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Abstract

We discuss the challenges of building a simulation
framework for hybrid systems, in particular the well-
known Zeno effect and correct composition of models
idealised by abstracting irrelevant behavioural details
(e.g. the bounce dynamics of a bouncing ball or the
process of fuse melting in an electrical circuit). We ar-
gue that the cornerstone of addressing these challenges
is the definition of a semantic framework with an ap-
propriate underlying model of time.

Using two simple examples, we illustrate the prop-
erties of such a model and explain why existing models
are not sufficient. Finally, we propose a new Zeno-free
semantic model that allows mixing discrete and con-
tinuous behaviour in a rigorous way and provides for
the compositional behavioural abstraction.

Although it is based on non-standard analysis, we
explain how our semantic model can be used to de-
velop hybrid system simulators.

Keywords: Hybrid Modeling Languages; Non-
Standard Analysis; Models of Signals; Behavioral Ab-
straction; Operational Semantics

1 Introduction

A large number of modelling, verification and sim-
ulation frameworks for hybrid systems have been
designed in the past years. Although, a complete
overview is beyond the scope of our paper, we ob-
serve that they broadly fall in two categories: those
that put special emphasis on a rigorous model defi-
nition, such as, for instance, the Ptolemy project [6]
(based on [14]), the Zélus synchronous language [3]
(based on the semantics in [1]) and SpaceEx [7]; and
those that have chosen a more pragmatic, informal ap-
proach, such as the Modelica language [8] and the as-

sociated tools, and the Scicos block-diagram modeller
and simulator [4].

All the associated tools share the same basic model
of execution alternating between continuous phases
and sequences of ‘run-to-completion’ discrete actions
[3] as formalised by the notion of hybrid automata
[11]. None of these approaches attempts to include
the operational semantics of differential equations in
their core semantic model: execution of the continu-
ous phases is delegated to numerical solvers, which are
used to advance physical time and compute the values
of physical signals.

Except for Zélus, none of the above semantic mod-
els are Zeno-free, which means that, as explained in
the next sections, they do not reflect the fact that time
diverges and rely on analysing the solver output to de-
tect and advance past the Zeno points [13] (cf. Sec-
tion 2). This poses a fundamental problem, since the
solver behaviour at this point is usually unspecified.

Furthermore, none of the above proposals al-
lows compositional behavioural abstraction: idealised
models do not account for the physical nature of
phenomena, in particular the fact that original, high-
fidelity signals are continuous. However, this property
is assumed by most users and validated by most real-
life systems. Hence, it must be a fundamental property
of signals and should be reflected in their idealisations.

In our view, to achieve maximum robustness of a
simulation framework, it is crucial to define the se-
mantic model before designing either the language or
the simulator. Thus, the design of a hybrid simulation
framework should involve the following steps.

First of all, one must define a semantic model that
properly accounts for the expected elementary prop-
erties of systems to be simulated. This includes dy-
namic behaviour properties, but also “higher level”
ones, such as modularity.

The second step consists in designing a simulator
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capable of computing acceptable approximations of
the dynamics of models conforming to the semantic
model above. Successful completion of this step vali-
dates the semantic model by showing that all conform-
ing models can be simulated.

The third step involves the design of a language
powerful enough to express a useful subset of models
that provably conform to the semantic model. In or-
der to avoid errors at simulation time or, worse, spuri-
ous simulation results, the semantic validity of a model
must be provable statically, e.g. by type-checking.

Finally, once both the semantic model and the lan-
guage have been defined, one has to design a compiler
for this language, which would perform the necessary
static checks and reject the invalid models.

In this paper, we focus on the first step above, i.e.
defining the appropriate semantic model. Indeed, in
our opinion, current semantic models still lack some
of the properties required by real-life systems.

In particular, modularity is an extremely important
property for both correctness and practical usability of
hybrid simulation frameworks. One of us has already
discussed some modularity issues in Modelica [9].
In the present paper, we focus on another—probably
the most important—aspect contributing to modular-
ity, which is compositional behavioural abstraction.

Realistic hybrid models almost always require part
of the physical behaviour to be abstracted by means
of “ideal equations”—such as conditional and reset
equations—that typically yield discontinuities in phys-
ical signals. Below, we will use the term behavioural
abstraction more generally to designate any mecha-
nism that enables concrete physical behaviour to be
“hidden” by considering idealised models. Intuitively,
from the point of view of an external observer, be-
havioural abstraction makes the model “jump” over
instants corresponding to activations of abstraction
mechanisms. Thus, idealisation consists in explicitly
providing a constraint to be met after these instants.

It is well known from physical system modelling
experts that, although extremely useful in practice,
behavioural abstraction often leads to inconsistencies
and even to singularities in simulation code, especially
when abstractions are composed. Informally, we say
that behavioural abstraction is compositional if substi-
tuting an ideal sub-model—instead of a high-fidelity
one—within a larger model does not introduce new be-
haviours that were not present in the original model (a
counter-example is given in Section 3.1).

