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Abstract

We study a framework for the specification of architecture styles as families
of architectures involving a common set of types of components and coordina-
tion mechanisms. The framework combines two logics: 1) interaction logics for
the specification of architectures as generic coordination schemes involving a
configuration of interactions between typed components; and 2) configuration
logics for the specification of architecture styles as sets of interaction configura-
tions. The presented results build on previous work on architecture modelling
in BIP. We show how propositional interaction logic can be extended into a
corresponding configuration logic by adding new operators on sets of interac-
tion configurations. In addition to the usual set-theoretic operators, configu-
ration logic is equipped with a coalescing operator + to express combination
of configuration sets. We provide a complete axiomatization of propositional
configuration logic as well as decision procedures for checking that an architec-
ture satisfies given logical specifications. To allow genericity of specifications,
we study first-order and second-order extensions of the propositional configu-
ration logic. First-order logic formulas involve quantification over component
variables. Second-order logic formulas involve additional quantification over sets
of components. We provide several examples illustrating the application of the
results to the characterisation of various architecture styles. We also provide
an experimental evaluation using the Maude rewriting system to implement the
decision procedure for the propositional flavour of the logic.

Keywords: Architecture Styles, Coordination, Configuration Logics,
Component Interaction, BIP

1. Introduction

Architectures are common means for organizing coordination between com-
ponents in order to build complex systems and to make them manageable. They
depict generic coordination principles between components and embody design
rules that can be understood by all. Architectures allow thinking on a higher
plane and avoiding low-level mistakes. They are a means for ensuring global
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Figure 1: Master/Slave architectures.

coordination properties between components and thus, achieving correctness by
construction [1].

Using architectures largely accounts for our ability to master complexity and
develop systems cost-effectively. System developers extensively use reference
architectures ensuring both functional and non-functional properties, e.g. fault-
tolerant, time-triggered, adaptive, security architectures.

Many languages have been proposed for architecture description such as
architecture description languages, e.g. [2], coordination languages, e.g. [3]
and configuration languages [4]. All these works rely on the distinction between
behaviour of individual components and their coordination in the overall system
organization. Informally architectures are characterized by the structure of
the interactions between a set of typed components. The structure is usually
specified as a relation, e.g. connectors between component ports.

The field of software architecture remains relatively immature [5]. A lot of
foundational issues remain open. One is the distinction between architectures
and their properties. Architecture styles characterize not a single architecture
but a family of architectures sharing common characteristics such as the type of
the involved components and the topology induced by their coordination struc-
ture. Simple examples of architecture styles are Pipeline, Ring, Master/Slave,
Pipe and Filter. For instance, Master/Slave architectures integrate two types
of components, masters and slaves such that each slave can interact only with
one master. Figure 1 depicts four Master/Slave architectures involving two
master components M1, M2 and two slave components S1, S2. Their com-
munication ports are, respectively, m1, m2 and s1, s2. The architectures corre-
spond to interaction configurations:

{
{s1,m1}, {s2,m2}

}
,
{
{s1,m1}, {s2,m1}

}
,{

{s1,m2}, {s2,m1}
}

and
{
{s1,m2}, {s2,m2}

}
. The set {si,mj} denotes an in-

teraction between ports si and mj . A configuration is a non-empty set of inter-
actions. The Master/Slave architecture style characterizes all the Master/Slave
architectures for arbitrary numbers of masters and slaves.

The paper studies the relation between architectures and architecture styles.
This relation is similar to the relation between programs and their specifications.
As program specifications can be expressed by using logics, e.g. temporal logics,
architecture styles can be specified by configuration logics characterizing classes
of architectures.
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(a) I(P ) = 2P (b) C(P ) = 2I(P )\{∅} (c) CS(P ) = 2C(P )\{∅}

Figure 2: Lattices of interactions (a), configurations (b) and configuration sets
(c) for P = {p, q}.

First, we propose a propositional configuration logic (PCL) whose formulas
represent, for a given set of components, the allowed configuration sets. Then,
we introduce first-order and second-order logics as extensions of the proposi-
tional logic. These allow genericity of description as they are defined for types
of components.

The proposed formalism is declarative and has some similarities with lan-
guages used for a feature-oriented analysis of architectures, such as OCL [6]. It
differs from formalisms used to describe the possible configurations of a dynamic
architecture by using graph grammars [7, 8].

The meaning of a configuration logic formula is a configuration set. A con-
figuration on a set of components represents a particular architecture. Thus,
configuration logic formulas describe architecture sets. The definition of con-
figuration logics requires considering three hierarchically structured semantic
domains:

The lattice of interactions. An interaction a is a non-empty subset of P ,
the set of ports of the integrated components. Its execution implies the
atomic synchronization of all component actions (at most one action per
component) associated with the ports of a.

The lattice of configurations. Configurations are non-empty sets of interac-
tions characterizing architectures.

The lattice of configuration sets. Sets of configurations are properties de-
scribed by the configuration logic.

We aim at describing systems of interacting components: in each configura-
tion there must be at least one interaction and each of the interactions should
involve at least one component. Therefore, we only consider non-empty inter-
actions and configurations.

Figure 2 shows the three lattices for P = {p, q}. For the lattice of configu-
ration sets, we show only how it is generated.

This work consistently extends results on modelling architectures by using
propositional interaction logic [9, 10, 11], which are Boolean algebras on the set
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of ports P of the composed components. Their semantics is defined via a sat-
isfaction relation |=i between interactions and formulas. Each interaction logic
formula φ represents exactly the set of interactions corresponding to Boolean
valuations of P satisfying φ.

Configuration logic is a powerset extension of interaction logic. Its formulas
are generated from the formulas of the propositional interaction logic by using
the operators union, intersection and complementation, as well as a coalescing
operator +. To avoid ambiguity, we refer to the formulas of the configuration
logic that syntactically are also formulas of the interaction logics as interaction
formulas. The semantics of the configuration logic is defined via a satisfaction
relation |= between configurations γ = {a1, ..., an} and formulas. An interaction
formula f represents any configuration consisting of interactions satisfying it;
that is γ |= f if, for all a ∈ γ, a |=i f . For set-theoretic operators we take
the standard meaning. The meaning of formulas of the form f1 + f2 is all
configurations γ that can be decomposed into γ1 and γ2 (γ = γ1∪γ2) satisfying,
respectively, f1 and f2. The formula f1 + f2 represents configurations obtained
as the union of configurations of f1 with configurations of f2.

Despite its apparent complexity, configuration logic is easy to use because
of its stratified construction. From interaction logic it inherits the Boolean
connectives of conjunction (∧), disjunction (∨) and negation (̄ ). It also uses
the set-theoretic operations of union (t ), complementation (¬ ) and coalescing
(+). It can be shown that intersection coincides with conjunction.

The following simple example illustrates the difference between interaction
and configuration logic. For P = {p, q, r, s}, the monomial p ∧ q ∧ r specifies
in interaction logic the interactions {p, q} and {p, q, s}. In configuration logic,
it specifies all the configurations built from these interactions, i.e.

{
{p, q}

}
,{

{p, q, s}
}

and
{
{p, q}, {p, q, s}

}
. The formula p∧ q ∧ r + true characterizes all

the configurations of the form γ = γ1 ∪ γ2, where γ1 satisfies p ∧ q ∧ r and γ2

is an arbitrary configuration.
Formulas of the form f + true, denoted ∼ f , present a particular interest

for writing specifications. Their characteristic configuration set is the largest
set containing configurations satisfying f . The formula ∼ f admits the modal
interpretation “possible f”. We show that ¬ f = ∼ f . This means that the
complement of the characteristic configuration set of f is the set “possible f ”.
Dually, the complement of f is “possible f”.

We provide a full axiomatization of the propositional configuration logic and
a normal form similar to the disjunctive normal form in Boolean algebras. The
existence of such normal form implies the decidability of formula equality and
satisfaction of a formula by an architecture model.

To allow genericity of specifications, we study first-order and second-order
extensions of the propositional configuration logic. First-order logic formulas
involve quantification over component variables. Second-order logic formulas
involve additionally quantification over sets of components. For instance, the
first-order formula ∀c :Filter. ∃c′ :Pipe. ∼(c.in ∧ c′.out) expresses the fact that
for any component c of type Filter there exists a component c′ of type Pipe
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such that the port in of c interacts with the port out of c′. Second-order logic
is needed to express some interesting topological properties, e.g. the existence
of cycles of interactions.

The paper extends the results of [12] as follows:

• We introduce and study three classes of PCL formulas: the downward-
closed, upward-closed and ∪-closed formulas.

• We define a full normal form, which is unique for any PCL formula.

• We describe two methods for checking satisfaction of formulas.

• Finally, we provide full proofs of all results and additional examples that
illustrate the specification of architecture styles.

The paper is structured as follows. Section 2 presents basic facts about inter-
action logic. Section 3 presents the propositional configuration logic. Section 4
includes basic theorems and properties of the propositional configuration logic,
as well as the results about the normal form and the decision method. Sec-
tion 5 introduces an architecture specification methodology. Section 6 presents
first-order and second-order logics and their application to the specification of
architecture styles. Section 7 presents the results of an implementation of the
decision procedure in the Maude rewriting system. Section 8 presents an anal-
ysis of related work. Section 9 concludes the paper and discusses directions for
future work.

2. Propositional interaction logic

The propositional interaction logic (PIL), studied in [9, 10], is a Boolean
logic used to characterize the interactions between components on a global set
of ports P . In this section, we present only the results needed to introduce the
propositional configuration logic (Section 3). Below, we assume that the set P
is given and finite.

Definition 2.1. An interaction is a non-empty set of ports a ⊆ P .

Syntax. The propositional interaction logic is defined by the grammar:

φ ::= true | p | φ | φ ∨ φ , with any p ∈ P .

Conjunction is defined as usual: φ1∧φ2
def
= (φ1 ∨ φ2 ). To simplify the notation,

we omit it in monomials, e.g. writing pqr instead of p ∧ q ∧ r.

Semantics. The meaning of a PIL formula φ is defined by the following satis-
faction relation. Let a ∈ 2P be an interaction. We define: a |=i φ iff φ evaluates
to true for the valuation p = true, for all p ∈ a and p = false, for all p 6∈ a. Thus,
the semantic domain of PIL is the lattice of configurations C(P ) = 2I(P )\{∅},
where I(P ) = 2P (Figure 2).
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The operators meet the usual Boolean axioms and the additional axiom∨
p∈P p = true meaning that interactions are non-empty sets of ports.

An interaction a can be associated to a characteristic monomial ma =∧
p∈a p ∧

∧
p 6∈a p such that a′ |=i ma iff a′ = a.

Example 2.2. Consider a system consisting of three components: a sender
with port p and two receivers with ports q and r, respectively. We can express
the following interaction patterns:

• Strong synchronization between the components is specified by a single in-
teraction involving all components. In PIL it is represented by the mono-
mial pqr.

• Broadcast defines weak synchronization among the sender and any number
of the receivers:

{
{p}, {p, q}, {p, r}, {p, q, r}

}
, represented by the formula

p, which can be expanded to pq r ∨ pqr ∨ pqr ∨ pqr.

• Atomic broadcast ensures that either all or none of the receivers are in-
volved in the interaction:

{
{p}, {p, q, r}

}
and can be characterised by the

formula pq r ∨ pqr.

3. Propositional configuration logic

Syntax. The propositional configuration logic (PCL) is an extension of PIL
defined by the grammar:

f ::= true | φ | ¬ f | f + f | f t f , (1)

where φ is a PIL formula; ¬ , + and t are, respectively, the complementation,
coalescing and union operators.

Additionally, we define the usual notation for intersection and implication:

f1 u f2
def
= ¬ (¬ f1 t ¬ f2) ,

f1 ⇒ f2
def
= ¬ f1 t f2 .

The language of PCL formulas is generated from PIL formulas by using
union, coalescing and complementation operators. The binding strength of the
operators is as follows (in the decreasing order): PIL negation, complementa-
tion, PIL conjunction, PIL disjunction, coalescing, union.

