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Abstract
We extend our previous algebraic formalisation of the notion of component-based framework
in order to formally define two forms—strong and weak—of the notion of full expressiveness
and study their properties. Our earlier result shows that the BIP (Behaviour–Interaction–
Priority) framework does not possess the strong full expressiveness with respect to the sub-
class of GSOS rules used for the definition of its semantics. In this paper, we refine this
comparison detailing the expressiveness of classicalBIP,OfferBIP and a number of variations
obtained either by relaxing the constraints in the definitionof prioritymodels or by introducing
positive premises into the rule formats used to define the operational semantics of composition
operators. The obtained results are organised into an expressiveness hierarchy.

1 Introduction

In our previous work [3], we have formalised some of the properties that are desirable for
component-based design frameworks, namely: incrementality, flattening, compositionality
and modularity [24,34]. The formalisation is based on a very simple, abstract algebraic
definition of the notion of component-based framework. We have also discussed the full
expressiveness property, although without providing a formal definition for it. Intuitively,
strong (resp. weak) full expressiveness of one framework w.r.t. another requires that each
operator of the first be expressible as an operator (resp. composition of operators) in the
second.

In this paper, we provide a formal definition of the notion of full expressiveness. We
then apply it to study the expressiveness of the BIP (Behaviour–Interaction–Priority) frame-
work [6,7] and their variations.
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BIP is a component-based framework for the design of concurrent systems based on
the separation of concerns between coordination and computation [6,7]. It is among the
few frameworks, such as SCADE [15] and Ptolemy II [20], which combine the use of for-
mal methods for defining their operational semantics and for model verification, with code
generation. Recently we have developed a theory of architectures [1,2], which allows the
compositional design of correct-by-construction BIP models. This theory formalises BIP
design patterns, called architectures. The application of an architecture to a BIP system
enforces the corresponding characteristic property. We have shown that safety properties
are preserved by composition of architectures and have provided an algorithm for veri-
fying whether two architectures are non-interfering, which guarantees the preservation of
their liveness properties. This approach provides a compositional method for the design of
correct-by-construction systems from a set of formalised user and system requirements. We
have applied this methodology for the design of satellite on-board software, in particular for
CubETH—a university-built nanosatellite—and in a project financed by the European Space
Agency [27,36].

BIP systems consist of componentsmodelled as Labelled Transition Systems (LTS). Tran-
sitions are labelled by ports, which are used for synchronisation with other components.
Composition operators defining such synchronisations are obtained by combining interac-
tion andprioritymodels. The classical operational semantics of theBIP composition operators
[9] is defined by SOS rules in a format, which is a restriction of GSOS [14]; we call this
format BIP-like SOS. In the previous works [9–12], we have conducted an extensive study of
the semantics and algebraic representations of the BIP glue operators. While the semantics
of interaction models is very straightforward and did not change throughout those papers,
that of the priority models has proven to be much subtler. Thus, in order to make the correct
decisions for the future versions and flavours of BIP, it is essential to understand the impact
of the meaning given to priority models on the resulting design framework, in particular its
expressiveness, which is the central question of this paper.

In [3], we have provided a counter-example showing that the classical semantics of BIP
does not possess flattening, which implies that it does not possess strong full expressiveness
w.r.t. BIP-like SOS either. This shows that the often encountered informal statement: “BIP
possesses the expressiveness of the universal glue” (or its equivalent in slightly different
formulations) is based on an erroneous proposition in previous work [10, Proposition 4].
The fundamental reasons for this absence of strong full expressiveness lie in the definition
of the priority models. A priority model is a strict partial order on the underlying interaction
model (set of allowed interactions). In particular, this definition guarantees that applying
a priority model does not introduce deadlocks in the otherwise deadlock-free system. This
property turns out to be one of the key reasons underlying the expressiveness limitations,
since deadlocks can be introduced by certain operators respecting the BIP-like SOS format.

In this paper, we consider five variations of BIP, including the classical BIP, alongside five
variations of the SOS formats defining the composition operator semantics and study their
relative expressiveness. In doing so, we extend and refine the results previously published in
the proceedings of the EXPRESS/SOS 2016 workshop [4].

The first part of the paper introduces the general theory of expressiveness, by

– defining the notion of component-based framework,
– identifying six possible expressiveness relations between two frameworks based on the

notions of strong and weak full expressiveness of one framework w.r.t. another,
– presenting several properties of these relations.
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The second part of the paper studies the expressiveness relations among five variations of
BIP and five SOS formats:

– Classical BIP (CBIP) and BIP-like SOS (BSOS)
– Witness BIP-like SOS (WBSOS)WBSOS extends BIP-like SOSwith positive premises

that do not contribute to the transition defined by the rule, i.e. the enabledness of a
transition in one of the components is tested without the transition being fired.

– Simple (SiBSOS) and acyclic (AcBSOS) BIP-like SOS These two restrictions of BSOS
apply to sets of rules defining an operator. For a set of rules in the BIP-like SOS format,
the inhibiting relation identifies interactions, whereof the enabledness inhibits a given
interaction. SiBSOS considers only sets of BIP-like SOS rules with simple inhibiting
relations, where the enabledness of one interaction is always sufficient to inhibit another
one. AcBSOS requires in addition that the inhibiting relation be acyclic.

– RelaxedBIP (RBIP)RBIP extends classical BIP by taking prioritymodels to be arbitrary
relations on sets of ports, i.e. without requiring that these be strong partial orders and
limited to interactions provided by the components.