The cornerstone of a semantic framework that
would address the above issues is the underlying

model of time.
Traditional definition of the simulation time-line ei-

ther relies on a fixed basic step, provided as a sim-
ulation parameter, or a variable step adjusted based
on events detected during the simulation. The former
has the advantage of being Zeno-free by construction,
since at each simulation step the time advances by a
constant value, but produces wrong simulation results
whenever the signal activity is higher than the fixed
sampling frequency. Variable step simulation, on the
other hand, improves the simulation precision by sac-
rificing Zeno-freeness. However, in both cases, the se-
mantics of a model is only defined at simulation time
depending on the choice of time steps. Hence, model
validity cannot be statically proven.

In Section 3.1, we argue that, to ensure compo-
sitionality of behavioural abstraction and reflect the
intrinsic continuity of physical phenomena, the time
model must be densely ordered.1 Indeed, as a result
of behavioural abstraction, several causally dependent
events happen at the same instant. Traditional time
models above do not provide any possibility to pre-
serve the causality information in the semantic model,
leading to spurious behaviours.

The super-dense time approach [14] addresses this
problem by defining time as a subset of the cartesian
product R×N0. However, solutions of differential
equations are obtained by means of standard opera-
tional semantics. Thus, although causality between
instantaneous events can be preserved, the problems
related to the Zeno effect persist.

Recent use of Non-Standard Analysis [12] in the
design of operational semantics for hybrid systems
[1, 2, 16] has led to the definition of a linear time that
is 1) discrete, i.e. instants can be considered in isola-
tion; 2) well-ordered, i.e. for each time instant, there
is a uniquely defined next instant respecting the usual
temporal order; and 3) it can be treated as a continuum.
These properties make it suitable to express both dis-
crete and continuous dynamics in a unified fashion and
avoid the Zeno effects. However, as a consequence,
such time model cannot be densely ordered. Indeed, it
features consecutive instants, which, by definition, do
not have any instants between them.

In this paper, we propose a new, Zeno-free se-
mantic model also based on a non-standard model of
time, which allows mixing discrete and continuous
behaviour in a rigorous way. In addition, this new
model also allows compositional behavioural abstrac-

1A partially ordered set is said to be densely ordered if for all
elements x and y for which x< y there exists a z such that x< z< y.
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tion: density of time is reestablished so that physical
signals remain continuous even when idealised, which
avoids the emergence of “impossible behaviours”.

The key idea behind our proposal is to discretise
the value of signals instead of time. Discretisation
is necessary in order to associate dates with events
[1, 2, 16]. However, discretising signal values allows
us to choose these dates among all non-standard reals,
rather than fixing a regular time-line in advance. Thus,
we consider discrete signal activity in the frame of a
densely-ordered time-line compatible with the require-
ments of compositional behavioural abstraction. This
approach has something in common with [10], where
well-ordered time scales are constructed as subsets of
a common densely-ordered time reference.

The paper is structured as follows. In Section 2, we
explain the need for an operational semantics that can
cope with the Zeno paradox, and how non-standard
analysis can be used to define such a semantics. In
Section 3, we show why previous proposals based on
non-standard analysis do not ensure compositional be-
havioural abstraction, by taking an example involving
the composition of several abstractions. Finally, in
Section 4, we present our proposal, also based on non-
standard analysis, but where discretisation is no longer
applied to the time-line but to signal values, leading to
a more intuitive definition of time that, moreover, al-
lows compositional behavioural abstraction.

2 Why non-standard semantics?

2.1 Behavioural abstraction example

The famous bouncing ball model, whereof a Modelica
implementation is given in Listing 1, is probably one
of the simplest models involving behavioural abstrac-
tion. In this model, the physics of the bounce have
been abstracted away: we consider that, at bounce
time, the velocity, which was negative just before the
ball hits the ground, instantaneously becomes positive,
with a magnitude decreased by 20%. Figure 1 shows
the simulation results for x in the [0,1.1] time interval.

Despite its apparent simplicity, this model poses se-
vere challenges to language theorists as we shall see.

2.2 The Zeno effect

We suppose here that physical time is based on stan-
dard reals (i.e. R). How does our model behave with
such a time model?

Let’s introduce the following notations:

Listing 1: A bouncing ball model, in Modelica.
model BouncingBall

Real v, x;

constant Real g = 10;

initial equation

v = 1.0;

x = 0.0;

equation

der(v) = -g;

der(x) = v;

when x < 0 then

reinit(v, -0.8 * pre(v));

reinit(x, 0.0);

end when;

end BouncingBall;

Figure 1: Simulation results for the bouncing ball
model with the DASKR solver (altitude of the ball
with respect to time)

• ti, for i ∈ N0, denotes the initial instant of the ith

flight of the ball;

• vi, for i ∈ N0, denotes the (positive) velocity of
the ball at ti.