Henceforth, to avoid confusion, we refer as interaction formulas to the subset
of PCL formulas that syntactically are also PIL formulas. Furthermore, we will
use Latin letters f, g, h for general PCL formulas and Greek letters φ, ψ, ξ for
interaction formulas. Interaction formulas inherit all axioms of PIL.

Semantics. Let P be a set of ports. The semantic domain of PCL is the lattice
of configuration sets CS(P ) = 2C(P )\{∅} (Figure 2(c)). The meaning of a PCL
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formula f is defined by the following satisfaction relation. Let γ ∈ C(P ) be a
non-empty configuration. We define:

γ |= true , always, (2)

γ |= φ , if ∀a ∈ γ, a |=i φ, where φ is an interaction formula and
|=i is the satisfaction relation of PIL,

(3)

γ |= f1 + f2 , if there exist γ1, γ2 ∈ C(P ) \ {∅}, such that γ = γ1 ∪ γ2,
γ1 |= f1 and γ2 |= f2,

(4)

γ |= f1 t f2 , if γ |= f1 or γ |= f2, (5)

γ |= ¬ f , if γ 6|= f (i.e. γ |= f does not hold). (6)

In particular, the meaning of an interaction formula φ in PCL is the set
2Ia \ {∅}, with Ia = {a ∈ I(P ) | a |=i φ}, of all configurations involving any
number of interactions satisfying φ in PIL.

The semantics of intersection and implication can also be stated directly as
follows:

γ |= f1 u f2 , if γ |= f1 and γ |= f2, (7)

γ |= f1 ⇒ f2 , if γ 6|= f1 or γ |= f2. (8)

We say that two formulas are equivalent f1 ≡ f2 iff, for all γ ∈ C(P ) such
that γ 6= ∅, γ |= f1 ⇔ γ |= f2.

We denote by |f | def= {γ ∈ C(P ) \ {∅} | γ |= f} the characteristic configura-
tion set of the formula f . Clearly f1 ≡ f2 iff |f1| = |f2|.

Proposition 3.1. Equivalence ≡ is a congruence w.r.t. all PCL operations.

Proof. In order to prove the proposition, it is sufficient to show that for each
binary operator op from the PCL grammar (1), the characteristic configuration
set of the formula f1 op f2 can be expressed as a function of characteristic config-
uration sets of f1 and f2. In other words, we have to exhibit a binary operator
op′ on sets, such that |f1 op f2| = op′(|f1|, |f2|). Similarly, we have to exhibit
a unary operator on sets, expressing the characteristic configuration set of the
formula ¬ f in terms of the characteristic configuration set of f .

Clearly, the set operators corresponding to ¬ and t are, respectively, com-
plementation with respect to C(P ) \ {∅} and set union. For the coalescing
operator +, it is easy to see that, defining

op′+(X,Y )
def
= {γ1 ∪ γ2 | γ1 ∈ X, γ2 ∈ Y } ,

we have |f1 + f2| = op′+
(
|f1|, |f2|

)
.

Example 3.2. The Master/Slave architecture style for two masters M1,M2

and two slaves S1, S2 with ports m1, m2, s1, s2, respectively, characterizes the
four configurations of Figure 1 as the union:⊔

i,j∈{1,2}

(φ1,i + φ2,j),
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where φi,j = si ∧ mj ∧ si′ ∧ mj′ for i 6= i′, j 6= j′ are monomials defining a
binary interaction between ports si and mj , respectively.

This formula can be alternatively written as a coalescing of interactions for
each slave:

(φ1,1 t φ1,2) + (φ2,1 t φ2,2).

Any configuration satisfying this formula consists of two parts, which satisfy,
respectively, the left and the right terms of the coalescing operator. The left term
requires either an interaction {s1,m1} or an interaction {s1,m2}. Similarly,
the right term requires exactly one interaction among {s2,m1} and {s2,m2}.
Therefore, there are four possible pairs of interactions corresponding to the four
configurations of Figure 1.

4. Properties of PCL

In this section, we present some properties of PCL. In particular, we show
that PCL is a conservative extension of PIL (Section 4.1). We also present the
key properties of PCL operators (Sections 4.2–4.7), which allow us to define
a normal form (Section 4.8), a sound and complete axiomatization of PCL
(Section 4.9) and decision procedures for the equality and satisfaction of PCL
formulas (Subsection 4.10).

4.1. Conservative extension

Notice that from the PCL semantics of interaction formulas, it follows im-
mediately that PCL is a conservative extension of PIL. Below we extend the
PIL conjunction and disjunction operators to PCL.

PCL intersection is a conservative extension of PIL conjunction.

Proposition 4.1. φ1 ∧ φ2 ≡ φ1 u φ2, for any interaction formulas φ1, φ2.

Proof. For any two interaction formulas φ1 and φ2, φ1 ∧ φ2 is also an inter-
action formula. Hence, by (3), γ |= φ1 ∧ φ2 iff γ ⊆ {a | a |=i φ1 ∧ φ2} =
{a | a |=i φ1 ∧ a |=i φ2}. By (7), γ |= φ1 u φ2 iff γ |= φ1 and γ |= φ2, that
is γ ⊆ {a | a |=i φ1}∩ {a | a |=i φ2} = {a | a |=i φ1 ∧ a |=i φ2}. Since characteris-
tic configuration sets of formulas coincide, φ1 ∧ φ2 ≡ φ1 u φ2.

Thus, conjunction and intersection coincide on interaction formulas. In the
rest of the paper, we use the same symbol ∧ to denote both operators.

Disjunction can be conservatively extended to PCL with the following se-
mantics: for any PCL formulas f1 and f2,

γ |= f1 ∨ f2 , if γ |= f1 t f2 t f1 + f2. (9)

Proposition 4.2. For any interaction formulas φ1 and φ2 and any γ ∈ C(P )
such that γ 6= ∅, we have γ |= φ1 ∨ φ2 iff ∀a ∈ γ, a |=i φ1 ∨ φ2.
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Proof. The PCL semantics defines γ |= φ1 ∨ φ2 if γ |= φ1 or γ |= φ2 or there
exist γ1 and γ2, such that γ = γ1 ∪ γ2, γ1 |= φ1 and γ2 |= φ2, where γ |= φ if for
all a ∈ γ, a |=i φ. Thus, in all three cases all interactions in γ either satisfy φ1

or φ2 and consequently, for all a ∈ γ, a |=i φ1 ∨ φ2. Conversely, if γ consists of
interactions a, such that a |=i φ1 ∨ φ2, these interactions can be split into two
possibly empty sets γ1 and γ2 such that for all a ∈ γj , where j ∈ [1, 2], a |=i φj .
If one of these groups is empty then the second one contains all interactions
and γ |= φj . Otherwise, γ1 |= φ1 and γ2 |= φ2, where γ1 ∪ γ2 = γ. In all cases
γ |= φ1 ∨ φ2.

Union, complementation and conjunction have the standard set-theoretic
meaning.

Proposition 4.3. The operators t , ¬ , ∧ satisfy the usual axioms of proposi-
tional logic.

Proof. The proof is immediate from the semantics (5), (6) and (7).

4.2. The coalescing operator

Notice that coalescing + combines configurations, as opposed to union t ,
which combines configuration sets. Coalescing has the following properties:

Proposition 4.4. + is associative, commutative and has an absorbing element

false
def
= ¬true.

Coalescing distributes over union, as shown in the following proposition:

Proposition 4.5. For any formulas f, f1, f2, the following distributivity result
holds:

f + (f1 t f2) ≡ f + f1 t f + f2 .

Proof. If γ |= f + (f1 t f2) then there exist γ1 and γ2, such that γ1 ∪ γ2 = γ,
γ1 |= f and γ2 |= f1 t f2. If γ2 |= f1 then γ |= f + f1. Otherwise, γ2 |= f2 and
γ |= f + f2. Combining these two cases we obtain γ |= f + f1 t f + f2.

If γ |= f + f1 t f + f2 then either γ |= f + f1 or γ |= f + f2. In the first case
there exist γ1 and γ2, such that γ1∪γ2 = γ, γ1 |= f and γ2 |= f1. Since γ2 |= f1

implies γ2 |= f1 t f2, γ |= f + (f1 t f2). The second case is similar.

Associativity of coalescing and union, together with the distributivity of
coalescing over union, immediately imply the following generalisation of the
extended semantics of disjunction (9).

Corollary 4.6. For any set of formulas {fi}i∈I , we have∨
i∈I

fi ≡
⊔
∅6=J⊆I

∑
j∈J

fj ,

where
∑
j∈J fj denotes the coalescing of formulas fj, for all j ∈ J .
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Example 4.7. A configuration γ satisfying the formula f = f1 ∨ f2 ∨ f3 can
be partitioned into γ = γ1 ∪ γ2 ∪ γ3, such that γi |= fi. However, by the
semantics of disjunction, some γi can be empty. On the contrary, the semantics
of coalescing requires all elements of such partition to be non-empty. Hence, in
order to rewrite f without the disjunction operator, we take the union of all
possible coalescings of f1, f2 and f3. Thus, we have f ≡ f1 t f2 t f3 t (f1 +
f2) t (f1 + f3) t (f2 + f3) t (f1 + f2 + f3).

The following proposition shows distributivity results involving disjunction.
In particular, it shows that disjunction distributes over union and coalescing
distributes over disjunction.

Proposition 4.8. For any formulas f, f1, f2, the following distributivity results
hold:

1. f ∨ (f1 t f2) ≡ (f ∨ f1) t (f ∨ f2),

2. f + (f1 ∨ f2) ≡ (f + f1) ∨ (f + f2).

Proof. We have

f ∨ (f1 t f2) ≡ f t (f1 t f2) t f + (f1 t f2)

≡ f t f1 t f + f1 t f t f2 t f + f2 ≡ (f ∨ f1) t (f ∨ f2)

and

f + (f1 ∨ f2) ≡ f + (f1 t f2 t f1 + f2)

≡ f + f1 t f + f2 t f + f1 + f2 ≡ (f + f1) ∨ (f + f2) .

The following example shows that coalescing does not distribute over con-
junction.

Example 4.9. Let P = {p, q} and consider f = p t q, f1 = p and f2 = q. We
then have (f+f1) ∧ (f+f2) =

(
(p t q)+p

)
∧
(
(p t q)+q

)
and f+(f1 ∧ f2) =

(p t q) + (p ∧ q). The configuration
{
{p}, {q}

}
satisfies the former, but not the

latter.

Proposition 4.10. For any formulas f, f1, f2, the following implication is true:

f + (f1 ∧ f2)⇒ (f + f1) ∧ (f + f2) .

Proof. If γ |= f + (f1 ∧ f2) then there exist γ1 and γ2, such that γ = γ1 ∪ γ2,
γ1 |= f , γ2 |= f1 and γ2 |= f2. Hence, we have both γ |= f + f1 and γ |=
f + f2.

In general, neither conjunction distributes over coalescing nor coalescing over
conjunction. To provide more distributivity results, we introduce the following
classes of PCL formulas.
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Definition 4.11.

• A formula f is downward-closed iff γ |= f implies ∀γ1 ⊆ γ, γ1 |= f .

• A formula f is upward-closed iff γ |= f implies ∀γ1 ⊇ γ, γ1 |= f .

• A formula f is ∪-closed iff γ1 |= f and γ2 |= f implies γ1 ∪ γ2 |= f .

Example 4.12.

• p t q is downward-closed,

• ¬ (p t q) is upward-closed,

• p ∨ q is ∪-closed.

The following propositions show properties of these classes and their rela-
tions.

Proposition 4.13. If f and g are downward- (resp. upward-) closed then f t g
and f ∧ g are also downward- (resp. upward-) closed.

Proof. In the first two parts of the proof formulas f and g are downward-closed,
while in the last two parts they are upward-closed.

