joint behaviour of
the operand components. The combined application of architectures is defined by
an associative and commutative operator [2], which guarantees the preservation
of the enforced properties. Since, architectures enforce properties by restricting
the joint behaviour of the operand components, combined application of archi-
tectures can lead to deadlocks. Thus, the final step of the design process consists
in verifying the deadlock-freedom of the obtained model. The key advantage of
this approach is that the burden of verification is shifted from the final design
to architectures, which are considerably smaller in size and can be reused. This
advantage is illustrated by our verification results: while model-checking of the
complete model was inconclusive, verification of deadlock-freedom took only a
very short time, using the D-Finder tool.

The main contribution of the presented work is the identification and formal
modelling—using architecture diagrams [24]—of 9 architecture styles, whereof 5
are presented in the paper (all styles are presented in the associated technical
report [23]). Architecture styles represent recurring coordination patterns: those
identified in the case study have been reused in the framework of a collaborative
project funded by ESA and can be further reused in other satellite OBSW.

The case study serves as a feasibility proof for the use of architecture-based
approach in satellite OBSW design. The modular nature of BIP allows itera-
tive design for satellites in development and component reuse for subsequent
missions. The automatic generation of C++ code provided by the BIP tool-set
enables early prototyping and validation of software functionality even before
the hardware platform is completely defined, also contributing to portability of
designs. Indeed, the only non-trivial action required in order to use a different
target platform is to recompile the BIP engine.



This case study opens a number of directions for future work. The most im-
mediate consists in studying optimisation techniques, such as [27] to reduce the
complexity overhead of the automatically generated models. In the framework
of the ESA project, we are currently developing a tool for the automatic ap-
plication and composition of architectures and a GUI tool for ontology-based
specification of user requirements. We plan to integrate these, together with the
BIP framework, into a dedicated tool-chain for OBSW design, providing require-
ment traceability and early validation. We also plan to expand our taxonomy
of architecture styles and study the application of parametrised model check-
ing techniques for their formal verification. Finally, it would be interesting to
extend the architecture-based approach to real-time systems. Composability of
real-time architectures will require a notion of non-interference similar to that
used to ensure the preservation of liveness properties in [2].

Acknowledgements The work presented in this paper was partially funded
by the ESA CSSP project (contract no. 4000112344/14/NL/FE). We would like
to thank Andreas Jung, Marcel Verhoef and Marco Panunzio for the instructive
discussions in the framework of this project, which have contributed to the clar-
ification of some of the ideas realised in this case study. Finally, we are deeply
grateful to the anonymous reviewers for their constructive comments.

References

1. F. Arbab. Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14(3):329–366, 2004.

2. P. Attie et al. A general framework for architecture composability. Formal Aspects
of Computing, 18(2):207–231, April 2016.

3. C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

4. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI
Series in Soft. Eng. Addison-Wesley Professional, 3rd edition, October 2012.

5. A. Basu et al. Incremental component-based construction and verification of a
robotic system. In ECAI 2008, pages 631–635. IOS Press, 2008.

6. A. Basu et al. Rigorous component-based system design using the BIP framework.
IEEE Software, 28(3):41–48, May 2011.

7. S. Bensalem et al. D-Finder 2: Towards efficient correctness of incremental design.
In NFM’11, volume 6617 of LNCS, pages 453–458. Springer, 2011.

8. A. Benveniste et al. Contracts for system design. Research Report RR-8147,
INRIA, November 2012.

9. S. Bliudze and J. Sifakis. The algebra of connectors—structuring interaction in
BIP. IEEE Transactions on Computers, 57(10):1315–1330, 2008.

10. S. Bliudze et al. Formal verification of infinite-state BIP models. In ATVA’15,
volume 9364 of LNCS, pages 326–343. Springer, November 2015.

11. R. Bloem et al. RATSY – A new requirements analysis tool with synthesis. In
CAV’10, volume 6174 of LNCS, pages 425–429. Springer, 2010.