According to the model, the trajectory of the ball in-
flight has to verify:

v̇ =−g (1a)

ẋ = v (1b)

Equations (1a) and (1b) can be solved analytically for
v and x, for t ∈ [ti, ti+1), giving:

v(t) =−g · (t− ti)+ vi (2a)

x(t) =−1
2

g · (t− ti)2 + vi · (t− ti) (2b)

Since at ti+1 the ball hits the ground (that is, x = 0), we
must have:

0 =−1
2

g · (ti+1− ti)2 + vi · (ti+1− ti) (3)

From (3) we deduce the duration of the ith flight (notice
that it only depends on the velocity of the ball at ti):

ti+1− ti =
2
g

vi (4)
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Also, from (2a) and (4), we deduce that:

lim
t→ti+1
t<ti+1

v(t) =−vi (5)

It follows that:
vi+1 = 0.8vi (6)

From (4), (5) and (6), we deduce the total duration of
all flights until the nth bounce, for any n≥ 0:

tn− t0 =
n−1

∑
i=0

ti+1− ti =
2
g

n−1

∑
i=0

vi =
2v0

g

n−1

∑
i=0

0.8i

=
2v0

g
· 1−0.8n

1−0.8
(7)

Finally, we conclude from (7) that:

lim
n→∞

tn− t0 =
10v0

g
= 1 (8)

In other terms time converges, meaning that the lifes-
pan of the model is finite! This unexpected result is
a manifestation of the Zeno effect which prevents the
model from moving forward in time past the conver-
gence limit, called the Zeno point. As a consequence,
simulating a physical model past its Zeno point—
which solvers kindly accept to do, as illustrated on Fig-
ure 1—means that we are no longer executing the al-
leged semantics of our favourite modelling language:
we are observing a free and necessarily wrong inter-
pretation of our program by the simulation tool. This
is extremely embarrassing since Zeno effects cannot
be spotted during simulation and since many practi-
cal models contain abstraction mechanisms such as
Modelica’s reinit operator, conditional equations, etc.,
whose composition is known to yield such issues: how
to prove that we are not actually running a model out
of its actual time domain?

2.3 Discussion of the example

Physical system theorists may argue that the issue with
our bouncing ball model comes from the usage of in-
appropriate abstraction mechanisms. Indeed, appli-
cation of a classical energetic approach (such as the
standard Bond Graph for instance) instead of the more
direct equation-based approach would have naturally
lead to a time-diverging model: from this point of
view, a bouncing ball model is no more than a damped
oscillator, whose solution exhibits an exponential de-
cay as time diverges.

However, in practice, the price to pay to benefit
from the virtues of energetic modelling is often too

high in terms of model complexity. Applied to our
example for instance, such an approach would force
us to express contact with the ground in a more de-
tailed fashion (typically, by means of modulated C
and R elements in Bond Graph, which poses the ad-
ditional problem of finding an adequate modulation
constraint). Quite often, we do not know enough of
the phenomena to be able to write meaningful high-
fidelity equations.

Furthermore, simulation performance may suffer
dramatically from excess modelling details. For in-
stance, if we simulate our original bouncing ball model
with a solver based on the Trapezoidal rule (which is
an order 2 method) we see that it performs very well
(this is not very surprising since the flight trajectory
is a parabola). On the other hand, performance dra-
matically collapses when the same solver is given a
detailed version of the bouncing ball model. Inter-
estingly, a closer look at the performance profile re-
veals that most of the CPU time is spent in solving the
contribution of additional details of the high-fidelity
model, which correspond precisely to the phenomenon
we wanted to abstract away! Experimenting with real-
world models brings us to similar conclusions: ab-
straction mechanisms help focusing on important parts
of models, making the result often simpler and more
efficient (but error-prone).

So it seems that we have to live with “dirty” abstrac-
tions: does it mean that we also have to accept unsound
semantics for the sake of performance and simplicity?
Fortunately no, as shown in the next sections: remem-
ber that our conclusions follow the initial premise as-
suming a time model based on R.

2.4 Non-standard approach

A closer look at (7), which actually represents the
work performed by our bouncing ball model in the
course of the simulation, reveals the profound cause
of our problem: we are assuming that any count-
able family of joined, nonempty sub-intervals (our
[ti, ti+1)) eventually partitions any simulation interval.
Of course, this property does not hold: it would be
equivalent to assuming that the sum of the terms of any
sequence of positive reals would certainly diverge.

How could it be possible to define an operational
semantics that would ensure time divergence even in
presence of behavioural abstractions? Let us make
the following experiment: We successively apply the
fixed-step forward Euler method (see Listing 2) to our
bouncing ball model with decreasing step sizes, as
shown in Figure 2. We observe progressively better
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approximations of the solution, since the problem is
stable and since we can find a step size that ensures
stability of the method itself. Notice that since we have
chosen a fixed-step scheme, the process of simulation
simply cannot exhibit Zeno effects: it terminates after
at most d tend−t0

h e steps, where h is the step size.
So why not define step-by-step calculation of the

ideal trajectories generated by models—which is what
operational semantics of hybrid systems is all about—
in terms of the standard forward Euler method? The
reason is that whatever the step size we choose this
method only gives approximations of the trajectories
of interest. Furthermore, as small as a candidate
step size would be, it would always be possible to
forge models that would require a smaller one, for in-
stance, linear models having eigenvalues large enough
to make the solution unstable and divergent (the first
slope on Figure 2 shows the behaviour of the method
in such a situation).

Notice also that this reasoning applies to any nu-
merical integration method, not only forward Euler.
The point is: numerical methods have to perform steps
and there is no smallest possible step that would fit all
models.

In order to define our reference calculation steps,
we would have to choose a step that would be smaller
than any positive real number. Furthermore, this ref-
erence step would have to be positive to ensure time
divergence. This is precisely the definition of a posi-
tive infinitesimal, as these have been used in 17th and
18th centuries by mathematicians and physicists such
as Leibniz and Newton.