If γ |= f t g then γ |= f or γ |= g. If γ |= f then ∀γ1 ⊆ γ, γ1 |= f . Thus,
γ1 |= f t g. The case γ |= g is similar.

If γ |= f ∧ g then γ |= f and γ |= g. If γ |= f then ∀γ1 ⊆ γ, γ1 |= f and
similarly for g. Thus, γ1 |= f ∧ g.

If γ |= f t g then γ |= f or γ |= g. If γ |= f then ∀γ1 ⊇ γ, γ1 |= f . Thus,
γ1 |= f t g. The case γ |= g is similar.

If γ |= f ∧ g then γ |= f and γ |= g. If γ |= f then ∀γ1 ⊇ γ, γ1 |= f and
similarly for g. Thus, γ1 |= f ∧ g.

Proposition 4.14. For any formula f , the formula f + true is upward-closed.

Proof. Let γ |= f + true. There exists γ1 ⊆ γ such that γ1 |= f . For any γ2 ⊇ γ
holds γ2 ⊇ γ1 and γ2 |= f+true, since true is satisfied by any configuration.

Proposition 4.15. If f is upward-closed then f ≡ f + true.

Proof. If γ |= f then γ ∪ γ = γ |= f + true.
If γ |= f + true then there exists γ1 ⊆ γ such that γ1 |= f . Since f is upward-
closed, for any γ ⊇ γ1, holds γ |= f .

Proposition 4.16. If f and g are ∪-closed then f + g is also ∪-closed.

Proof. If γ1 |= f + g and γ2 |= f + g then there exist γ1,1, γ1,2, γ2,1 and γ2,2,
such that γi = γi,1 ∪ γi,2, γi,1 |= f and γi,2 |= g for i ∈ {1, 2}. Since f and g are
∪-closed, γ1,1∪γ2,1 |= f and γ1,2∪γ2,2 |= g and consequently, γ1∪γ2 |= f+g.

The following proposition shows that the complement of a downward-closed
formula is an upward-closed formula.
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Proposition 4.17. A formula f is downward-closed iff the formula ¬ f is
upward-closed.

Proof. Assume that f is downward-closed and ¬ f is not upward-closed. The
latter means that there exist γ1 and γ2 ⊇ γ1 such that γ1 |= ¬ f and γ2 6|= ¬ f .
This is equivalent to γ1 6|= f and γ2 |= f , which contradicts the fact that f is
downward-closed.

Conversely, assume that ¬f is upward-closed and f is not downward-closed.
The latter means that there exist γ1 and γ2 ⊆ γ1 such that γ1 |= f and γ2 6|= f .
This is equivalent to γ1 6|= ¬ f and γ2 |= ¬ f , which contradicts the fact that
¬ f is upward-closed.

Proposition 4.18. A formula is ∪-closed and downward-closed iff it is an in-
teraction formula.

Proof. Let φ be an interaction formula. Consider two configurations γ1 |= φ
and γ2 |= φ. Any γ′ ⊆ γ1 contains only interactions from γ1, thus, γ′ |= φ. For
all a ∈ γ1 ∪ γ2 holds a |=i φ, consequently γ1 ∪ γ2 |= φ. This shows that φ is
∪-closed and downward-closed.

Conversely, suppose that f is a ∪-closed and downward-closed formula and
consider its characteristic configuration set |f | = {γ ∈ C(P ) \ {∅} | γ |= f}. Let
I =

⋃
γ∈|f | γ be the set of all interactions belonging to configurations satisfying

f . Since f is downward-closed, {a} |= f for any a ∈ I. By the definition of
∪-closed formulas, the union of models is also a model. Thus, γ |= f , for any
∅ 6= γ ⊆ I. Consequently, |f | = {γ ⊆ I | γ 6= ∅} and f =

∨
a∈I ma, where ma

denotes the characteristic monomial of the interaction a.

Thus, interaction formulas are represented by formulas that are both down-
ward-closed and ∪-closed. Figure 3 shows the correspondence between the PIL
lattice and the PCL lattice. Notice that, in general, φ t φ′ is not ∪-closed and
φ + φ′ is not downward-closed. For example, for P = {p, q}, f1 = pq t p q is
not ∪-closed, since {{p}} and {{q}} are models of f1 but {{p}, {q}} is not a
model of f1. Similarly, f2 = pq + p q is not downward-closed, since {{p}, {q}}
is a model of f2 but neither {{p}} nor {{q}} is.

As shown before, conjunction does not distribute over coalescing. Neverthe-
less, it distributes for interaction formulas as shown in the following proposition.

Proposition 4.19. For any formulas f1, f2 and interaction formula φ, we have:

φ ∧ (f1 + f2) ≡ (φ ∧ f1) + (φ ∧ f2) .

Proof. If γ is a configuration satisfying φ ∧ (f1 +f2) then γ |= φ and there exist
γ1, γ2, such that γ = γ1 ∪ γ2, γ1 |= f1 and γ2 |= f2. Since φ is an interaction
formula, it is also downward-closed (Proposition 4.18). Thus, γ |= φ implies
γ1 |= φ and γ2 |= φ. Consequently, γ1 |= φ ∧ f1 and γ2 |= φ ∧ f2.

Conversely, if γ is a configuration satisfying (φ∧ f1)+(φ∧ f2) then γ = γ1∪γ2

such that γ1 |= f1, γ1 |= φ, γ2 |= f2 and γ2 |= φ. Since φ is ∪-closed, γ |= φ and
consequently, γ |= φ ∧ (f1 + f2).
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Figure 3: Correspondence between the lattices of PIL and PCL.

Notice that coalescing is not idempotent in general, as it is shown in the
following example.

Example 4.20. (p t q)+(p t q) 6≡ p t q. The configuration {{p}, {q}} satisfies
(p t q) + (p t q), but it does not satisfy p t q .

Nevertheless, coalescing is idempotent on ∪-closed formulas.

Proposition 4.21. f + f ≡ f for any ∪-closed formula f .

Proof. The implication γ |= f ⇒ γ |= f + f for any γ is trivial.
Conversely, consider a configuration γ |= f + f . By the semantics of coa-

lescing, there exist γ1, γ2, such that γ = γ1 ∪ γ2, γ1 |= f and γ2 |= f . Since f is
∪-closed, γ1 ∪ γ2 |= f . Consequently, γ |= f .

4.3. The closure operator

Coalescing with true presents a particular interest for writing specifications,
since they allow adding any set of interactions to the configurations satisfying
f . Notice that true is not a neutral element of coalescing: only the implication
f ⇒ f + true holds in general.

Definition 4.22. For any formula f , the closure operator ∼ is defined by

putting ∼f def
= f + true. We give ∼ the same binding power as ¬ .

Although closure is not a primitive operator of PCL, it is easy to see that
the semantics of closure can be directly defined by putting γ |= ∼ f iff exists
γ1 ⊆ γ such that γ1 |= f .

Example 4.23. For P = {p, q, r} the formula f characterizing all the configu-
rations such that p must interact with both q and r, is f = pq + pr + true = ∼
(pq+pr). Notice that the only constraint imposed by the formula f is that con-
figurations that satisfy it must contain an interaction pqr or both interactions
pq and pr. Configurations satisfying f can contain any additional interactions.

13



Proposition 4.24. ∼∼f ≡ ∼f for any formula f .

Proof. ∼∼f ≡ ∼f + true ≡ f + true+ true ≡ f + true ≡ ∼f .

Notice that, as an immediate corollary of Proposition 4.15, the closure of
any formula is upward-closed. The following proposition shows that ∼f is the
smallest upward-closed formula greater than f in the lattice of PCL formulas
ordered by implication.

Proposition 4.25. For any formula f , holds f ⇒∼ f . Furthermore, for any
upward-closed formula f ′, such that f ⇒ f ′, holds ∼f ⇒ f ′.

Proof. f ⇒ ∼f follows directly from the semantics of the ∼ operator. Assume
that there exists an upward-closed f ′, such that f ⇒ f ′, and a configuration γ,
such that γ |=∼ f and γ 6|= f ′. Since γ |=∼ f there exists γ1 ⊆ γ such that
γ1 |= f . Since f ⇒ f ′, we have γ1 |= f ′. The formula f ′ is upward-closed,
therefore γ1 |= f ′ implies γ |= f ′, which contradicts our assumption.

The closure operator can be interpreted as a modal operator with existential
quantification. The formula ∼f characterizes configurations γ, such that there
exists a sub-configuration of γ satisfying f . Thus, ∼ f means “possible f”.
Dually ¬ ∼¬ f means “always f” in the following sense: if a configuration γ
satisfies ¬ ∼¬ f , all sub-configurations of γ satisfy f .

Corollary 4.26. For any formula f , holds ¬ ∼¬f ⇒ f . Furthermore, for any
downward-closed formula f ′, such that f ′ ⇒ f , holds f ′ ⇒ ¬ ∼¬ f .

Proof. By 4.25, for any formula f , we have ¬ f ⇒ ∼¬ f , which immediately
implies ¬∼¬f ⇒ f . For any downward-closed f ′, such that f ′ ⇒ f , we observe
that, by Proposition 4.17, ¬ f ′ is upward-closed. Hence, by Proposition 4.25,
∼¬ f ⇒ ¬ f ′ and, consequently, f ′ ⇒ ¬ ∼¬ f .

Clearly, if f is downward-closed then ¬ ∼¬ f ≡ f . However, this is not true
in general. Consider f = ma +mb, where ma and mb are characteristic mono-
mials of interactions a and b, respectively. The only configuration satisfying f
is γ = {a, b}. In particular, none of the sub-configurations {a}, {b} ⊂ γ satisfies
f . Thus, ¬ ∼¬ (ma +mb) ≡ false.

Proposition 4.27. For any formulas f1, f2, the following distributivity results
hold:

1. ∼(f1 t f2) ≡ ∼f1 t ∼f2 ≡ ∼(f1 ∨ f2),

2. ∼f1 + ∼f2 ≡ ∼(f1 + f2) ≡ ∼f1 ∧ ∼f2.

Proof. We have the following equalities:

∼(f1 t f2) ≡ (f1 t f2) + true ≡ f1 + true t f2 + true ≡ ∼f1 t ∼f2 ,

∼(f1 ∨ f2) ≡ f1 + true t f2 + true t f1 + f2 + true

≡ f1 + true t f2 + true ≡ ∼f1 t ∼f2 ,

∼f1+ ∼f2 ≡ f1 + true+ f2 + true ≡ f1 + f2 + true ≡ ∼(f1 + f2) ,

∼f1 ∧ ∼f2 ≡ (f1 + true) ∧ (f2 + true) ≡ f1 + f2 + true ≡ ∼(f1 + f2) .

14



φ

¬ φ ≡ ∼φ

∼φ ≡ ¬ φ

φ ≡ ¬ ∼φ

∼

¬

∼

¬

Figure 4: Correspondence between negation and complementation of interaction
formulas.

4.4. The complementation operator

The following results allow us to address the relation between complemen-
tation and negation.

Lemma 4.28. For any interaction formula φ, the following holds:

φ t φ t (φ + φ) ≡ true . (10)

Proof. The proof is immediate from Corollary 4.6 and the fact that φ∨φ ≡ true,
for any interaction formula φ.

Notice that the three terms in the left-hand side of (10) are mutually disjoint.

Proposition 4.29. For any interaction formula φ, holds ¬ φ ≡ ∼φ .

Proof. By Lemma 4.28, we have ¬ φ ≡ φ t (φ+ φ ) ≡ φ + true ≡ ∼φ .

In particular, this means that complementation can also be interpreted as
a modality. Proposition 4.29 shows that the complementation of φ represents
all configurations that contain φ . Equivalences ¬ φ ≡ ∼ φ, ¬ ∼ φ ≡ φ ,
¬ ∼φ ≡ φ and ∼¬ φ ≡ ¬ φ, for interaction formulas φ, are direct corollaries
of Proposition 4.29 and, for the latter, Proposition 4.24. Figure 4 depicts the
relations between complementation and negation of the interaction formulas.