– Complex BIP (XBIP) XBIP is a further extension of RBIP, which allows sets of
interactions—as opposed to single interactions in CBIP and RBIP—to be used as
inhibitors in the priority model.

– Offer BIP (OBIP) and Firing-Negative-Activation SOS (FNASOS) These two frame-
works are based on an alternative, offer semantics initially introduced in [12], using the
offer predicate, which allows testing whether a port is part of an enabled transition in an
atomic component.

– Activation BIP (ABIP) ABIP is a hybrid framework introduced for the sake of com-
parison, which mixes the classical and offer semantics by relying on the usual transition
relation to define the semantics of priority models, but using the offer predicate for that
of non-firing positive premises.

Figure 1 shows the comparison of expressiveness among the these frameworks. The figure
is complete in the sense that all relations that are not shown explicitly can be deduced from
those shown by application of the results presented in Sect. 2.

The rest of the paper is structured as follows. Section 2 presents the algebraic formalisation
of component-based frameworks, strong and weak full expressiveness, and presents their
properties. Section 3 provides the definitions and the formal semantics of all the variations
of BIP and the SOS formats presented above. Section 4 analyses the expressiveness relations
among these frameworks. Section 5 briefly discusses some related work. Finally, Sect. 6
concludes the paper.

2 Algebraic formalisation of component-based frameworks

2.1 Basic definitions

Every component-based design framework can be viewed as an algebra of components
equipped with a semantic mapping. The algebra of components syntactically defines the
composite components that can be assembled from a given set of the atomic ones. The
semantic mapping associates to each component its corresponding behaviour. The codomain
of the semantic mapping, which we call the semantic domain consists of a behaviour type—
defined in terms of Labelled Transition Systems or a similar formalism—and an associated
equivalence relation. This can be formalised as follows:
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Fig. 1 Expressiveness relations among the considered frameworks

Definition 1 A component-based framework is a tuple (G,C,B,�, σ ), where

– G is a set of composition (glue) operators, we denote byGn ⊆ G, with n ∈ N, the subset
of n-ary operators,

– C is a set of atomic components,
– (B,�) is a semantic domain, consisting of a behaviour typeB and an equivalence relation
� ⊆ B× B,

– σ : A⇀B is a partial semantic mapping from the algebraic structure

A ::=C | o〈C1, . . . ,Cn〉, C ∈ C, n ∈ N, C1, . . . ,Cn ∈ A and o ∈ Gn,

generated by G from C, which we call the algebra of components of the framework.
(Notice that A does not appear explicitly in the tuple, since it is fully defined by G
and C.)

We call the elements of A components and the elements of B behaviours. The algebraic
structure A represents the set of all systems constructible within the framework.

The behaviour type B defines the semantic nature of the components manipulated by the
framework. The equivalence relation � ⊆ B × B allows comparing components in terms,
for example, of their functionality, observable behaviour or capability of interaction with the
environment. It is canonically lifted to A by putting, C1 � C2 iff σ(C1) � σ(C2), for any
C1,C2 ∈ A. The semantic mapping σ : A⇀B assigns to each component its meaning in
terms of the behaviour type B: for any C ∈ A, we say that σ(C) is the behaviour of C .

Example 1 A number of examples representing variations of the BIP framework will be
provided in the subsequent sections. For an alternative example, consider the framework
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CCS− = (G−,C,B,�, σ−), taking both C and B to be the subset of purely sequential
processes in CCS [28]:

C = B ::= l | l.P | P1 + P2, l ∈ L, P, P1, P2 ∈ B,

where L = {τ } ∪ {a, a | a ∈ A}, for some given set of actions A. Take � be the branching
bisimilarity relation [5]. Take G = {‖, \A}, where ‖ is the classical binary CCS parallel
composition (synchronising a and a, for any a ∈ A) and \A is the unary restriction operator,
which hides all actions in the set A ⊆ A by replacing them with τ . The semantic mapping σ

is defined trivially for \A and through the expansion lemma [28], for ‖.
Definition 2 The semantic mapping is called structural, if it is defined by associating to each
n-ary glue operator o ∈ Gn a corresponding partial mapping õ : Bn⇀B and putting

σ
(
o〈C1, . . . ,Cn〉

) = õ
(
σ(C1), . . . , σ (Cn)

)
, for all n ∈ N, C1, . . . ,Cn ∈ A and o ∈ Gn .

We call {õ | o ∈ G} the set of defining mappings of σ .

Example 2 Clearly, the semantic mapping in Example 1 is structural. Alternatively, any
semanticmapping defined using Structural Operational Semantics rules [32] is, indeed, struc-
tural.

Before moving on to the notions necessary for comparing the expressiveness of
component-based frameworks, we introduce the following technical definition.

Definition 3 Given a framework F = (G,C,B,�, σ ) and a set of variables Z, we will
denote byG[Z] the set of expressions on variables in Z, defined by the following grammar:

G[Z] ::= Z | o〈E1, . . . , En〉, Z ∈ Z, n ∈ N, E1, . . . , En ∈ G[Z] and o ∈ Gn .