The common idea of real numbers was different
from the modern one. For instance, to compute the
derivative of a given function f (x), one would con-
sider the increment of this function given an infinites-
imal increment dx to x. Thus the derivative f ′(x) was
defined by setting

f ′(x) =
f (x + dx)− f (x)

dx
.

For example, applying this reasoning to f (x) = x2, one
obtains the following computation

f ′(x) =
(x + dx)2− x2

dx
=

2xdx + dx2

dx
= 2x+dx≈ 2x ,

where the last relation signifies that dx, being infinites-
imal, vanishes in the final expression.

The notion of infinitesimal was formalised in 1960s
by Robinson (see [15]), by defining a set ∗R of non-
standard reals, which is an ordered field extension of

Figure 2: Simulation results for the bouncing ball
model using forward Euler on [0,1.1] with step sizes
0.1, 0.01, 10−3 and 10−6 respectively (altitude of the
ball).
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R that contains all usual real numbers, but also the in-
finitesimal reals and their inverses, which are the in-
finitely great reals, i.e. those with an absolute value
strictly greater than any usual real number r ∈ R. One
also speaks of finite (or limited) reals x, such that
|x|< y for some positive y ∈ R;

In particular, two non-standard real numbers x and y
are said to be infinitely close (denoted by x≈ y) if and
only if x− y is infinitesimal.

Among all non-standard real numbers, one can, of
course, consider the set ∗Z of non-standard integers
that, on top of standard integers, contains infinitely
great ones, having absolute value greater than any
n ∈N. Similarly, it is possible to define the set of non-
standard natural numbers ∗N0 (including zero).

The field ∗R of non-standard reals has been used
by several authors to define operational semantics of
continuous and hybrid systems [1, 2, 12, 16]. The key
idea is to change the definition of time, by replacing
standard reals with a subset of non-standard ones.

The proposal in [2, 16] consists in defining time as:

T de f
= {ε ·n | n ∈ ∗N0} (9)

for some reference positive infinitesimal ε (notice
that any positive infinitesimal fits our constraints). It
should be noted that T contains arbitrary large num-
bers: in particular, it is possible, given any positive
real t, to find n ∈ ∗N0 such that ε · n is greater than t.
This property is due to ∗R being Archimedean in the
non-standard sense2, as shown in [2]. Also, it should
be noted that although T may contain absolutely no
standard real (for some “unfortunate” choice of ε), it is
possible to approximate any standard real x by a non-
standard real of the form ε ·n such that:

|x− ε ·n|< ε

which means that the error committed in the approxi-
mation is negligible in comparison to any positive ele-
ment of R (recall that ε is a positive infinitesimal).

We are now ready to define the meaning of a differ-
ential equation:

ẋ = f (x, t)
de f≡ xnext = x + ε · f (x, t) (10)

where:

• ε is the reference time step introduced in (9);

• xnext is the “next” value of x, that is x(t + ε).

2It can be shown, however, that ∗R is not Archimedean in the
standard sense, because of the existence of infinite elements.

Listing 2: A Haskell program implementing the for-
ward Euler method to the bouncing ball model.
euler t0 tEnd (v0, x0) h = step 0 (v0, x0)

where

step i (vNow, xNow)

| tNow > tEnd = []

| otherwise =

(tNow, xNow) : step (i + 1) (vNext, xNext)

where

tNow = t0 + h * fromInteger i

(vNext, xNext) = advance tNow (vNow, xNow)

advance _ (vNow, xNow)

| xNow < 0.0 = (-0.8 * vNow, 0.0)

| otherwise = (vNow - h * 10.0, xNow + h * vNow)

Why would an operational semantics based on (9)
and (10) prevent Zeno effects? For exactly the same
reason why standard forward Euler method prevents
them: because time is forced to advance by fixed—
although infinitesimal—steps and because the non-
standard Archimedean property of ∗R allows arbitrar-
ily large times to be overstepped.

However, we are not completely done yet. Indeed,
due to the multiplication by ε in (10), our opera-
tional semantics maps time instants as well as values of
real signals to non-standard reals, although we would
like our models to eventually yield standard real val-
ues. Fortunately, any limited non-standard real can be
uniquely represented as the sum of their standard and
infinitesimal parts [2, 12, 16]. All we need to do is to
eventually discard infinitesimal parts of non-standard
reals in order to construct our final standard signals.

Operational semantics based on this idea lead to uni-
form treatment of discrete and continuous dynamics:
differential equations, reset equations (e.g. Modelica’s
reinit operator) and difference equations are actually
all treated as non-standard difference equations.3 As
an illustration of this, the program of Listing 2 imple-
ments the operational semantics of our bouncing ball
model, provided

• v0 and x0 are standard reals and h is an arbitrary
infinitesimal;

• integers (used as step indexes) are non-standard;

• infinitesimal parts of the output are discarded.