4.5. Complementation of coalescings of interaction formulas

The following lemma expresses coalescing through extended disjunction. Co-
alescing is more restrictive than extended disjunction requiring the existence of
sub-configurations that satisfy all operands.

Lemma 4.30. For any formulas f , g, we have:

f + g ≡ ∼f ∧ ∼g ∧ (f ∨ g) .

15



Proof. By (9) and Proposition 4.27, we have

∼f ∧ ∼g ∧ (f ∨ g) ≡ ∼(f + g) ∧ (f t g t f + g) .

Notice that γ |= ∼(f+g) ∧ f iff γ |= f and there exists γ1 ⊆ γ such that γ1 |= g.
Thus, ∼(f + g) ∧ f ≡ f + (f ∧ g). By applying a similar transformation to g,
we obtain

∼(f + g) ∧ (f t g t f + g) ≡
(
f + (f ∧ g)

)
t
(
g+ (f ∧ g)

)
t (f + g) ≡ f + g ,

where the last equality is an immediate consequence of the fact that f ∧ g ⇒ f
and f ∧ g ⇒ g.

Proposition 4.31. For any interaction formulas φ, ψ, the following two for-
mulas are equivalent:

¬ (φ+ ψ) ≡ φ t ψ t ∼(φ ∧ ψ ) .

Proof. By Proposition 4.30 φ + ψ ≡∼ φ∧ ∼ψ ∧ (φ ∨ ψ). Thus, ¬ (φ + ψ) ≡
¬ (∼φ∧ ∼ψ ∧ (φ ∨ ψ)) ≡ ¬ ∼φ t ¬ ∼ψ t ¬ (φ ∨ ψ). Since φ, ψ and φ ∨ ψ
are interaction formulas, the application of Proposition 4.29 gives ¬ (φ + ψ) ≡
φ t ψ t ∼(φ ∧ ψ )

Proposition 4.31 allows the elimination of complementation as shown in the
following example.

Example 4.32. Consider a formula f = ¬ (pq+pr) and a configuration γ |= f .
The PCL semantics requires that γ cannot be split into two non-empty parts
γ1 |= pq and γ2 |= pr. This can happen in two cases: 1) there exists a ∈ γ
such that a does not satisfy neither pq nor pr; 2) one of the monomials is not
satisfied by any interaction in γ. The former case can be expressed as ∼(pq pr )
and the latter as pq t pr . The union of these formulas gives the equivalence
¬ (pq + pr) ≡ pq t pr t ∼(pq pr ).

Lemma 4.30 and Proposition 4.31 can be generalized as follows:

Lemma 4.33. For any set of formulas F , we have:∑
f∈F

f ≡
∧
f∈F

∼f ∧
∨
f∈F

f .

Proposition 4.34. For any set of interaction formulas Φ, the following two
formulas are equivalent:

¬
∑
φ∈Φ

φ ≡
⊔
φ∈Φ

φ t ∼
∧
φ∈Φ

φ .

Proofs of Propositions 4.33 and 4.34 are similar to the proofs of Propositions
4.30 and 4.31, respectively.
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4.6. Conjunction of coalescings of interaction formulas

Conjunction of coalescings of interaction formulas can be eliminated by using
the following distributivity result to push it down within the formula tree.

Proposition 4.35. If Φ and Ψ are sets of interaction formulas, then∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

Proof. Notice that∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡ ¬ ¬
(∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ
)
≡ ¬

(
¬
∑
φ∈Φ

φ t ¬
∑
ψ∈Ψ

ψ
)
.

By Proposition 4.34, this can be further transformed into

¬

⊔
φ∈Φ

φ t ∼
∧
φ∈Φ

φ t
⊔
ψ∈Ψ

ψ t ∼
∧
ψ∈Ψ

ψ


≡ ¬

 ⊔
ξ∈Φ∪Ψ

ξ t ∼
∧
φ∈Φ

φ t ∼
∧
ψ∈Ψ

ψ

 ,

which we further transform by applying twice the De Morgan’s law (once for
complementation and union and once for negation and disjunction) and Propo-
sition 4.29:∧
ξ∈Φ∪Ψ

¬ ξ ∧ ¬
(
∼
∧
φ∈Φ

φ
)
∧ ¬

(
∼
∧
ψ∈Ψ

ψ
)
≡

∧
ξ∈Φ∪Ψ

∼ξ ∧
∧
φ∈Φ

φ ∧
∧
ψ∈Ψ

ψ .

By Proposition 4.27 and another application of De Morgan’s law, we obtain

∼
∑

ξ∈Φ∪Ψ

ξ ∧
∨
φ∈Φ

φ ∧
∨
ψ∈Ψ

ψ ≡ ∼
∑

ξ∈Φ∪Ψ

ξ ∧
∨

(φ,ψ)∈Φ×Ψ

(φ ∧ ψ) .

Let γ be a configuration satisfying the formula in the right-hand side of this
equation. By (7), any interaction a ∈ γ satisfies the second conjunct in this
formula. Hence, there exists a pair (φ, ψ) ∈ Φ×Ψ, such that a |=i φ ∧ ψ and, a
fortiori, there exists ξ ∈ Φ ∪Ψ, such that a |=i ξ. Thus, the closure operator in
the first conjunct of this formula can be discarded. Finally, by Proposition 4.19,
we have( ∑

ξ∈Φ∪Ψ

ξ
)
∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ) ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.
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implication PIL negation complementation

interaction formulas non−interaction formulas

∼ φ∧ ∼ ψ ≡ ¬ (φ t ψ )

φ ∨ ψ

∼ (φ ∧ ψ) ≡ ¬ (φ ∨ ψ )

∼ ψ ≡ ¬ ψ

φ+ ψ

¬ (φ+ ψ)
¬ φ ≡∼ φ ¬ ψ ≡∼ ψ

ψφ
¬ (φ t ψ) ≡∼ φ ∧ ∼ ψ

¬ (φ ∨ ψ) ≡∼ (φ ∧ ψ )

¬ (φ ∧ ψ) ≡ ∼ φ t ∼ ψ

ψφ

φ t ψ

φ ∧ ψ

∼ φt ∼ ψ ≡ ¬ (φ ∧ ψ )

φ ∨ ψ

φ t ψ

∼ φ ≡ ¬ φ

φ ∧ ψ

Figure 5: PCL lattice.

Example 4.36. Consider a formula f = (φ1 + φ2) ∧ (φ3 + φ4), where φ1, φ2,
φ3 and φ4 are interaction formulas, and a configuration γ |= f . The semantics
requires that there exists two partitions of γ: γ = γ1 ∪ γ2 and γ = γ3 ∪ γ4,
such that γi |= φi for i ∈ [1, 4]. Considering an intersection γi,j = γi ∩ γj
we have γi,j |= φi ∧ φj . Thus, γ =

⋃
γi,j satisfies φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4

even if some γi,j are empty. Nevertheless, disjunction allows configurations such
that no interaction satisfy one of the disjunction terms and consequently some
φi. A coalescing of φi allows only configurations such that each φi is satisfied
by at least one interaction. Thus, the conjunction of these formulas gives the
equivalent representation:

f ≡ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) ∧ (φ1 + φ2 + φ3 + φ4)

= φ1 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) + φ2 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)

+ φ3 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) + φ4 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) .

4.7. The PCL lattice

The PCL lattice is illustrated in Figure 5. Notice that the PCL lattice has
two sub-lattices generated by monomials:

• through disjunction and negation (isomorphic to the PIL lattice);

• through union and complementation (disjunction is not expressible).

Notice that coalescing cannot be expressed in any of these two sub-lattices.
Although some formulas involving the closure operator can be expressed in
the second sub-lattice, e.g. ∼φ ≡ ¬ φ, in general this is not the case, e.g. the
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formulas∼(φ∧ψ) and∼φ t ∼ψ are not part of either sub-lattice. However, the
closure operator is expressible by taking as generators the interaction formulas:

Proposition 4.37. The lattice generated by interaction formulas through union
and complementation is closed under the closure operator ∼.

Proof. We must prove that, for any formula f in this lattice, the formula ∼f is
also in the lattice.

Since union and complementation satisfy the usual axioms of propositional
logic, f can be represented in the equivalent of the disjunction normal form:

f ≡
⊔
i∈I

( ∧
k∈Ki

φk ∧
∧
j∈Ji

¬ φj
)
,

where all φj and φk are interaction formulas. Furthermore, since the conjunction
of interaction formulas

∧
k∈Ki

φk is also an interaction formula, we can assume,
without loss of generality, that all Ki are singleton sets and

f ≡
⊔
i∈I

(
φi ∧

∧
j∈Ji

¬ φj
)
.

Applying the closure operator, we then have

∼f ≡ ∼
⊔
i∈I

(
φi ∧

∧
j∈Ji

¬ φj
)

≡
⊔
i∈I
∼
(
φi ∧

∧
j∈Ji

¬ φj
)

// by Proposition 4.27

≡
⊔
i∈I
∼
(
φi ∧ ∼

(∑
j∈Ji

φj

))
// by Propositions 4.29 and 4.27

≡
⊔
i∈I
∼
(
φi +

∑
j∈Ji

(
φi ∧ φj

))
// by Proposition 4.19

≡
⊔
i∈I

(
∼φi ∧

∧
j∈Ji

∼
(
φi ∧ φj

))
// by Proposition 4.27

≡
⊔
i∈I

(
¬ φi ∧

∧
j∈Ji

¬ φi ∧ φj
)

// by Proposition 4.29

≡
⊔
i∈I
¬
(
φi t

⊔
j∈Ji

φi ∧ φj
)
.

Since, for all i and j, both φi and φi ∧ φj are interaction formulas, we conclude
that ∼f belongs to the lattice generated by interaction formulas through union
and complementation.

4.8. Normal form

To simplify the presentation, we assume in this subsection that disjunc-
tion can appear only within interaction formulas, i.e. we do not consider
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1.

g ∧
⊔
i∈I

fi⊔
i∈I

g ∧ fi

(Proposition 4.3)

2.

g +
⊔
i∈I

fi⊔
i∈I

fi + g

(Proposition 4.5)

3.

¬
⊔
i∈I

fi∧
i∈I
¬ fi

(Proposition 4.3)

4.

¬
∑
φ∈Φ

φ , all φ are interaction formulas⊔
φ∈Φ

φ t ∼
( ∧
φ∈Φ

φ
) (Proposition 4.34)

5.

∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ , all φ ∈ Φ and ψ ∈ Ψ are
interaction formulas∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
) (Proposition 4.35)

Figure 6: Rewriting system for computing the normal form by the procedure in
Figure 7.

the extension (9) of the disjunction operator to general PCL formulas. We
prove that any PCL formula can be expressed in the following normal form:⊔
i∈I
∑
j∈Ji

∨
k∈Ki,j

mi,j,k, where all mi,j,k are monomials. This normal form
can be obtained using the rewriting system given in Figure 6 and usual Boolean
transformations for interaction formulas. Notice that no two rules can be simul-
taneously applicable to the same node. Normal form of a formula is computed
by applying the procedure in Figure 7 to the root of its Abstract Syntax Tree
(AST).

An application of a rule to a node of an AST modifies only the subtree
rooted at this node. In order to simplify the reasoning, we impose the following
additional constraint on the order of application of the rules from the rewriting
system in Figure 6.

Constraint 4.38. We require that any rule be applied to a node n only if no
rule can be applied to any other node in the subtree of n.

Remark 4.39. We extend Constraint 4.38 to include usual Boolean transfor-
mations. Hence, at every step of the process, all interaction sub-formulas are
maintained in Disjunctive Normal Form.
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procedure normalise (node)
if (node is an interaction formula)

transform node into DNF;
return;

endif

foreach child of node do
normalise(child);

od

if (no rule applicable to node)
return;

else
apply rule to node;
normalise(node);

endif
end

Figure 7: Procedure for computing the normal form using the rewriting system
of Figure 6.