Comparing the expressiveness of two component-based frameworks is only possible when
their semantic domains coincide.1

Definition 4 Given two frameworks Fi = (Gi ,Ci ,B,�, σi )i∈{1,2} with the same semantic
domain, we say that F1 has strong full expressiveness w.r.t. F2, denoted F2�F1 iff

∀n ∈ N, ∀o ∈ Gn
2, ∃õ ∈ Gn

1 : ∀Ci
1, . . . ,C

i
n ∈ Ai ,

n∧

k=1
σ1(C

1
k ) � σ2(C

2
k ) �⇒ σ1(õ〈C1

1 , . . . ,C
1
n 〉) � σ2(o〈C2

1 , . . . ,C
2
n 〉). (1)

We say that F1 has weak full expressiveness w.r.t. F2, denoted F2
F1 iff,
∀n ∈ N, ∀o ∈ Gn

2, ∃õ ∈ G1[Z1, . . . , Zn] : ∀Ci
1, . . . ,C

i
n ∈ Ai ,

n∧

k=1
σ1(C

1
k ) � σ2(C

2
k ) �⇒ σ1

(
õ[C1

1/Z1, . . . ,C
1
n/Zn]

) � σ2
(
o〈C2

1 , . . . ,C
2
n 〉

)
, (2)

where õ[C1
1/Z1, . . . ,C1

n/Zn] ∈ A1 is the component obtained by substituting in õ the vari-
ables Zk by components C1

k , for all k ∈ [1, n].

1 Two component-based frameworks with distinct semantic domains can be compared by mapping to a
commonbehaviour type and taking an appropriate equivalence relation consistentwith those of the frameworks.
However, this essentially boils down to a substitution of the semantic domains, i.e. considering a different pair
of frameworks.
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Table 1 Expressiveness comparison relations (three “less expressive” relations indicated in bold are symmetric
to the “more expressive” ones; the two relations in the second row are not used in the subsequent sections of
this paper—they are only presented for the sake of completeness)

Example 3 In addition to CCS− from Example 1, consider the framework CCS = (G,C,

B,�, σ ), where C, B and � are the same as in CCS−, whereas G = G− ∪ {+}, with the

extension from σ− to σ being trivial: σ(C1 + C2)
de f= σ(C1) + σ(C2). We trivially have

CCS−�CCS.
It is easy to show that the + operator cannot be encoded by any combination of parallel

composition and restriction, essentially since the choice representedby+has to bemaintained
throughout the subsequent execution of the process, whereas both parallel composition and
restriction are “memoryless”. Hence, CCS
/CCS−.

Notice that both strong and weak full expressiveness are preorders, i.e. they are reflexive
and transitive. Strong full expressiveness trivially implies the weak one.

Definition 5 Based on the full expressiveness relations, we introduce six comparison rela-
tions, presented in Table 1. For instance (second cell of the first row), if F1 has strong full
expressiveness w.r.t. F2, whereas F2 has only weak—but not strong—full expressiveness
w.r.t. F1, we say that F1 is weakly more expressive than F2 (alternatively, F2 is weakly less
expressive than F1) and denote this by F2 → F1.

Example 4 The full expressiveness relations from Example 3mean thatCCS is strongly more
expressive than CCS−, i.e. CCS− ⇒ CCS.

Notice that the six comparison relations are mutually disjoint.
The intuitive meanings of the three relations in the first row of Table 1 are the following:

given two frameworks Fi = (Gi ,Ci ,B,�, σi ), if for any operator in G2 we can find a
corresponding operator in G1 such that its application to an equivalent set of components
would result in equivalent components, then F1 has at least equivalent expressiveness or is
more expressive than F2. There are three options for the converse. If there is a corresponding
operator in G2 for any operator in G1, then their expressiveness are equivalent. If every
operator in G1, which does not have a corresponding one in G2, can be represented by a
hierarchy of operators in G2, then F1 is weakly more expressive than F2. Finally, if there
exists an operator in G1 that cannot be represented by any combination of operators in G2,
then F1 is strongly more expressive than F2. If such inexpressible operators exists in both
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G1 andG2 then F1 and F2 are incomparable (third row of Table 1). The intuition behind the
relations in the second row of Table 1 is similar.

Notice that the relations shown in Table 1 are mutually exclusive. For instance, contrary to
the usual intuition behind the use of the symbols ‘⇔’ and ‘⇒’ in predicate logics, F1 ⇔ F2
implies F1 �⇒ F2. In particular, a framework is never more expressive than itself, i.e. F �⇒ F
and F �→ F .

2.2 Properties of the comparison relations

We now provide some key properties of the relations defined in the previous section.
The relations⇒,→ and⇔ are transitive.

Proposition 1 For any frameworks F1, F2, F3 and any R ∈ {⇒,→,⇔ }, we have F1RF2
and F2RF3 implies F1RF3.

Proof We provide the proof forR =→. Those for⇔ and⇒ are even more straightforward.
Since F1 → F2 and F2 → F3, by definition of →, hold the relations shown in the

following diagram:

F1 � F2 � F3
‖ ‖ ‖
F1 � F2 � F3
‖ ‖ ‖
F1 �/ F2 �/ F3

From the transitivity of � and 
, we conclude that F1�F3 and F3
F1.
Suppose that F3�F1. Then, from the above diagram, we deduce F2�F3�F1, i.e. F2�F1,

which contradicts the assumption F1 → F2. We conclude that F3�/ F1 and, therefore,
F1 → F3. ��

In particular, transitivity of ⇔ implies that this relation is, indeed, an equivalence. We
will now show that all the relations introduced above are preserved by⇔. First, consider the
following lemma.