Notice that, past t = 1, as experiments with standard
Euler method suggest, the ball sticks to the ground—
more exactly, standardisation of the model’s variables

3It is interesting to contrast this uniformity with Modelica’s
informal semantics as given in the current language specification.
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Figure 3: Velocity of the ball on [0,1.1] resulting from
interpretation of the bouncing ball model with non-
standard semantics.

yields two standard functions of time which map ev-
ery t ≥ 1 with zero. Indeed, from (6) we know that the
standard part of v converges to zero as t converges to
1. It follows that for every t ≥ 1, dynamic equations of
the model, as a consequence of (10), only produce in-
finitesimal values since the product of ε by any limited
real yields an infinitesimal number.

3 Behavioural abstraction issues

As shown in [1, 2], operational semantics built on time
model (15) successfully explain the behaviour of pro-
grams like the bouncing ball model of Listing 1—even
beyond t = 1. In particular, abstraction of the bounce
phenomenon meets our expectations: velocity and alti-
tude instantaneously take an explicitly specified value
at bounce time and then continuously evolve from this
new starting point until the next bounce.

It should be noted that, in this model, while altitude
keeps its continuous character around bounce instants,
velocity looses it, as illustrated in Figure 3. Never-
theless, interpretation of the bouncing ball model re-
mains satisfactory with respect to the requirements
which only demand a high-fidelity behaviour between
bounces and a correct (and instantaneous) reposition-
ing of velocity and altitude at bounce time for the next
flight to start.

However, as shown below, loss of continuity due to
abstraction may cause practical models of systems to
fail unexpectedly.

3.1 A problematic example

We consider in Listing 3 a simple fuse sub-model,
which behaves like an electrical switch that is closed
by default but that can eventually become open if the
branch current exceeds a limit.

Listing 3: A fuse sub-model, in Modelica.
import Modelica.Electrical.Analog.*;

model Fuse

extends Interfaces.OnePort;

parameter Real iMax;

parameter Real Ron;

parameter Real Roff;

protected Real R;

protected Boolean on;

initial equation

on = true;

equation

when i > iMax then

on = false;

end when;

R = if on then Ron else Roff;

v = R * i;

end Fuse;

Figure 4: An electrical circuit using two instances of
the fuse sub-model defined in Listing 3.
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Listing 4: A ramp voltage source sub-model, in Mod-
elica.

import Modelica.Electrical.Analog.*;

model RampVoltageSource

extends Interfaces.OnePort;

parameter Real startTime;

parameter Real k;

parameter Real vMax;

equation

v =

if time >= startTime then

min(k * (time - startTime), vMax)

else 0.0;

end RampVoltageSource;

Using this sub-model, we build a model of the sys-
tem shown in Figure 4, which is composed of a ramp
voltage source (defined in Listing 4), two fuses and
a simple linear resistor, in series. We suppose in this
model that the fuses have distinct rated currents. No-
tice that, according to the definition of the fuse sub-
model, the time required by a fuse to break the circuit
is negligible with respect to the time required by the
ramp voltage source to reach its maximum value4.

Suppose we are given these parameter bindings:

src.startTime = 0.1 (11a)

src.k = 2 (11b)

src.vMax = 1 (11c)

f1.iMax = 0.005 (11d)

f1.Ron = 10−6 (11e)

f1.Roff = 106 (11f)

f2.iMax = 0.006 (11g)

f2.Ron = 10−6 (11h)

f2.Roff = 106 (11i)

r.R = 100 (11j)

and this initial state:

time = 0 (12a)

f1.on = T (12b)

f2.on = T (12c)

According to our non-standard semantics, we have
to solve the following dynamic equations to determine

4This property is enforced by the use of a when clause in the
definition of the fuse sub-model in Listing 3.

the dynamic behaviour of our model:

src.v =
{

min(2(time−0.1),1) if time≥ 0.1
0 otherwise

(13a)

src.i = i (13b)

f1.R =
{

10−6 if f1.on
106 otherwise

(13c)

f1.v = f1.R · i (13d)

f1.i = i (13e)

f2.R =
{

10−6 if f2.on
106 otherwise

(13f)

f2.v = f2.R · i (13g)

f2.i = i (13h)

r.v = 100i (13i)

r.i = i (13j)

timenext = time+ ε (13k)

f1.onnext = f1.on∧¬(i> 0.005) (13l)

f2.onnext = f2.on∧¬(i> 0.006) (13m)

where

i =
src.v

100 +f1.R+f2.R
(13n)

Notice that this model has three state variables,
namely time, f1.on and f2.on, hence the three non-
standard difference equations (13k), (13l) and (13m).

Figure 5 shows the corresponding results. Notice
that, as expected, only the first fuse melts (see second
slope in Figure 5) since its rated current is lower than
that of the first fuse (see (11d) and (11g)).

In this first experiment, only the behaviour of fuses
has been abstracted away by considering their melt du-
ration to be negligible with respect to the raise duration
of the ramp source. But what happens if we also ab-
stract the behaviour of the ramp source, considering
its raise duration negligible with respect to the entire
operating duration of the system?

Abstracting the ramp source in this context means
replacing it with a step source, leading to a new system
of dynamic equations, where (13a) is replaced with:

src.v =

{
1 if time> 0.1
0 otherwise

(14)
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Figure 5: Solution of (13) with parameter bindings
(11) and initial state (12).

Figure 6: Solution of the system of dynamic equa-
tions resulting from the abstraction of the ramp voltage
source.