Example 4.40. The following example illustrates the normalization process:

(pq t r) ∧ (pr + ¬ q) ≡ (pq t r)
∧
(
pr + (q t q + true)

)
// rule 4 with Φ = {q}

≡ (pq t r) ∧ (pr + q + true) // absorption laws

≡
(
pq ∧ (pr + q + true)

)
t
(
r ∧ (pr + q + true)

)
// rule 1

≡
(
(pq ∧ pr) + (pq ∧ q ) + (pq ∧ true)

)
t
(
(r ∧ pr) + (r ∧ q ) + (r ∧ true)

)
// rule 5

≡ (pqr + false + pq) t (pr + rq + r) // Boolean laws

≡ pr + rq + r . // absorption and identity laws

The first step removes the complementation. Then the application of distribu-
tivity rules pushes conjunction down in the expression tree of the formula, to
the level of monomials. Finally, the formula is simplified, by observing that
false is the absorbing element of coalescing and the identity of union.

Theorem 4.41. Under Constraint 4.38, the rewriting system in Figure 6 has
the following properties:

1. The rewriting system is terminating and confluent.

2. For any formula f ′ derived from a formula f by the application of rewriting
rules, we have f ′ ≡ f .
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3. Any irreducible formula is in the normal form
⊔
i∈I
∑
j∈Ji

∨
k∈Ki,j

mi,j,k.

Proof. 1. In order to prove that the rewriting system is terminating, we define a
ranking function on the AST of a formula, with leaves representing interaction
sub-formulas. First, we introduce the following notations:

• Denote p(n) the number of nodes in the subtree with the root n.

• Denote d(n) the depth of the node n in the AST of the formula.

• Let N =
∑
n p(n)p(n), where the sum is taken over all ¬ -nodes.

• Let C =
∑
n p(n)p(n), where the sum is taken over all ∧ -nodes.

• Let U =
∑
n d(n), where the sum is taken over all t -nodes.

• Denote A the number of +-nodes in the AST of the formula.

The ranking function associates a tuple to a tree 〈N,C,U,A〉. We use lex-
icographical order to compare the values of the function, i.e. 〈a1, a2, a3, a4〉 <
〈b1, b2, b3, b4〉 iff there exists i ≤ 4 such that aj = bj , for all j < i, and ai < bi.
We show that application of each rewriting rule strictly reduces the value of the
ranking function.

• Rule 1 does not change N and reduces C. Let n be the ∧ -node, to which
we apply the Rule 1. For each ∧ -node n′, generated by the application of
the rule, we have p(n′) < p(n). The number of generated ∧ -nodes n′ is less
than p(n). Hence, p(n)p(n) > p(n)∗p(n′)p(n′), which implies that the value
of C decreases after the application of the rule. Although, application of
Rule 1 increases the value of U , the ranking function decreases by the
definition of the lexicographical order.

• Application of Rule 2 increases A, but decreases U as it transforms a non-
empty set of t -nodes into one with smaller depth. This rule does not
change the values of N or C.

• Application of Rule 3 decreases N . A ¬ -node with value p(n)p(n) is
transformed into less than p(n) nodes of value less than p(n′)p(n

′) with
p(n′) < p(n).

• Application of Rule 4 decreases N . It transforms a ¬ -node into a union
of conjunctions and coalescing.

• Application of Rule 5 decreases C and does not change N . It transforms
a ∧ -node into a coalescing of interaction formulas.

• Application of usual Boolean transformations makes modifications only
inside leaves, thus this rule does not affect the function value.
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Since all rewriting rules decrease the rank of the tree and each value is a
tuple of finite natural numbers, any sequence of applications of rewriting rules
is finite.

Notice that applications of rules in different subtrees do not interfere and the
order of rule applications between subtrees does not affect the resulting formula.
This observation, together with Constraint 4.38, guarantees the confluence of
the rewriting system.

2. Since all rewriting rules in Figure 6 preserve equality, the formula obtained
by application of these rules is necessarily equal to the initial one.

3. Let f be an irreducible formula and let T be an AST of f . Any node of T
can be represented by the expression x→ (n1, . . . , nk), where x ∈ {t ,+,¬ ,∧}
is an operator and (n1, . . . , nk) is the list of child nodes. We call such a node
x→ (n1, . . . , nk) an x-node. Notice that, since all operators of the Configuration
Logic are associative, an x-node can always be merged with its immediate child
x-nodes: let n1 = x → (m1, . . . ,ml), then x → (n1, . . . , nk) can be substituted
by x → (m1, . . . ,ml, n2, . . . , nk) without changing the meaning of the formula
(similarly for all ni). Henceforth, we assume that no child node of an x-node is
an x-node.

Let n be a ¬ -node in T , such that none of the nodes in the sub-tree rooted
in n is a ¬ -node. Let n′ be a child node of n. Since Rules 3 and 4 cannot
be applied to n, the node n′ is neither a t -node, nor a node representing an
interaction formula. Hence, n′ corresponds to a conjunction or a coalescing of
PCL formulas, among which at least one is not an interaction formula. Notice
that in the subtree rooted at n′ there are neither ¬ -nodes by the assumption
that n is the deepest one nor t -nodes since Rules 1, 2 and 3 cannot be applied.
Let n′′ be the deepest coalescing node in the subtree rooted at n′. Children of
n′′ are interaction formulas as subtrees rooted at n′′ cannot contain ¬ -, t - or
+-nodes. The parent node of n′′ cannot be a negation or a union since they
cannot appear in the subtree rooted at n′, it is not a coalescing due to the
form of AST and it is not a conjunction since Rule 5 is not applicable. This
contradicts to the assumption that there are ¬ -nodes in the AST.

Since none of the Rules 1, 2 and 3 are applicable, a t -node can only be
the root of the AST of f . Hence, since Rule 5 is not applicable and there are
no ¬ -nodes in the AST of f , a +-node can only be the root or a child of the
t -node. Furthermore, for the same reason, the children of a +-node can only
be interaction formulas.

Since all interaction sub-formulas are in their DNF forms (see Remark 4.39),
we conclude that f is in normal form.

A full monomial is a monomial, which involves all ports, i.e. m =
∧
p∈P+

p∧∧
p∈P− p such that P = P+ ∪ P− and P+ ∩ P− = ∅. We define a full normal

form as
⊔
i∈I
∑
j∈J mi,j,k, where mi,j,k are full monomials. We show that any

formula has an equivalent full normal form.
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Lemma 4.42. A formula f =
∑
i∈I mi, where mi are full monomials, is satis-

fied by exactly one configuration γ = {ai}i∈I , where ai is an interaction corre-
sponding to the full monomial mi: mi =

∧
p∈ai p ∧

∧
p 6∈ai p .

Proof. Since mi is a full monomial, there exists exactly one valuation of ports
such that the monomial evaluates to true, i.e. there exists exactly one interaction
ai such that ai |=i mi.

γ |=
∑
i∈I mi iff there exists {γi}i∈I such that γ =

⋃
i∈I γi and, for all

i ∈ I, γi |= mi. For each mi there exists only one interaction and consequently
only one configuration γi |= mi. Thus, there exists exactly one γ, such that
γ |= f .

Theorem 4.43. Any formula f has a unique full normal form.

Proof. By Theorem 4.41 any formula f can be rewritten as a formula f ′ ≡ f in
normal form. In f ′, any non-full monomial can be transformed into a disjunction
of full monomials, which, by Corollary 4.6, can be further transformed into a
union of coalesced full monomials. The application of Proposition 4.5 leads to
the full normal form. Uniqueness is a corollary of Lemma 4.42.

Example 4.44. Let P = {p, q, r} and consider the normal form formula pr+rq .
It can be transformed into full normal form as follows:

pr + rq ≡ (pqr t pq r t pqr + pq r) + (pq r t p q r t pq r + p q r)

≡ (pqr+pqr) t (pqr+p qr) t (pqr+pqr+p qr) t pqr t (pqr+p qr) t (pqr+p qr)

t (pqr + pq r) t (pqr + pq r + p q r) t (pqr + pq r + p q r).

4.9. Soundness and completeness

Axioms. PCL operators satisfy the following axioms:

1. The PIL axioms for interaction formulas.

2. The usual axioms of propositional logic for t , ∧ , ¬ .

3. + is associative, commutative and has an absorbing element false.

4. For any formulas f , f1 and f2, holds f + (f1 t f2) ≡ f + f1 t f + f2.

5. For any sets of interaction formulas Φ and Ψ, holds∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

6. For any set of interaction formulas Φ, holds

¬
(∑
φ∈Φ

φ
)
≡
⊔
φ∈Φ

φ t ∼
( ∧
φ∈Φ

φ
)
.
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Input: A sub-formula f =
∑
j∈J

∨
k∈Kj

mj,k,

and a configuration γ = {a1, . . . , an}.
Output: true if γ |= f , false otherwise.
Algorithm: J ′ := ∅; l := 1; b := true;

while (l ≤ n and b) do
X := {j ∈ J | al |=i

∨
k∈Kj

mj,k};
if (X 6= ∅)
J ′ := J ′ ∪X;

else
b := false;

endif
l := l + 1;

od
return J ′ = J ;

Figure 8: Algorithm for checking satisfaction of formulas.

Theorem 4.45. The above axiomatization is sound and complete for the equal-
ity in PCL.

Proof. Soundness of all the above axioms has been proved in previous sections.
Completeness is an immediate consequence of the existence of a unique full
normal form.

4.10. Checking satisfaction of formulas

We provide a method for checking that a configuration of the form γ =
{a1, . . . , an} satisfies a formula f . Without loss of generality, we assume that
the formula is in normal form f =

⊔
i∈I
∑
j∈Ji

∨
k∈Ki,j

mi,j,k. We have to check

that γ satisfies at least one of the terms
∑
j∈Ji

∨
k∈Ki,j

mi,j,k, for some i ∈ I.

The algorithm in Figure 8 performs this verification for one term (index i is
omitted).

We have to check the validity of the following two statements: 1) each inter-
action satisfies at least one interaction formula and 2) each interaction formula is
satisfied by at least one interaction. The algorithm iterates through the interac-
tions, checking the first part and memorising the satisfied interaction formulas.
After the iteration stops, it checks whether all interaction formulas were satis-
fied by at least one interaction. Configuration γ satisfies the formula f iff the
disjunction of the results of the algorithm in Figure 8, for all terms of the union
evaluates to true.

An alternative method for checking satisfaction of a formula f by a con-
figuration γ is based on the existence of a normal form and the completeness
theorem.

Consider a formula f and a configuration γ = {a1, ..., an}. In order to decide
whether γ |= f , we associate with γ a characteristic formula ϕγ = m1 +· · ·+mn,
where mi =

∧
p∈ai p ∧

∧
p 6∈ai p are characteristic monomials of the respective
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interactions ai. Notice that ϕγ has exactly one model γ (Lemma 4.42). If for-
mulas ϕγ and ¬ f have no common models then γ is a model of f . Thus, γ |= f
iff ϕγ ∧¬f ≡ false. This latter equality can be decided by verifying whether all
terms of the normal form of ϕγ ∧ ¬ f are equal to false. Recall that the terms
of a formula in normal form are coalescings of interaction formulas. Therefore,
for a term to be equal to false, it is sufficient that one of its participating inter-
action formulas be equal to false. Finally, as in Boolean logics, a disjunction
of monomials is equal to false iff all monomials contain one of the variables at
least twice in opposite (positive and negative) forms.

Example 4.46. Let P = {p, q, r} and consider f = p q+r p and γ =
{
{p, q, r},

{q, r}
}

. In order to decide whether γ |= f , we first apply the algorithm in
Figure 8. This algorithm iterates through the interactions of γ and monomials
of f : {p, q, r} satisfies p q, whereas {q, r} satisfies r p . For both interactions the
sets of monomials are not empty and all monomials were visited. Hence, γ |= f .