Lemma 1 For any frameworks F1, F2, F3, such that F1 ⇔ F2 and any R ∈ {�,�, 
, �},
we have F1RF3 iff F2RF3.

Proof Follows from the transitivity of � and 
 and the fact that � implies 
. ��
Corollary 1 For any frameworks F1, F2, F3, such that F1 ⇔ F2 and any R ∈ {⇔,→,⇒,

↔, ���,←→/ }, we have F1RF3 iff F2RF3.

Lemma 2 For any frameworks F1, F2, F3, hold the following implications:

1. F1�F2 ∧ F1�/ F3 implies F2�/ F3,
2. F1�F2 ∧ F1
/ F3 implies F2
/ F3,
3. F1�F2 ∧ F3�/ F2 implies F3�/ F1,
4. F1�F2 ∧ F3
/ F2 implies F3
/ F1.
Proof Similarly to Lemma 1, all these implications follow from the transitivity of � and 

and, for implications 2 and 4, from the fact that � implies 
. ��

From Lemma 2 and the transitivity of � and 
 we deduce the following corollary.
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Corollary 2 For any frameworks F1, F2, F3, hold the following implications:

1. F1 ⇒ F2 → F3 implies F1 ⇒ F3,
2. F1 → F2 ⇒ F3 implies F1 ⇒ F3.

Proof In both items, we have F1�F2�F3. From the transitivity of � we deduce F1�F3.
In 1, we have F2
/ F1 ∧ F2�F3 which, by Lemma 2 (2), implies F3
/ F1.
Similarly, in 2, we have F1�F2 ∧ F3
/ F2 which, by Lemma 2 (4), implies F3
/ F1.
Thus, in both cases, we, indeed, have F1 ⇒ F3 ��
Notice that relation combinations other than those in Proposition 1 and the two corollaries

above do not provide immediate “shortcut” relations. This is mostly due to the fact that the
complement relations�/ and 
/ are not transitive. For instance, given F1, F2 and F3, such that
F1
F2
F3 but F1�/ F2�/ F3, we can proceed as follows:

1. Take all composition operators from F1 that do not have corresponding ones in F2 and
add them to F3 as “syntactic sugar” for the corresponding hierarchical expressions.

2. Add two completely new operators two F3 and another completely new operator to F2
with the semantics defined as the composition of those for the two new operators in F3.

Denoting the extended frameworks by F ′2 and F ′3, we have F1
F ′2
F ′3, F1�/ F ′2�/ F ′3 but
F1�F ′3. Without constituting a formal proof, this manipulation does provide an intuition for
the reason why other relation combinations do not have generic shortcuts.

Definition 6 The framework is said to possess uniform flattening2 if the set of composition
operators G is closed under composition:

∀n ∈ N, ∀i, j ∈ [1, n] (i ≤ j),

∀o1 ∈ Gn− j+i , ∀o2 ∈ G j−i+1, ∃o3 ∈ Gn, ∀C1,C2, . . . ,Cn ∈ A :
o1〈C1, . . . ,Ci−1, o2〈Ci , . . . ,C j 〉,C j+1, . . . ,Cn〉 � o3〈C1, . . . ,Cn〉.

Asmentioned above, strong full expressiveness trivially implies weak full expressiveness.
The converse holds in presence of uniform flattening.

Proposition 2 For two frameworks F1 and F2, such that F1 has uniform flattening, F2
F1
implies F2�F1.

Sketch of the proof Weak full expressiveness guaranties that any operator o from G2 is
expressible as a hierarchy of operators in G1. Uniform flattening applied several times to
this hierarchy can “flatten” it to a single glue corresponding to o. Thus, the requirement for
strong full expressiveness is satisfied. ��

According to Definition 4, in order to establish that one framework has strong (resp.
weak) full expressiveness w.r.t. another, we have to prove the existence of the corresponding
operator (resp. hierarchical construction) that preserves the semantic equivalence (see (1) or
(2)). Below, we show that, under additional assumptions, it is sufficient to only check the
preservation of the behaviour equality.

Definition 7 A framework (G,C,B,�, σ ) is compositional iff

∀n ∈ N, ∀o ∈ Gn,∀Ci
1, . . . ,C

i
n ∈ Ai (i ∈ {1, 2}),

2 The notion of uniform flattening is stronger than that of flattening introduced in [3] in that it requires the
operator o3 to be the same, independently of the choice of C1, . . . ,Cn .
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n∧

k=1
C1
k � C2

k �⇒ o〈C1
1 , . . . ,C

1
n 〉 � o〈C2

1 , . . . ,C
2
n 〉. (3)

Lemma 3 ([3]) If the semantic mapping of a framework is structural and the defining map-
pings (see Definition 2) preserve the equivalence of the operands, then the framework is
compositional.

Proof By the assumptions of the lemma, we have:

σ
(
o〈C1

1 , . . . ,C
1
n 〉

) = õ
(
σ(C1

1 ), . . . , σ (C1
n )

) � õ
(
σ(C2

1 ), . . . , σ (C2
n )

) = σ
(
o〈C2

1 , . . . ,C
2
n 〉

)
.

��
All composition operators that we will consider in this paper satisfy the assumptions of

the above lemma.