Figure 6 shows the corresponding results. We can
see that both fuses melt as a consequence of the raise
of the voltage source signal. This fact contradicts our
initial assumption of a model where only one fuse may
melt, if ever. This last experiment has shown that
an operational semantics based on a global, fixed in-
finitesimal step does not preserve strict ordering of
events when behavioural abstractions are composed.

3.2 Conclusions from the experiments

The reason why we observe an accidental synchroni-
sation of events after abstracting the behaviour of the
ramp voltage source is that the time-line is “running
out of available free slots” where to insert possible in-
termediate events. In our example, events correspond-
ing to melts, whenever they eventually occur, must
necessarily do so strictly before the ramp signal of
the voltage source reaches its maximum value.5 How-
ever, in a fixed-step non-standard operational seman-
tics, when a standard difference equation is activated

5Because it is the voltage raise itself, after its “conversion” to
current through the load r, that triggers an eventual melt.

to reset the value of a state variable, or when a con-
ditional equation switches (as in our example), new
values are scheduled for the next instant, leaving no
room for possible intermediate events to occur during
this transition. So it seems that we should densify time
in the neighbourhood of “urgent” actions.

4 Proposed semantic model

In this section, we introduce some basic notions that
will be used to construct our model of a signal as well
as defining the meaning of a differential equation.

We suppose given a positive infinitesimal real ε that
we call the real activity threshold. Notice that, con-
trary to traditional fixed-step simulation, the semantics
of the system is independent from the specific choice
of ε .

For r ∈ ∗R, we denote r + ε · ∗Z de f
= {r + ε · k |k ∈

∗Z}, where ∗Z is the set of non-standard integers. We
define the base time-line ∗T as a the non-negative val-
ues of ∗R:

∗T de f
= ∗R+

0 (15)

Thus, ∗T is a linear continuum (under the standard
temporal order <), which contains all non-negative
standard real numbers. An instant is an element of
∗T. In particular, we have non-standard instants.

Notice that, contrary to [1, 2, 16], we propose here
a base time-line that is neither discrete, nor well-
ordered. However, since ∗T is densely ordered, inter-
mediate instants exist between any two given distinct
instants.

The question that arises now is: how to recover dis-
creteness (as required to express the notion of next in-
stant) as well as time divergence? The key idea lies in
a generalisation of the usual concept of clock as en-
countered in synchronous languages.

4.1 Time, signals and dates

4.1.1 Time

A time signal t with the initial value t0 ∈ ∗R is defined
as the following right-continuous step map:

t : ∗T→ t0 + ε · ∗Z
τ 7→ t0 + ε ·nτ (16)

with
nτ = ∗

⌊ τ
ε

⌋
∈ ∗N0

where ∗b·c denotes the non-standard floor function.
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In particular, for any τ ∈ R+
0 we have:

st
(
t(τ)− t0

)
= τ

meaning that the standardisation of t coincides with a
standard time signal that would start from st(t0).

By definition, a date is an element of the co-domain
of a time signal.

Notice the fundamental change of perspective with
respect to [1, 2, 16]: instead of discretising the do-
main of the time signal, we discretise its co-domain.
Thus, we can associate a discrete and well-ordered set
of dates with a time signal, despite its densely ordered
domain. Notice also that dates and instants are differ-
ent concepts: while instants are densely ordered, dates
are not. In the next sections, we show how to extend
this idea to any signal.

4.1.2 Signals

We call a (non-standard) signal x a map from a subset
of ∗T—the domain of the signal, denoted Domx—to a
discrete set—its co-domain, denoted Codomx. A sig-
nal maps instants to values.

We distinguish two families of signals:

discrete-time signals have their domain (called their
clock) in a discrete subset of ∗T;

dense-time signals are right-continuous step signals,
whereof the domain is ∗T.

A few remarks can be made regarding this taxonomy:

• We do not require zero (i.e. the least element of
∗T) to belong to the domain of a discrete-time sig-
nal: zero is only guaranteed to be a lower bound
of the domain. In other terms, the birth instant of
a discrete-time signal does not necessarily coin-
cide with the birth instant of the model.

• Physical signals introduced in [1, 2] belong to the
discrete-time family of signals.

• In some sense, compared with [2], we loose some
uniformity by introducing two kinds of signal do-
mains, with distinct topologies. However, practi-
cal implementations of modelling languages have
to make a semantic distinction between signals at
some point (to avoid ill-posed problems). In [1],
for instance, the type system classifies signals in
“discrete” and “continuous” ones (although they
share the same representation).

Notice that, according to the definition of a signal,
the co-domain of any signal is discrete. This raises the
question of the representation of real signals in gen-
eral, and continuous (or physical) signals in particular.
We impose the following restrictions:

real signals have co-domains of the form r + ε · ∗Z,
where ε is the real activity threshold and r the
start value of the signal;

continuous (or physical) signals are dense-time real
signals that can only change their value by ±ε .

4.1.3 Signal activity

The activity of a signal x, denoted Actx, is the discrete
(possibly finite, but often non enumerable) subset of
Domx defined as:

Actx = {τ | x(τ−) 6= x(τ)} (17)

where
x(τ−) = lim

τ ′→τ
τ ′<τ

x(τ ′)

Intuitively, the activity of a signal can be seen as
the set of instants corresponding to its “perceptible
changes” from the point of view of an external ob-
server. Notice that we have required the co-domain
of signals to be discrete: this implies that the activity
of a signal x contains all the instants at which “some-
thing happened” to x from an external observer point
of view, whatever the accuracy of the measure.