Alternatively, we consider the characteristic formula ϕγ = p q r + q r p and
check whether ϕγ ∧ ¬ f = (p q r + q r p ) ∧ ¬ (p q + r p ) ≡ false. We have

(pqr + qrp ) ∧ ¬ (pq + rp )

≡ (pqr + qrp ) ∧
(

(p ∨ q ) t (r ∨ p)t ∼
(
(p ∨ q ) ∧ (r ∨ p)

))
≡
((
pqr ∧ (p ∨ q )

)
+
(
qrp ∧ (p ∨ q )

))
t
((
pqr ∧ (r ∨ p)

)
+
(
qrp ∧ (r ∨ p)

))
t
(

(pqr + qrp ) ∧
(
(p ∨ q ) ∧ (r ∨ p) + true

))
≡ (false+ p qr) t (pqr + false)

t
(

(pqr + qrp ) ∧
(
(p r ∨ q r ∨ p q ) + true

))
≡ false t false t

(
(pqr + qrp ) ∧

(
(p r ∨ q r ∨ p q ) + true

))
≡ (pqr ∨ qrp ) ∧ pqr + (pqr ∨ qrp ) ∧ qrp

+ (pqr ∨ qrp ) ∧ (p r ∨ q r ∨ p q ) + (pqr ∨ qrp ) ∧ true
≡ pqr + qrp + false+ (pqr ∨ qrp ) ≡ false .

5. Architecture style specification methodology

The methodology for writing architecture style specifications can be con-
ceptually simplified from the fact that an architecture can be considered as
a hypergraph whose vertices are ports and edges are interactions. If a is an
interaction then its characteristic monomial ma specifies in PCL a single con-
figuration (hypergraph) that contains only the interaction (edge) a. In some
frameworks, the term of connector is used as a synonym of interaction. The
formula ∼ ma specifies all the configurations (hypergraphs) that contain the
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Figure 9: Configurations of Example 5.1.

interaction (edge) a. It can be considered as a predicate on ports expressing
their connectivity.

A key idea in writing architecture style specifications is that these can be ex-
pressed as logical relations between connectivity formulas of the form ∼m where
m is a monomial. This allows simplification through separation of concerns: first
configurations are specified as the conjunction of formulas on Boolean variables
representing connectivity formulas; then after simplification, the connectivity
formulas are replaced. This may require another round of simplifications based
on specific properties of PCL. The idea is illustrated in Examples 5.1 and 5.2.

Example 5.1. Consider the four components in Figure 9 with the following
connectivity constraints: 1) if A is connected to one of the components B and
B′, it is also connected to the other and similarly for A′; 2) precisely one of the
components A and A′ interacts with B and B′.

First of all, let us assume that C(X,Y ) is the predicate “X is connected to
Y ”, where X ∈ {A,A′} and Y ∈ {B,B′}. The above constraints can then be
formalised by the formula:(

C(A,B)⇔ C(A,B′)
)
∧
(
C(A′, B)⇔ C(A′, B′)

)
∧
(
C(A,B)⇒ ¬C(A′, B)

)
∧
(
C(A,B) t C(A′, B)

)
≡
(
C(A,B) ∧ C(A,B′) t ¬ C(A,B) ∧ ¬ C(A,B′)

)
∧
(
C(A′, B) ∧ C(A′, B′) t ¬ C(A′, B) ∧ ¬ C(A′, B′)

)
∧
(
¬ C(A,B) t ¬C(A′, B)

)
∧
(
C(A,B) t C(A′, B)

)
≡
(
C(A,B) ∧ C(A,B′) ∧ ¬ C(A′, B) ∧ ¬ C(A′, B′)

)
(11)

t
(
¬ C(A,B) ∧ ¬ C(A,B′) ∧ C(A′, B) ∧ C(A′, B′

)
.

Notice now that the predicates C(A,B), C(A,B′), C(A′, B) and C(A′, B′)
can be expressed, respectively, as ∼(pq), ∼(pr), ∼(sq) and ∼(sr). Substituting
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Figure 10: Configuration of Example 5.2.

these into (11), we obtain(
∼(pq) ∧ ∼(pr) ∧ ¬ ∼(sq) ∧ ¬ ∼(sr)

)
t
(
¬ ∼(pq) ∧ ¬ ∼(pr) ∧ ∼(sq) ∧ ∼(sr)

)
≡
(
∼(pq + pr) ∧ sq ∧ sr

)
t
(
pq ∧ pr ∧ ∼(sq + sr)

)
≡
(
∼(pq + pr) ∧ (s ∨ q r )

)
t
(
(p ∨ q r ) ∧ ∼(sq + sr)

)
. (12)

The left-hand choice in (12) imposes that any configuration has the port p
connected with both ports q and r without the participation of s; symmetrically
for the right-hand choice. Notice that this formula also allows configurations
to contain arbitrary unary interactions and interactions among p and s that do
not involve q and r, which is consistent with the constraints of the example.
Indeed, Figure 9 shows only two among all the possible configurations. For
instance, neither the constraints above, nor (12) impose that the interactions
be binary. In particular, the configurations {pqr} and {sqr}, consisting of one
ternary interaction each, satisfy both the constraints and (12).

Example 5.2. Consider a system with three ports p, q, r and the following
connectivity constraint: If any port is connected to the two others, the latter have
to be connected between themselves, i.e. “connected” is an euclidean relation.
Figure 10 represents a configuration corresponding to this constraint.

In order to specify this constraint in PCL, we first define three predicates
X = ∼(pq), Y = ∼(qr) and Z = ∼(pr). The above constraint can be formalised
by the conjunction of three implications:

(X ∧ Y ⇒ Z) ∧ (Y ∧ Z ⇒ X) ∧ (Z ∧ X ⇒ Y )

≡ ¬ Z ∧ ¬ Y t ¬ Y ∧ ¬X t ¬X ∧ ¬ Z t X ∧ Y ∧ Z
≡ ¬

(
(Z t Y ) ∧ (Y t X) ∧ (X t Z)

)
t X ∧ Y ∧ Z

≡ (Z t Y ) ∧ (Y t X) ∧ (X t Z)⇒ X ∧ Y ∧ Z
≡ (X ∧ Y ) t (Y ∧ Z) t (Z ∧ X)⇒ X ∧ Y ∧ Z . (13)

Substituting ∼ (pq), ∼ (qr), ∼ (pr) for X, Y , Z, respectively, in (13) we
obtain(
∼(pq)∧ ∼(qr)

)
t
(
∼(qr)∧ ∼(pr)

)
t
(
∼(pr)∧ ∼(pq)

)
⇒ (∼(pq)∧ ∼(qr)∧ ∼(pr))

≡ ∼(pr + qr)t ∼(pq + qr)t ∼(pq + pr)⇒ ∼(pq + qr + pr) .
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6. First and second order extensions of PCL

PCL is defined for a given set of components and a given set of ports. On
the contrary, architecture styles are defined for arbitrary number of components.
In order to specify architecture styles, we introduce types of components and
quantification over component variables. We make the following assumptions:

• A finite set of component types T = {T1, . . . , Tn} is given. Instances of a
component type have the same interface and behaviour. We write c : T
to denote a component c of type T . Additionally, we denote CT the set
of all the components of type T . Finally, we assume the existence of the
universal component type U , such that any component or component set
is of this type. Thus, CU represents all the components of a model.

• The interface of each component type has a distinct set of ports. We write
c.p to denote the port p of component c and c.P to denote the set of ports
of component c.

6.1. First-order configuration logic

Syntax. The language of the formulas of the first-order configuration logic is an
extension of the PCL language by allowing Boolean expressions on component
variables, existential quantification and a specific coalescing quantifier Σc :T .

F ::= true | φ | ∃c :T
(
Φ(c)

)
.F | Σc :T

(
Φ(c)

)
.F | F t F | ¬ F | F + F ,

where φ is an interaction formula, c is a component variable and Φ(c) is some
set-theoretic predicate on c (omitted when Φ = true).

Additionally, we define the usual notation for universal quantifier:

∀c :T
(
Φ(c)

)
.F

def
= ¬ ∃c :T

(
Φ(c)

)
.¬ F.

Semantics. The semantics is defined for closed formulas, where, for each vari-
able in the formula, there is a quantifier over this variable in an upper nesting
level. We assume that a finite set of component types T = {T1, . . . , Tn} is given.
Models are pairs 〈B, γ〉, where B is a set of component instances of types from
T and γ is a configuration on the set of ports P of these components. For
quantifier-free closed formulas the semantics is the same as for PCL formulas.
For closed formulas with quantifiers the satisfaction relation is defined by the
following rules:

〈B, γ〉 |= ∃c :T
(
Φ(c)

)
. F , iff γ |=

⊔
c′:T∈B ∧Φ(c′)

F [c′/c] ,

〈B, γ〉 |= Σc :T
(
Φ(c)

)
. F ,

iff {c′ : T ∈ B |Φ(c′)} 6= ∅ ∧ γ |=
∑

c′:T∈B ∧Φ(c′)

F [c′/c] ,
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where c′ : T ranges over all component instances of type T ∈ T satisfying Φ
and F [c′/c] is obtained by replacing all occurrences of c in F by c′.

For a more concise representation of formulas, we introduce the following
additional notation:

](c1.p1, . . . , cn.pn)
def
=

n∧
i=1

ci.pi ∧
n∧
i=1

∧
p∈ci.P\{pi}

ci.p

∧
∧
T∈T

∀c :T
(
c 6∈ {c1, . . . , cn}

)
.
∧
p∈c.P

c.p

 .

The ](c1.p1, . . . , cn.pn) notation expresses an exact interaction, i.e. all ports
in the arguments must participate in the interaction and all other ports of the
system cannot participate in the interaction. If 〈B, γ〉 is a model, it can be
shown that:

〈B, γ〉 |= ](c1.p1, c2.p2, . . . , cn.pn)

iff c1, c2, . . . , cn ∈ B and γ =
{
{c1.p1, c2.p2, . . . , cn.pn}

}
.

The following three examples illustrate the specification of simple interac-
tions.

Example 6.1 (Single interaction). Assume that there is only one type of com-
ponents T with a single port p. We characterize models with a single interaction
{c1.p, c2.p}.

The formulas c1.p c2.p and ∼(c1.p c2.p) do not ensure the presence of inter-
action {c1.p, c2.p}, since the model with γ =

{
{c1.p, c2.p, c3.p}

}
satisfies these

formulas. The correct specification can be expressed by a monomial, which
contains all the negated ports that are not included in the interaction:

c1.p ∧ c2.p ∧ ∀c :T
(
c 6∈ {c1, c2}

)
. c.p . (14)

This formula is can be equivalently rewritten using the ] notation introduced
above: ](c1.p, c2.p).

Example 6.2 (Binary interactions). Assume that there is only one type of
components T with a single port p. We require that all binary interactions
among components be included. The formula ](c1.p, c2.p) represents a binary
interaction involving ports c1.p and c2.p. To obtain the required specification,
we use a coalescing quantifier for each pair of components as follows:

Σc1 : T. Σc2 : T (c1 6= c2). ](c1.p, c2.p).

Example 6.3 (No interaction of arity greater than two). Assume again that all
components are of type T with a single port p. We want to express the property
that all interactions involve at most two ports.
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Figure 11: Star architecture.

If we have three components c1, c2, c3 the formula c1.p c2.p c3.p forbids in-
teractions involving all of the components. The desired specification is obtained
by requiring that this formula holds for any triple of components:

∀c1 : T. ∀c2 : T (c1 6= c2). ∀c3 :T
(
c3 6∈ {c1, c2}

)
.(c1.p c2.p c3.p ).