Proposition 3 For two frameworks Fi = (Gi ,C,B,�, σi )i∈{1,2}, whereof F1 is composi-
tional, with the same atomic components, the same semantic domain, and such that, for any
C ∈ C, holds σ1(C) = σ2(C), we have

1. F2�F1 if

∀n ∈ N, ∀o ∈ Gn
2, ∃õ ∈ Gn

1 : ∀Ci
1, . . . ,C

i
n ∈ Ai ,

n∧

k=1
σ1(C

1
k ) = σ2(C

2
k ) �⇒ σ1(õ〈C1

1 , . . . ,C
1
n 〉) = σ2(o〈C2

1 , . . . ,C
2
n 〉), (4)

2. F2
F1 if
∀n ∈ N, ∀o ∈ Gn

2, ∃õ ∈ G1[Z1, . . . , Zn] : ∀Ci
1, . . . ,C

i
n ∈ Ai ,

n∧

k=1
σ1(C

1
k ) = σ2(C

2
k ) �⇒ σ1

(
õ[C1

1/Z1, . . . ,C
1
n/Zn]

) = σ2
(
o〈C2

1 , . . . ,C
2
n 〉

)
,

(5)

where all notations are as in Definition 4.

Proof We prove the proposition for F2�F1—the proof for F2
F1 is similar.
Let us denote Am

i the set of components C ∈ Ai , such that the maximal chain of appli-
cations of composition operators in the construction of C has the length m. In particular,
A0
i = C.
The proof is by induction of the structural depth of the components involved. The induction

hypothesis is the following: with the restriction of the last quantification to ∀Ci
1, . . . ,C

i
n ∈

Am
i , (4) implies (1) and

∀C ∈ Am
2 , ∃C ′ ∈ Am

1 : σ1(C ′) = σ2(C). (6)

The induction step will consist in proving that if this statement holds for all m′ < m, then
it also holds for m. The base case is m = 0, i.e. the quantification is over atomic components
only.

Consider a pair of operators o and õ, which satisfy (4) with the last quantification being
replaced by ∀Ci

1, . . . ,C
i
n ∈ C, and two sets of atomic components Ci

1, . . . ,C
i
n ∈ C (for
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i = 1, 2), such that σ1(C1
k ) � σ2(C2

k ), for all k ∈ [1, n]. Since, by the assumption of the
proposition, σ1(C2

k ) = σ2(C2
k ), we have by (4)

σ1
(
õ〈C2

1 , . . . ,C
2
n 〉

) = σ2
(
o〈C2

1 , . . . ,C
2
n 〉

)
.

Since σ1(C1
k ) � σ2(C2

k ) = σ1(C2
k ), by compositionality of F1, we have

σ1
(
õ〈C1

1 , . . . ,C
1
n 〉

) � σ1
(
õ〈C2

1 , . . . ,C
2
n 〉

)

and, combining the two,

σ1
(
õ〈C1

1 , . . . ,C
1
n 〉

) � σ2
(
o〈C2

1 , . . . ,C
2
n 〉

)
.

Notice that, form = 0, (6) holds trivially by the assumption of the proposition withC2 = C1.
Let us now prove the induction step. First of all, consider a component C ∈ Am

2 . Since
m > 0, we have C = o〈C1, . . . ,Cl〉, for some o ∈ G2 and C1, . . . ,Cl ∈ Am−1

2 . Hence,
by the induction hypothesis, there exist C ′1, . . . ,C ′l ∈ Am−1

1 , such that σ1(C ′k) = σ2(Ck),
for all k ∈ [1, l]. By (4), there exists õ ∈ G1, such that σ1

(
õ〈C ′1, . . . ,C ′l 〉

) = σ2
(
o〈C1, . . . ,

Cl〉
) = σ2(C). Denoting C ′ = õ〈C ′1, . . . ,C ′l 〉 ∈ Am

1 , we obtain the proof of the induction
step for (6).

Consider now a pair of operators o and õ, which satisfy (4) with the last quantifi-
cation replaced by ∀Ci

1, . . . ,C
i
n ∈ Am

i . Consider, furthermore, two sets of components
Ci
1, . . . ,C

i
n ∈ Am

i , such that σ1(C1
k ) � σ2(C2

k ), for all k ∈ [1, n]. By (6) (as proven above),

there exist C2
1
′
, . . . ,C2

n
′ ∈ Am

1 , such that σ1(C2
k
′
) = σ2(C2

k ), for all k ∈ [1, n]. By (4), we
have

σ1
(
õ〈C2

1
′
, . . . ,C2

n
′〉) = σ2

(
o〈C2

1 , . . . ,C
2
n 〉

)
.

Since σ1(C1
k ) � σ2(C2

k ) = σ1(C2
k
′
), by compositionality of F1, we have

σ1
(
õ〈C1

1 , . . . ,C
1
n 〉

) � σ1
(
õ〈C2

1
′
, . . . ,C2

n
′〉)

and, combining the two,

σ1
(
õ〈C1

1 , . . . ,C
1
n 〉

) � σ2
(
o〈C2

1 , . . . ,C
2
n 〉

)
,

which proves the induction step for (1) and thereby concludes the proof of the proposition.
��

All the frameworks considered in the subsequent sections have structural semantics and
follow SOS formats that preserve bisimilarity. Since we consider a bisimilarity-based equiv-
alence relation on the behaviour type, all these frameworks are compositional by Lemma 3.
Furthermore, all these frameworks have the same set of atomic components and, up to a canon-
ical extension (see Sect. 3.3.3), the same semantic domain. They satisfy all the assumptions
of Proposition 3, which means that we can prove the positive results about their relative
expressiveness by studying the defining mappings of the matching composition operators
and showing that their application preserves the equality of behaviours. (Negative results are
proven by counterexamples.)
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3 The BIP component-based framework

3.1 Classical BIP

In this section, we briefly recall BIP and its classical operational semantics, as initially
published in [9].