12. J.-L. Boulanger et al. SCADE: Language and Applications. Wiley-IEEE Press, 1st
edition, 2015.

13. M. Bozzano et al. Spacecraft early design validation using formal methods. Reli-
ability Engineering & System Safety, 132:20–35, 2014.



14. C. Brandon and P. Chapin. A SPARK/Ada CubeSat control program. In Reliable
Software Technologies, volume 7896 of LNCS, pages 51–64. Springer, 2013.

15. California Polytechnic State University. CubeSat Design Specification Rev. 13,
2014. Available online: http://www.cubesat.org/s/cds_rev13_final2.pdf.

16. Y. Chkouri et al. Translating AADL into BIP — Application to the verification
of real-time systems. In MODELS 2008, pages 5–19. Springer, 2009.

17. A. Cimatti, M. Dorigatti, and S. Tonetta. OCRA: A tool for checking the refine-
ment of temporal contracts. In ASE 2013, pages 702–705, November 2013.

18. S. Dathathri et al. Interfacing TuLiP with the JPL Statechart Autocoder: Initial
progress toward synthesis of flight software from formal specifications. In IEEE
AeroSpace, 2016.

19. E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

20. A. Jung, M. Panunzio, and J.-L. Terraillon. On-board software reference architec-
ture. Technical Report TEC-SWE/09-289/AJ, SAVOIR Advisory Group, 2010.

21. J.-S. Kim and D. Garlan. Analyzing architectural styles with Alloy. In ROSATEA
’06, pages 70–80. ACM, 2006.

22. A. Mavridou et al. Configuration logics: Modelling architecture styles. In FACS
2015, volume 9539 of LNCS, pages 256–274. Springer, 2015.

23. A. Mavridou et al. Architecture-based Design: A Satellite On-Board Soft-
ware Case Study. Technical Report 221156, EPFL, September 2016.
https://infoscience.epfl.ch/record/221156.

24. A. Mavridou et al. Architecture diagrams: A graphical language for architecture
style specification. In 9th ICE,, volume 223 of EPTCS, pages 83–97, 2016.

25. N. Medvidovic and R.N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software En-
gineering, 26(1):70–93, 2000.

26. C. Mitchell et al. Development of a modular command and data handling architec-
ture for the KySat-2 CubeSat. In 2014 IEEE Aerospace Conference, pages 1–11.
IEEE, March 2014.

27. M. Noureddine et al. Reduction and Abstraction Techniques for BIP. In FACS
2014, volume 8997 of LNCS, pages 288–305. Springer, 2014.

28. M. Ozkaya and C. Kloukinas. Are we there yet? Analyzing architecture description
languages for formal analysis, usability, and realizability. In SEAA 2013, pages
177–184. IEEE, 2013.

29. M. Pagnamenta. Rigorous software design for nano and mi-
cro satellites using BIP framework. Master’s thesis, EPFL, 2014.
https://infoscience.epfl.ch/record/218902.

30. M. Perrotin et al. TASTE: A Real-Time Software Engineering Tool-Chain
Overview, Status, and Future, pages 26–37. Springer, 2012.

31. S. Rossi et al. CubETH magnetotorquers: Design and tests for a CubeSat mission.
In Advances in the Astronautical Sciences, volume 153, pages 1513–1530, 2015.

32. J. Sifakis. Rigorous system design. Foundations and Trends R© in Electronic Design
Automation, 6(4):293–362, 2012.

33. S. C. Spangelo et al. Model based systems engineering (MBSE) applied to Radio
Aurora Explorer (RAX) CubeSat mission operational scenarios. In 2013 IEEE
Aerospace Conference, pages 1–18. IEEE, mar 2013.

34. SysML. http://www.sysml.org.
35. E. Woods and R. Hilliard. Architecture description languages in practice session

report. In WICSA05, pages 243–246. IEEE Computer Society, 2005.