Alternatively, this property can be reformulated as follows: all interactions are
either unary or binary. The formulas ](c1.p), ](c2.p), ](c1.p, c2.p) allow unary
or binary interaction between the c1.p and c2.p ports. The formula c1.p c2.p
forbids interactions involving both components. Disjunction (9) of the four
aforementioned formulas allows only unary or binary interactions between c1
and c2. The desired specification is obtained by requiring that disjunction holds
for any pair of components:

∀c1 : T. ∀c2 : T (c1 6= c2). (](c1.p) ∨ ](c2.p) ∨ ](c1.p, c2.p) ∨ c1.p c2.p )).

The following examples illustrate the specification of architecture styles and
patterns.

Example 6.4. The Star architecture style, illustrated in Figure 11, is defined
for a set of components of the same type. One central component s is connected
to every other component through a binary interaction and there are no other
interactions. It can be specified as follows:

∃s :T. ∀c :T (c 6= s).
(
∼(c.p s.p) ∧ ∀c′ :T

(
c′ 6∈ {c, s}

)
. (c′.p c.p )

)
∧ ¬

(
∃c :T. ∼](c.p)

)
. (15)

The three conjuncts of this formula express, respectively, the properties: 1)
any component is connected to the center; 2) components other than the center
are not connected among themselves; and 3) unary interactions are forbidden.

Notice that the semantics of the first conjunct in (15), ∀c : T (c 6= s).
∼ (c.p s.p), is a conjunction of closure formulas. In this conjunct, the clo-
sure operator also allows interactions in addition to the ones explicitly defined.
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Figure 12: Pipes and Filters architecture.

Therefore, to correctly specify this style, we forbid all other interactions by us-
ing the second and third conjuncts of the specification. A simpler alternative
specification uses the Σ quantifier:

∃s :T. Σc :T (c 6= s). ](c.p, s.p) . (16)

The ] notation requires interactions to be binary and the Σ quantifier allows
configurations that contain only interactions satisfying ](c.p, s.p), for some c.
Thus, contrary to (15), we do not need to explicitly forbid unary interactions
and connections between non-center components.

Example 6.5. The Pipes and Filters architecture style [13] involves two types
of components, P and F , each having two ports in and out. Each input (resp.
output) of a filter is connected to an output (resp. input) of a single pipe.
The output of any pipe can be connected to at most one filter. One possible
configuration is shown in Figure 12.

This style can be specified as follows:

∀f :F. ∃p :P. ∼(f.in p.out) ∧ ∀p′ :P (p 6= p′).
(
f.in p′.out

)
(17)

∧ ∀f :F. ∃p :P. ∼(f.out p.in) ∧ ∀p′ :P (p 6= p′).
(
f.out p′.in

)
(18)

∧ ∀p :P. ∃f :F. ∀f ′ :F (f 6= f ′).
(
p.out f ′.in

)
(19)

∧ ∀p :P.
(
p.in p.out ∧ ∀p′ :P (p 6= p′).

(
p.in p′.in ∧ p.in p′.out

))
(20)

∧ ∀f :F.
(
f.in f.out ∧ ∀f ′ :F (f 6= f ′).

(
f.in f ′.in ∧ f.in f ′.out

))
, (21)

The first conjunct (17) requires that the input of each filter be connected to the
output of a single pipe. The second conjunct (18) requires that the output of
each filter be connected to the input of a single pipe. The third conjunct (19)
requires that the output of a pipe be connected to at most one filter. Finally,
the fourth and fifth conjuncts (20) and (21) require that pipes only be connected
to filters and vice-versa.

Notice that (17) and (18) in Example 6.5 can be simplified by introducing
the additional notation for “exists unique”:

∃!c :T
(
Φ(c)

)
. F (c)

def
= ∃c :T

(
Φ(c)

)
. F (c)∧∀c′ :T

(
c 6= c′∧Φ(c′)

)
. ¬F (c′) . (22)

Using this notation, (17) and (18) can be rewritten, respectively, as

∀f :F. ∃!p :P. ∼(f.in p.out) and ∀f :F. ∃!p :P. ∼(f.out p.in) .
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Example 6.6. In the Blackboard architecture style [14], a blackboard com-
ponent of type B holds data1 that may be updated by a group of knowledge
sources of type S. A controller of type C enforces mutual exclusion of write
access. Figure 13 depicts a model with three knowledge sources. We provide
specifications of models composed of: 1) a single blackboard b with two ports
sh (share) and ctrl (control); 2) a single controller c with a port ctrl; and 3) a
set of knowledge sources with a port acc (access). No knowledge can be shared
without taking control of the blackboard through the ctrl port.

The Blackboard architecture style can be specified as follows:

b.ctrl ∧ c.ctrl∧ ∼
(

Σs :S. (s.acc b.sh)
)

∧
(
∀s1 : S. ∀s2 : S(s1 6= s2). (s1.acc s2.acc )

)
.

The first two conjuncts require that the control ports of blackboard and con-
troller components participate in all interactions. The third conjunct requires
that all knowledge sources be connected to the blackboard. The last conjunct
requires that there be no interactions involving two or more knowledge sources.

Example 6.7. The Request/Response pattern involves Clients and Services.
It is defined as follows [15]:

“Request/Response begins when the client establishes a connection to the
service. Once a connection has been established, the client sends its request
and waits for a response. The service processes the request as soon as it is
received and returns a response over the same connection. This sequence of
client-service activities is considered to be synchronous because the activities
occur in a coordinated and strictly ordered sequence. Once the client submits
a request, it cannot continue until the service provides a response.”

1We omit the data representation in this example, since only the fact that the data is
updated is relevant and not the data itself.
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Figure 14: Request/Response architecture.

From this informal description we can infer the following. There are two
types of components: a client Cl and a service S. Clients have three ports:
Cl.con, Cl.req and Cl.rec that correspond to the connect, request and receive
actions defined in the pattern, respectively. Service components have two ports
S.get for receiving a request and S.send for sending a reply to the client that
raised a request.

We use a coordinator of type C to enforce the properties: 1) only one client
can be connected at a time to a service; and 2) a client has to connect to the
service before sending a request. A unique coordinator is needed per service
and therefore, the number of coordinators must match the numbers of services.
There can be arbitrarily many clients. Each coordinator has three ports con,
get and dsc that correspond to connect, get a request and disconnect actions.
Notice that the behaviour of a coordinator is cyclic involving the sequence con→
get→ dsc→ con. The Request/Reply pattern is illustrated in Figure 14.

This pattern can be specified as follows:

Σcl :Cl. Σs :S. ∃c :C.
(
](cl.con, c.con) + ](cl.req, s.get, c.get)

+ ](cl.rec, s.send, c.dsc)
)

∧ Σcl :Cl. Σc :C. ∃s :S.
(
](cl.con, c.con) + ](cl.req, s.get, c.get)

+ ](cl.rec, s.send, c.dsc)
)
.

Notice that the ∃ quantifier has the semantics of union. Coalescing dis-
tributes over union. Therefore, the meaning of the nested existential quantifier
in the first conjunct is several configurations, where in each configuration a
service is connected to a single coordinator.

The property “a unique coordinator is needed per service” is enforced by
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the formula as follows: 1) the first conjunct requires that each service be con-
nected to a single coordinator; and 2) the second conjunct requires that each
coordinator be connected to a single service.

Example 6.8. The Repository architecture style [16] consists of a repository
component r with a port p and a set of data-accessor components of type A
with ports q. We provide below a list of increasingly strong properties that may
be used to characterize this style:

1. The basic property “there exists a single repository and all interactions
involve it” is specified as follows:

SingleRepo
def
= ∃r :R. (r.p) ∧ ∀r :R. ∀r′ :R. (r = r′) ,

where the subterm ∀r :R. ∀r′ :R. (r = r′) can be expressed in the logic as
∀r :R. ∀r′ :R(r′ 6= r). false.

2. The additional property “there are some data-accessors and any data-
accessor must be connected to the repository” is enforced by extending the
formula as follows:

DataAccessors
def
= SingleRepo ∧ ∃a :A. true ∧ ∀a :A. ∃r :R. ∼(r.p a.q) .

3. Finally, the additional property “there are no components of other types
than Repository and Data-accessor” is enforced by the formula:

DataAccessors ∧ ∀c :U. (c ∈ CR t c ∈ CA) ,

where the subterm ∀c : U. (c ∈ CR t c ∈ CA) can be expressed as ∀c :
U(c 6∈ CR ∧ c 6∈ CA). false.

6.2. Second-order configuration logic

Properties stating that two components are connected through a chain of
interactions, are essential for architecture style specification. For instance, the
property that all components form a single ring and not several disjoint ones
can be reformulated as such a property. In [17], it is shown that transitive
closure, necessary to specify such reachability properties, cannot be expressed
in the first-order logic. This motivates the introduction of the second-order
configuration logic with quantification over sets of components.

This logic extends the first-order logic with variables ranging over component
sets. We write C :T to express the fact that all components belonging to C are
of type T .

Syntax. The syntax of the second-order configuration logic is defined by:

S ::= true | φ | ∃c :T
(
Φ(c)

)
.S | Σc :T

(
Φ(c)

)
.S | S t S | ¬ S | S + S

| ∃C : T
(
Ψ(C)

)
.S | ΣC : T

(
Ψ(C)

)
.S ,
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where φ is an interaction formula, c is a component variable, C is a com-
ponent set variable and Φ(c), Ψ(C) are some set-theoretic predicates (omitted
when true). Additionally, we define the usual notation for universal quantifier:

∀C :T
(
Ψ(C)

)
.S

def
= ¬ ∃C :T

(
Ψ(C)

)
.¬ S.

Semantics. The semantics is defined for closed formulas, where, for each vari-
able in the formula, there is a quantifier over this variable in an upper nesting
level. Models are pairs 〈B, γ〉, where B is a set of component instances of types
from T and γ is a configuration on the set of ports P of these components.
The meaning of quantifier-free formulas or formulas with quantification only
over component variables is as for first-order logic. We define the meaning of
quantifiers over component set variables as follows:

〈B, γ〉 |= ∃C :T
(
Ψ(C)

)
. S , iff γ |=

⊔
C′:T∈B ∧Ψ(C′)

S[C ′/C] ,

〈B, γ〉 |= ΣC :T
(
Ψ(C)

)
. S ,

iff {C ′ : T ∈ B |Ψ(C ′)} 6= ∅ ∧ γ |=
∑

C′:T∈B ∧Ψ(C′)

S[C ′/C] ,

where C ′ :T ranges over all sets of components of type T that satisfy Ψ.

In the following three examples, we consider systems consisting of compo-
nents of a single type T with two ports in and out. We assume that every
interaction has at least one in port and at least one out port. Alternatively, this
assumption can be enforced by the constraint ¬ (∀c :T. c.out )∧¬ (∀c :T. c.in ).

Example 6.9. The property that the graph, formed by components belonging
to a set C and interactions among their ports, is connected can be expressed as
follows:

Connected(C)
def
= ∀C ′ :T (C ′  C).(

∃c′ :T (c′ ∈ C ′). ∃c :T (c ∈ C \ C ′). ∼(c.in c′.out)t ∼(c′.in c.out)
)
.

In particular, the formula requires that for any subset C ′ of C there exist an
interaction that involves a component that belongs to C ′ and a component that
belongs to C \ C ′.

Example 6.10. The component connection graph respects the Ring architec-
ture style (Figure 15) if the following predicate is satisfied:

Connected(U) ∧ Σc :T. ∃c′ :T (c 6= c′). ](c.in, c′.out)

∧ Σc :T. ∃c′ :T (c 6= c′). ](c.out, c′.in) ,

The constraint Connected(U) is used to ensure that all components form
a single ring, rather than several disconnected ones. The second and third
conjuncts require that each input port be connected to a unique output port.
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Figure 16: Linear architecture.

Example 6.11. The Linear architecture style, illustrated in Figure 16, involves
serially connected components. It is similar to the Ring architecture style: the
difference being that in the Linear architecture style, there are two distinguished
components that are the ends of the line such that the input of the first com-
ponent and the output of the last component are not connected. The following
formula requires that the components in the C set form a linear architecture.