3.1.1 Semantic domain

The behaviour type in BIP is the set of Labelled Transition Systems (LTS).

Definition 8 A labelled transition system (LTS) is a triple (Q, P,−→), where Q is a set of
states, P is a set of ports, and −→ ⊆ Q × 2P × Q is a set of transitions labelled by sets of
ports, such that only self-loops can be labelled by the empty set of ports, i.e. (q,∅, q ′) ∈ −→
implies q = q ′. For q, q ′ ∈ Q and a ∈ 2P , we write q

a−→ q ′ iff (q, a, q ′) ∈ −→. A label

a ∈ 2P is active in a state q ∈ Q (denoted q
a−→), iff there exists q ′ ∈ Q such that q

a−→ q ′.
We abbreviate q /

a−→ de f= ¬(q
a−→).

Note 1 In the rest of the paper, whenever we speak of a set of LTSs Bi = (Qi , Pi ,−→i ),
for i ∈ [1, n], we assume that all Pi are pairwise disjoint, i.e. i �= j implies Pi ∩ Pj = ∅.
We denote P

def= ⋃n
i=1 Pi . When the indices are clear from the context, we drop them on

transition relations and simply write −→.

The equivalence of LTS is defined through a bisimulation relation [31].

Definition 9 Let B1 = (Q1, P,−→1) and B2 = (Q2, P,−→2) be two LTS, and let R ⊆
Q1 × Q2 be a binary relation.

– R is a simulation iff, for all q1Rq2, q1
a−→1 q ′1 implies q2

a−→2 q ′2 for some q ′2 ∈ Q2 such
that q ′1Rq ′2.

– R is a bisimulation iff both R and R−1 are simulations.

We say that B1 and B2 are bisimilar if there exists a bisimulation relation total on both
Q1 and Q2.

Definition 10 Two behaviours Bi = (Qi , Pi ,−→), for i = 1, 2 are equivalent if P1 = P2,
and the two LTS are bisimilar.

3.1.2 Glue operators

BIP glues consist of two layers. Interaction models define the sets of allowed interactions,
i.e. synchronisations between the transitions of their operand components. Priority models
define the scheduling—or conflict resolution—policies, reducing non-determinism when
several synchronisations allowed by the interaction model are enabled simultaneously.

Interaction models For given disjoint sets of ports Pi , for i ∈ [1, n], we denote
P = ⋃n

i=1 Pi . An interaction model is a set of interactions γ ⊆ 2P . The semantics of the
application of an interaction model γ is defined for any set of components C1, . . . ,Cn such
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that σ(Ci ) = (Qi , Pi ,−→i ), for i ∈ [1, n], by putting σ
(
γ 〈C1, . . . ,Cn〉

) de f= (Q, P,−→γ ),
with Q =∏n

i=1 Qi and the minimal transition relation −→γ satisfying the rule

a ∈ γ
{
qi

a∩Pi−−−→ q ′i
∣
∣
∣ i ∈ I

} {
qi = q ′i

∣
∣
∣ i /∈ I

}

q1 . . . qn
a−→γ q ′1 . . . q ′n

, (7)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅}. Intuitively, this means that an interaction a allowed by
the interaction model γ can be fired when all the components involved in a are ready to fire
the corresponding transitions. All the components that are not involved in a remain in their
current states.

Priority models For a component C , such that σ(C) = (Q, P,−→), a priority model is a
strict3 partial order π ⊆ 2P × (2P\{∅}) (we write a ≺ b as a shorthand for (a, b) ∈ π).

The semantics of the application of a priority model π is defined by putting σ(π〈C〉) de f=
(Q, P,−→π ), with the minimal transition relation −→π satisfying the rule

q
a−→ q ′

{
q /

b−→
∣
∣
∣ a ≺ b

}

q
a−→π q ′

. (8)

Intuitively, this means that an interaction can be fired only if no higher-priority interaction
is enabled. In this context, it is important to notice that only interactions belonging to the
interaction model of a BIP glue operator can be used in the priority model.

Definition 11 An n-ary BIP glue operator is a triple
(
(Pi )ni=1, γ, π

)
, where (Pi )ni=1 are

disjoint sets of ports and, denoting P
def= ⋃n

i=1 Pi , the remaining two elements γ ⊆ 2P and
π ⊆ γ × (γ \{∅}) are, respectively, interaction and priority models on P .

In the remainder of the paper, we omit the sets of ports (Pi )ni=1 when they are clear from
the context.

We will denote by CBIP the framework combining the above defined elements, with LTS
being both the behaviour type and the set of atomic components, bisimilarity used as the
semantic equivalence and composition operators and the semantic mapping defined as in
Definition 11 and rules (7) and (8).

To simplify the notation, we denote the component obtained by applying the glue operator(
(Pi )ni=1, γ, π

)
to sub-components B1, . . . , Bn , by πγ 〈B1, . . . , Bn〉 instead of

(
(Pi )ni=1, γ,

π
)〈B1, . . . , Bn〉. Furthermore, when π = ∅, we write directly γ 〈B1, . . . , Bn〉, omitting π .