4.2 Differential equations

If one assumes the existence of a maximal clock such
as

{ε ·n | n ∈ ∗N0}
then the sole concept of non-standard difference equa-
tion suffices to express dynamic behaviour of mod-
els. Indeed, as explained in previous sections, the
solution yielded by the (non-standard) forward Euler
scheme coincides with the actual, standard solution of
the corresponding differential equation, after standard-
isation. But we have also seen that this uniform ap-
proach reaches its limits when composition of abstract
models comes into play.

Density of possibly detectable events should be ide-
ally correlated to the behaviour of signals instead of
being imposed by a rigid, fixed-step scheme: indeed,
more activity potentially implies more events.

Also, if one would be able to predict the occur-
rence of an event from the behaviour of the implied
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signal(s) instead of waiting for the next time instant
and then realise that several pending events need to be
(wrongly) treated simultaneously, one would avoid the
issues mentioned in previous sections.

The key idea is to define differential equations in
such a way that activity of signals can be predicted,
and then to use the concept of activity instead of the
concept of clock to represent (mutually desynchro-
nised) event sources. This idea is not new: B. P. Zei-
gler [17] already introduced most of the necessary con-
cepts in his theory of systems. QSS solvers [5] are
practical applications of this theory.

Recall that in [1, 2], the semantics of a differential
equation was defined by means of a non-standard ver-
sion of the forward Euler method, which is the sim-
plest order-one method based on the classical time
slicing approach. In the following, we will define the
meaning of a differential equation by means of a non-
standard order-one QSS-like method and show how
this new approach solves behavioural abstraction is-
sues.

Assume that the following are given:

- a non-empty interval [τa,τb)⊆ ∗T,

- a non-standard real number x0 ∈ ∗R,

- a non-standard real signal y : [τa,τb)→ y0 +ε ·∗Z.

Then the differential equation

der(x,x0) := y (18)

defines x on [τa,τb) as follows.
Let (wi)i∈∗N0 be a family of ∗R-valued maps defined

as:

w0(τ) = x0 +(τ− τ0) · y(τ0) (19a)

wn+1(τ) = wn(τn+1)+(τ− τn+1) · y(τn+1) (19b)

where

τ0 = τa (20a)

τn+1 = Inf [τa,τb]

(
{τ | τ > τn∧ eventn(τ)}∪{τb}

)

(20b)

and

eventn(τ) =

(τ ∈ Acty)∨
((

wn(τ) ∈ x0 + ε · ∗Z
)
∧
(
wn(τ) 6= wn(τn)

))
(21)

Defining the co-product

w =
⊕

i∈∗N0

wi
∣∣
[τi,τi+1)

(22)

then, finally:

x : [τa,τb)→ x0 + ε · ∗Z
τ 7→ w

(
last(τ)

)
(23)

where

last(τ) =

Sup [τa,τb){τ ′ | τ ′ ≤ τ ∧w(τ ′) ∈ x0 + ε · ∗Z} (24)

The idea is the following:

• w represents the “private” behaviour of the de-
fined signal x: starting from x0 at τa, it evolves
linearly between two consecutive event instants
((19a) and (19b)) until τb;

• as stated by (21), events affecting the behaviour
of w have two possible causes:

– y (defining the right-hand side of the differ-
ential equation) has evolved perceptibly, i.e.
its value has drifted by ±ε , since the previ-
ous event (including initialisation),

– w itself has evolved perceptibly since the
previous event (including initialisation);

• each time an event affecting w occurs, its gradient
is reevaluated, then w evolves linearly until the
next event;

• the “public” behaviour of x (i.e. as seen by an ex-
ternal observer) is a piece-wise constant approxi-
mation of its “private” behaviour w such that both
maps coincide at event instants corresponding to
perceptible changes of w, as stated by (24).

Figure 7 illustrates the process (the wi appear as
black linear slopes, and x is the blue slope):

• blue bullets indicate events resulting from the
evolution of w itself;

• red bullets indicate events resulting from the evo-
lution of y (notice that they are not necessarily
“synchronised” with ε-steps);

• green bullets indicate “skipped targets” (i.e.
events that would have resulted from the sole evo-
lution of w but that have been “intercepted” by an
event caused by y).
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Figure 7: Semantics of a differential equation.

Notice that we have defined the semantics of a dif-
ferential equation on an interval of the form [τa,τb) in-
stead of defining it on the whole time-line ∗T. The rea-
son is that we want differential equations to be defined
modularly, as required in particular by behavioural ab-
straction: it should be possible to define signals where
ideal phases alternate with high-fidelity ones.

Clearly, the set of continuous signals is closed under
the application of continuous functions. Therefore any
family of signals defined solely by means of differen-
tial equations and by algebraic constraints like

y = f (x1, . . . ,xn) (25)

only contains continuous signals. Regarding (25) we
have in particular:

Acty⊆ Actx1∪·· ·∪Actxn (26)

meaning that such an algebraic constraint acts as an
“activity filter”.

4.3 Behavioural abstraction support

Below, we suppose given an additional positive in-
finitesimal constant δ .