Linear(C, out, in)
def
=

Connected(C) ∧ ∃c1 :T (c1 ∈ C). ∃c2 :T (c2 6= c1 ∧ c2 ∈ C).(
Σc :T (c 6= c1 ∧ c ∈ C). ∃c′ :T (c′ 6∈ {c, c2} ∧ c′ ∈ C). ](c.in, c′.out)

∧ Σc :T (c 6= c2 ∧ c ∈ C). ∃c′ :T (c′ 6∈ {c, c1} ∧ c′ ∈ C). ](c.out, c′.in)
)
.

Example 6.12. The Square Grid architecture style, illustrated in Figure 17,
involves n2 components of type T , each with four ports p, q, r and s. Adjacent
components are connected through ports p and r in each row of the grid and
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through ports q and s in each column. It can be expressed as follows:(
∀c :T.

(
c.p t ∃c′ :T (c 6= c′). ](c.p, c′.r) + c.p

)
∧
(
c.q t ∃c′ :T (c 6= c′). ](c.q, c′.s) + c.q

)
∧
(
c.r t ∃c′ :T (c 6= c′). ](c.r, c′.p) + c.r

)
∧
(
c.s t ∃c′ :T (c 6= c′). ](c.s, c′.q) + c.s

))
∧ (

∀c :T. ∃C :T (c ∈ C).MaxLinear(C, p, r)

∧∃C ′ :T (C ′ ∩ C = {c} ∧ |C ′| = |C|).MaxLinear(C ′, q, s)

)
∧ (

∀c1 : T. ∀c2 : T (c1 6= c2).∀c3 :T
(
c3 6∈ {c1, c2}

)
.

∼(c1.p c2.r + c1.q c3.s)⇒ ∃c4 :T
(
c4 6∈ {c1, c2, c3}

)
. ∼(c2.q c4.s+ c3.p c4.r)

∧ ∼(c1.q c2.s+ c1.r c3.p)⇒ ∃c4 :T
(
c4 6∈ {c1, c2, c3}

)
. ∼(c2.r c4.p+ c3.q c4.s)

∧ ∼(c1.r c2.p+ c1.s c3.q)⇒ ∃c4 :T
(
c4 6∈ {c1, c2, c3}

)
. ∼(c2.s c4.q + c3.r c4.p)

∧ ∼(c1.s c2.q + c1.p c3.r)⇒ ∃c4 :T
(
c4 6∈ {c1, c2, c3}

)
. ∼(c2.p c4.r + c3.s c4.q)

)
∧

Connected(U),

where

MaxLinear(C, p1, p2)
def
= Linear(C, p1, p2) ∧

∀C ′ :T (C ⊂ C ′).¬ Linear(C ′, p1, p2).
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The four big conjuncts represent, respectively, the following constraints:

1. Each port participates in at most one interaction.

2. Each component belongs in one row and one column of equal sizes. The
conjunction with the first constraint ensures that, for any two components,
the rows (columns) in which they belong either coincide or do not intersect.

3. If two components are connected to a third one and all three compo-
nents do not belong in the same row or column then there exists a fourth
component that is connected to the first two. The conjunction with the
second constraint ensures that given two adjacent components that be-
long in the same row (column), all other components that belong in the
columns (rows) of the first two components are pairwise connected.

4. Components form a single grid instead of several ones. Notice that it is
not possible to distinguish a single grid from several small ones in the
first-order logic and thus, this architecture style cannot be expressed in
first-order logic.

7. Implementation of the decision procedure

The decision procedure is based on the computation of the normal form
followed by a decision whether a model satisfies at least one union term of the
normal form or not. We implemented the decision procedure for PCL using
Maude 2.0. Maude is a language and an efficient rewriting system supporting
both equational and rewriting logic specification and programming for a wide
range of applications. The set of rewriting rules in Figure 6 were encoded in
Maude. For example Rule 2 (distributing coalescing over union) is encoded as
follows:

op $Rule2 : Expr Set{Expr} Set{Expr} → Set{Expr}.
eq $Rule2(A, empty, SC) = t(SC).

eq $Rule2(A, (B, SB), SC) = $Rule2(A, SB, (+((A, B)), SC)).

eq A + t(SB) = $Rule2(A, SB, empty).

The first line defines an additional operator for the Rule 2 that takes three
arguments: a formula that is coalesced, a set of formulas that are united and an
additional set of formulas that is used for the accumulation. The two following
lines define the behaviour of this operator recursively. A and B are variables
for single formulas, while SB and SC are variables for sets of formulas. Given
a set of united formulas SB we take one of them, coalesce it with A, store the
result in the accumulator SC and recursively repeat until there are no formulas
left. The result returned is the union of formulas in the accumulator.

The rest of the rules in Figure 6 are defined in a similar manner. The Maude
system can apply all rules to a given formula and return the formula in normal
form. If we have a configuration logic formula in normal form and an encoded
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Figure 18: Decision procedure for architecture styles

model, we can apply the implementation of the procedure in Figure 8 and decide
for satisfaction. The total number of lines of code of the implementation is
approximately 300.

In the experimental evaluation we used a set of architecture styles includ-
ing Star, Ring, Request-Response pattern, Pipes-Filters, Repository and Black-
board. We used configuration logic formulas (cf. Section 6) and models of
different sizes, including both correct and incorrect models. Quantifiers were
eliminated externally and the decision procedure was applied to quantifier-free
formulas. All experiments have been performed on a 64-bit Linux machine with
a 2.8 Ghz Intel i7-2640M CPU with a memory limit of 1Gb and time limit of
600 seconds.

Figure 18 shows the average duration of the decision procedure for the six
examples, as a function of the total number of ports involved in the formula.
Simple architecture styles like star are decidable within seconds even for 50
ports. For architecture styles requiring more complex specifications, the num-
ber of ports that can be managed in 600 seconds is smaller. For the ring archi-
tecture the memory limit is attained for the model with 24 ports. This result
shows high correlation between the maximal nesting level of quantifiers and
the decision time. Pipes and Filters and Request-Response architecture styles
have three nested quantifiers, while Star and Blackboard only two. Parsing the
formula with eliminated quantifiers (thousands of lines) is a computationally
expensive operation and is the reason of the memory limit attainment for the
ring architecture. Internal quantifier elimination should eliminate the parsing
overhead. Another possible direction for future optimisation is to research the
possibility to delay the quantifier elimination.
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8. Related Work

An architecture style typically specifies a design vocabulary, constraints on
how that vocabulary is used and semantic assumptions about that vocabulary
[5]. Constraints may be about the allowed interactions between components, e.g.
strong synchronization between components. Semantic assumptions concern the
behaviour of the involved components, e.g. loss-less channel, server etc.

A plethora of approaches exist for characterizing architecture styles. For
instance, patterns are very commonly used for this purpose. Patterns in [15, 18]
incorporate explicit constructs for architecture modelling. Nonetheless, they
lack formal semantics and they are not amenable to analysis.

Among the formal approaches for representing and analysing architecture
descriptions, we distinguish two main categories:

• Extensional approaches, where one explicitly defines every object that is
needed for the specification, i.e. the connections inducing interactions
among the components (cf. the specification (16) of the Star pattern). All
connections, other than the ones specified, are excluded. Most ADLs, for
instance SOFA [19], Wright [20], XCD [21], adopt this approach.

• Intentional approaches, where one does not explicitly specify all the con-
nections among the components, but these are derived from a set of logical
constraints, formulating the intentions of the designer (cf. the specifica-
tion (15) of the Star pattern). In this case specifications are conjunctions
of logical formulas.

The proposed framework encompasses both approaches. It allows the de-
scription of individual interactions, e.g. by using interaction formulas. It also
allows specification of configuration sets, e.g. by using formulas of the form ∼f .

A large body of literature, originating in [22, 7], studies the use of graph
grammars and transformations [23] to define software architectures. Although
this work focuses mainly on dynamic reconfiguration of architectures, e.g. [24,
8, 25], graph grammars can be used to extensionally define architecture styles: a
style admits all the configurations that can be derived by its defining grammar.
The main limitations, outlined already in [7], are the following: 1) the difficulty
of understanding the architecture style defined by a grammar; 2) the fact that
the restriction to context-free grammars precludes the specification of certain
styles (e.g. trees with unbounded number of components or interactions, square
grids); 3) the impossibility of combining several styles in a homogeneous man-
ner. To some extent, the latter two are addressed, respectively, by considering
synchronised hyperedge replacement [26], context-sensitive grammars [27, 28]
and architecture views [29]. Our approach avoids these problems. Combining
the extensional and intentional approaches allows intuitive specification of ar-
chitecture styles. The higher-order extensions of PCL allow imposing global
constraints necessary to specify styles that are not expressible by context-free
graph grammars. Finally, the combination of several architecture styles is de-
fined by the conjunction of the corresponding PCL formulas.
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The proposed framework has similarities, but also differences, with ap-
proaches that use Alloy [30] (e.g. ACME [31], Darwin [32]), and with approaches
that use OCL [6] (e.g. [33, 34], where OCL is used to extend UML [35]) to in-
tentionally define architecture styles. Our approach achieves a strong semantic
integration between architectures and architecture styles. By relying on a small
set of notions, we emphasize conceptual clarity. Moreover, configuration logics
allow a fine characterization of the coordination structure by using n-ary con-
nectivity predicates with no associated behaviour. This strict separation of com-
putation from coordination allows reasoning about the coordination constraints
structurally and independently from the behaviour of coordinating components.
On the contrary, the connectivity primitives in [31, 32] are binary and cannot
tightly characterize coordination structures involving multiparty interaction. To
specify an n-ary interaction, these approaches require an additional entity con-
nected by n binary links with the interacting ports. Since the behaviour of such
entities is not part of the architecture style, it is impossible to distinguish, e.g.
between an n-ary synchronisation and a sequence of n binary ones. Similarly,
all used connectivity primitives, UML associations in [34] and UML associations
(between UML ports and UML connector-ends) and UML connectors in [33],
are binary. UML connectors [36] may have associated behaviour [35] which is
not part of the defined architecture styles in [33].

Approaches that use Alloy and OCL are limited to first-order logics extended
with some form of the Kleene closure operator that allows to iterate over a
transitive relationship. In particular, this operator allows defining reachability
among components. It is known that the addition of the Kleene closure increases
the expressive power w.r.t. a first-order logic [17]. To the best of our knowledge,
the expressiveness relation between a first-order logic extended with Kleene
closure and a corresponding second-order logic remains to be established.

9. Discussion

The presented work is a contribution to a long-term research program that
we have been pursuing for more than 15 years. The program aims at developing
the BIP component framework for rigorous systems design [37]. BIP is a lan-
guage and a set of supporting tools including code generators, verification and
simulation tools. So far the theoretical work has focused on the study of ex-
pressive composition frameworks and their algebraic and logical formalization.
This led in particular, to the formalization of architectures as generic coordina-
tion schemes applied to sets of components in order to enforce a given global
property [1].

The presented work nicely complements the existing component framework
with logics for the specification of architecture styles. Configuration logic for-
mulas characterize interaction configurations between instances of typed com-
ponents. It is a powerset extension of interaction logic used to describe ar-
chitectures. Configuration logic is integrated in a unified semantic framework
which is equipped with a decision procedure for checking that a given archi-
tecture model meets given style requirements. Quantification over components
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and sets of components allows the genericity needed for architecture styles. We
have shown through examples that configuration logic allows full expressiveness
combined with ease of use.

As part of the future work, we will extend the theoretical results in several
directions. From the specification perspective, we are planning to incorporate hi-
erarchically structured interactions, data transfer among the participating ports
and mechanisms to express dynamic evolution of architectures. From the anal-
ysis perspective, we will study techniques for deciding satisfiability of higher-
order extensions of PCL. Finally, from the practical perspective, we also plan
to extend to the higher-order logics the Maude implementation of the decision
procedures. We will also study sublogics that are practically relevant and for
which more efficient decision procedures can be applied.
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