Example 5 Consider the two components C1 and C2 shown in Fig. 2a, b, respectively. We
have P1 = {p, q} and P2 = {r}, and put γ = {p, q, r , qr} and π = {q ≺ r}.4 The semantics
of the glue operator defined by the combination of the interaction model γ and the priority
model π is given by the following four rules, obtained by composing rules of forms (7) and
(8) and removing premises whereof satisfaction does not depend on the state of the operand
behaviours (e.g. the premise a ∈ γ is satisfied in all states):

q1
p−→ q ′1

q1q2
p−→ q ′1q2

,
q2

r−→ q ′2
q1q2

r−→ q1q ′2
,

q1
q−→ q ′1 q2

r−→ q ′2
q1q2

qr−→ q ′1q ′2
,

q1
q−→ q ′1 q2 /

r−→
q1q2

q−→ q ′1q2
. (9)

3 As opposed to a (non-strict) partial order, which is a reflexive, antisymmetric and transitive relation, a strict
partial order is an irreflexive and transitive (hence also antisymmetric) one.
4 To simplify the notation we use the juxtaposition γ = {p, q, r , qr} instead of the set notation γ ={{p}, {q}, {r}, {q, r}} for interactions. Similarly, we directly write π = {q ≺ r} instead of π = {(q, r)}.
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(a) (b) (c)

Fig. 2 Components and behaviour for Example 5

The behaviour of the composed component πγ 〈B1, B2〉 is shown in Fig. 2c. The dashed

arrow 21
q−→ 31 shows the transition present only in σ(γ 〈B1, B2〉), but not in σ(πγ 〈B1,

B2〉). Solid arrows show the transitions of σ(πγ 〈B1, B2〉).
Among the transitions labelled by q , only the transition 22

q−→ 32 is enabled and not

21
q−→ 31 (Fig. 2c). Indeed, the negative premise in the fourth rule of (9), generated by the

priority q ≺ r , suppresses the interaction q when a transition labelled r is possible in the
second component. ��

Let us now recall an important property of theBIP glue operatorswith the above semantics,
which was originally shown in [23]: application of a priority model does not introduce
deadlocks.

Definition 12 Let B = (Q, P,−→) be a behaviour. A state q ∈ Q is a deadlock iff holds the
statement ∀a ⊆ P, q /

a−→.

Lemma 4 ([23]) Let Ci , such that σ(Ci ) = (Qi , Pi ,−→), for i ∈ [1, n], be a set of com-
ponents, γ and π be respectively interaction and priority models on P = ⋃n

i=1 Pi . A state
q ∈∏n

i=1 Qi is a deadlock in σ(πγ 〈C1, . . . ,Cn〉) if and only if it is a deadlock in σ(γ 〈C1,

. . . ,Cn〉).
Proof The “if” implication is trivial. To prove the “only if” implication, assume that, for

some a ∈ γ , we have q
a−→γ . Let b ⊆ P be an interaction, maximal w.r.t. π , such that b ∈ γ ,

a ≺ b and q
b−→γ . If such b exists, holds q

b−→π . Otherwise holds q
a−→π . In both cases, q is

not a deadlock in σ(πγ 〈C1, . . . ,Cn〉). ��
Notice that this proof does not rely on π being a strict partial order. The lemma can be

generalised to any acyclic relation π ⊆ γ × γ .

3.1.3 BIP-like SOS format

Observe that the rules in (9) are obtained by composing rules of forms (7) and (8). In particular,
the fourth rule is obtained by the following derivation:

q ∈ γ q1
q−→ q ′1 q2 = q ′2

q1q2
q−→γ q ′1q ′2

r /∈ γ ∨ q2 /
r−→

q1q2 /
r−→γ

(*)

q1q2
q−→π q ′1q ′2

.
(10)
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The sub-derivation (*) in (10) is obtained by negating the premises of the instance of (7)
with a = r . This is possible because the transition relation in σ(γ 〈B1, B2〉) is defined by (7)
inductively, i.e. it is the minimal transition relation satisfying (7).

In (9),we have simplified (10) by removing premises,whereof satisfaction does not depend
on the state of the operand behaviours: q ∈ γ (satisfied in all states) and r /∈ γ (dissatisfied
in all states), and by replacing q ′2 with q2. Notice that the priority q ≺ r affects the behaviour
of the composed system only because r ∈ γ . Indeed, if r did not belong to γ , the premise
r /∈ γ would always be satisfied independently of the state of the system.

Every BIP glue operator is a combination of a (possibly trivial) interaction model with a
(possibly trivial) priority model. By merging a rule of form (8) with a layer consisting of one
or several rules of form (7)—as in the example (10) above—and simplifying by removing
the constant premises, we always obtain a rule in the format

{
qi

a∩Pi−−−→ q ′i
∣
∣
∣ i ∈ I

} {
qi = q ′i

∣
∣
∣ i /∈ I

} {
q j /

b j−→
∣
∣
∣ ( j, b j ) ∈ H

}

q1 . . . qn
a−→ q ′1 . . . q ′n

, (11)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅}, whereas H ⊆ [1, n] × 2P and b j ∈ 2Pj \{∅}, for each
( j, b j ) ∈ H . Below we call this format BIP-like SOS. Thus, the semantics of every BIP glue
operator can be defined by a set of rules in the BIP-like SOS format.