We model a reset equation constraining a continu-
ous signal x on [τa,τa + δ ) by means of the following
differential equation:

der(x,x0) :=
x1− x0

δ
(27)

where x0 is the value of x at τa, and x1 is the “target
value” to be reached by x at τa + δ as a result of the
reset operation.6

6In Modelica, this is given by the second argument of reinit
(see Listing 1 for an example).

Notice that the right-hand side of (27) is constant
and infinite. By the definition of a differential equa-
tion given in Section 4.2, x reaches x1 (more precisely:
the first element of x0 + ε · ∗Z that is greater than or
equal to x1) after δ units of time (i.e. the length of
[τa,τa +δ )). Notice that this definition of a reset equa-
tion involves a duration (i.e. the time spent by the sig-
nal to reach its target value). Since this duration is in-
finitesimal, we actually observe the desired behaviour:
the reset is infinitely fast compared to any standard
phenomenon.

Recall, however, that we want to support proper
composition of such abstraction mechanisms. In or-
der to refine the above definition to achieve this goal,
we first associate with each continuous signal defined
in the model an abstraction level n ∈ N0

7 which rep-
resents the maximal number of nested reset equations
that might contribute to the definition of the signal:

• a independent signal that is not reset in the model
has the abstraction level 0;

• a signal that is reset in the model by equations
involving only signals whose abstraction level is
at most n−1 has abstraction level n;

• a signal that is defined by an algebraic constraint
inherits the highest abstraction level among those
of the signals appearing in its definition.

Notice that, in a language implementing our semantic
model, the abstraction level defined as above can al-
ways be statically computed by elementary data-flow
analysis for an arbitrary model without circular depen-
dencies between reset equations.

We are now in the position to refine (27) as follows.
A signal x with abstraction level n and the current
value x0 is reset to x1 at τa by means of the follow-
ing differential equation activated on [τa,τa + δ n):

der(x,x0) :=
x1− x0

δ n (28)

The idea is that signals with higher abstraction lev-
els should reset infinitely faster than others: by taking
successive powers of δ , we achieve precisely this ef-
fect.

What about the Zeno effect under behavioural ab-
straction in such a semantic model?

Notice that we can assume that continuous signals
do not diverge in value during integration (otherwise
the model is considered singular) and let the highest
level of abstraction in a given model be n. By (28), this

7A standard natural number.
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means that in this model, the fastest reset terminates in
δ n units of time. Hence, integration of each signal ter-
minates in at most d(τend − τ0)/δ ne steps, where τ0
and τend denote respectively the start time and the end
time of the integration. Thus, provided that the max-
imum abstraction level in the model is finite, continu-
ous signals always diverge in time.

4.4 Application Example

Let us consider again the model of Figure 4, where we
suppose that the behaviour of the voltage source and of
the fuses have been abstracted. How does our proposal
fare in such a case?

Before we answer this question, we need to examine
the case of conditional equations.

Conditional equations are used to express “mode
changes” in physical models, typically leading to
equation switching, as in our electrical model exam-
ple. As a consequence, conditional equations poten-
tially lead to the exact same issues encountered with
reset equations. Same symptoms, same medication:
we just need to find a way to introduce the concept of
infinitely fast transition in the semantics of conditional
equations. This is achieved as follows.

Suppose that c : ∗T → {F,T} is a boolean signal
whose value is F until the event instant τ0, after which
it takes the value T. Suppose also that x : ∗T →
x0 +ε · ∗Z and y : ∗T→ y0 +ε · ∗Z are two given phys-
ical signals. Then the semantics of a conditional real
function can be defined as:

if c then x else y
de f
= λ · x +(1−λ ) · y (29)

where

λ =





0 on {τ | τ ≤ τ0}
τ−τ0

δ on {τ | τ0 < τ ≤ τ0 + δ}
1 on {τ | τ > τ0 + δ}

(30)

It can easily be shown that signals defined by con-
ditional real functions are continuous signals.

Coming back to our example, what happens when
the voltage source makes a step? The voltage src.v

gradually evolves from its start value 0 to its maxi-
mum value 1. During the rise, it traverses the surface
corresponding to

src.v = f1.iMax · (r.R+f1.R+f2.R)

because, given our parameter settings and the values
of the internal resistances of both fuses before the first
melt, we have:

f1.iMax · (r.R+f1.R+f2.R) = 0.500000001

Figure 8: Solution of the system of dynamic equa-
tions resulting from the abstraction of the ramp voltage
source.

which belongs to [0,1].
But, according to (13n), this is precisely the voltage

required to induce a current equal to the rated current
of f1 in the circuit. Consequently, f1 melts, but not
f2. Figure 8 illustrates the result of interpreting the
model with our semantics.

5 Conclusion and Future Work

In this paper, we have extended the pioneer work
of [2, 16] by proposing a non-standard operational
semantics supporting compositional behavioural ab-
straction. As demonstrated by [1], non-standard se-
mantics can be used to give rigorous interpretation of
hybrid modelling languages such as Modelica.

The most obvious practical application of our work
would certainly be the design and development of a
simulator that would conform to our semantic model:
one of us (S. Furic) is currently working in this di-
rection in the course of the French funded project
AGéSys.
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