Note 2 Notice that for two rules in any given format, if their conclusions coincide but the
set of all the premises of one of the rules is contained in that of the other rule, then the latter
rule is redundant. Indeed, whenever the rule with more premises can be applied, so can be
the rule with less premises. Similarly, if a rule has contradictory premises, as for example

q
a−→ q ′ and q /

a−→, it is redundant, since it can never be applied.
Below, we will consider only sets of rules that do not contain such redundant ones and

will sometimes emphasize this fact by explicitly calling such sets non-redundant.

Definition 13 A BIP-like SOS operator is the composition operator defined as
(
(Pi )ni=1,R

)
,

where (Pi )ni=1 are disjoint sets of ports and R is a non-redundant set of BIP-like SOS rules
(11).

We will denote by BSOS the framework with the same atomic components and the same
semantic domain as CBIP (i.e. LTS and bisimilarity) and with BIP-like SOS glue operators
with their semantics defined inductively by the corresponding sets of rules.

The following example shows that BSOS does not possess flattening. Although, in
Sect. 2.2, we have only defined uniform flattening, this example shows that BSOS does
not possess even a weaker form defined in [3], where different operators are admitted for
different sets of operand components.

Example 6 Consider two composition operators defined by sets of rules in the BIP-like SOS
format:

o1 : q1
p−→ q ′1

q1q2q3
p−→ q ′1q2q3

,
q2

r−→ q ′2 q3 /
s−→

q1q2q3
r−→ q1q ′2q3

,
q3

s−→ q ′3
q1q2q3

s−→ q1q2q ′3
. (12)

o2 : q
p−→ q ′ q /

r−→
q

p−→ q ′
,

q
r−→ q ′

q
r−→ q ′

,
q

s−→ q ′

q
s−→ q ′

. (13)

Consider three components C1,C2 and C3 shown in Fig. 3 and a composed component
o2〈o1〈C1,C2,C3〉〉. Transition p in σ(o2〈o1〈C1,C2,C3〉〉) is available only in states where
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Fig. 3 Components for Example 6

r was not enabled in σ(o1〈C1,C2,C3〉). In particular, in the state 135, p is available, since r
is blocked by s in the second rule defining o1. To the contrary, in the state 136, p is blocked
by r in the first rule defining o2. The only difference between the active actions in the global
states 135 and 136 is that s is active in 135, but not in 136. Thus, to obtain the same behaviour
as in o2〈o1〈C1,C2,C3〉〉 using a single BIP-like SOS operator, we have to test the activity of
s. However, the BIP-like SOS rule format (11) only allows the use of the negative premise

q3 /
s−→, which would induce the opposite behaviour, i.e. blocking p in 135 instead of 136.

Thus, it is impossible to represent the behaviour of o2〈o1〈C1,C2,C3〉〉with a single BIP-like
SOS composition operator.

In Sect. 4.1, we will show that CBIP does not have even weak full expressiveness w.r.t.
BSOS. In the following subsections, we first introduce two useful variations of the BSOS
format (Sect. 3.2), thenwepresent someBIPmodifications thatwe use in our study (Sect. 3.3).

3.2 Variations of the BIP-like SOS format

3.2.1 Witness BIP-like SOS

In Example 6 above, a transition labelled by p is available in all states of the composed
component, where r is not enabled. The enabledness of r is controlled by the operator o1 as
follows: r is disabled in all states of σ(o1〈C1,C2,C3〉), where at least one premise of the
corresponding rule in o1 is not satisfied. Thus, in order to flatten the composition o2 ◦ o1, the
rule for the transition p should be split into two: one with the premise q2 /

r−→ that allows p in

all states where r is not enabled in the behaviour B2; and another with the premise ¬q3 /
s−→

or, equivalently, q3
s−→. This latter rule would allow p in all states, where s is enabled; in

such states r is blocked by the operator o1. We call premises of the form q3
s−→ witness.

Definition 14 A Witness BIP-like SOS operator is a composition operator defined as(
(Pi )ni=1,R

)
, where (Pi )ni=1 are disjoint sets of ports and R is a non-redundant set of SOS

rules in the following format:
{
qi

a∩Pi−−−→ q ′i

∣∣∣∣ i ∈ I

} {
qi = q ′i

∣∣ i /∈ I
}

{
q j /

b j−→
∣∣∣ ( j, b j ) ∈ H

} {
qk

ck−→ ∣∣ (k, ck) ∈ L
}

q1 . . . qn
a−→ q ′1 . . . q ′n

,
(14)

with I = {
i ∈ [1, n] ∣∣ a ∩ Pi �= ∅

}
and H , L ⊆ [1, n]× 2P , such that, for each ( j, b j ) ∈ H ,

holds b j ∈ 2Pj and, for each (k, ck) ∈ L , holds ck ∈ 2Pk .
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We call the premises of the form qi
a∩Pi−−−→ q ′i firing; the premises of the form q j /

b j−→
negative; and the premises of the form qk

ck−→ witness.

We will denote by WBSOS the framework, which has the same semantic domain and
atomic components as above, but uses witness BIP-like SOS operators with the semantic
mapping defined by (14).

Proposition 4 WBSOS possesses uniform flattening.

Sketch of the proof The proof follows by taking the classical composition of SOS rules. We
only have to prove that this composition preserves the format (14). This is straightforward
for the firing premises. For the witness premises, the only difference is that the target state
is irrelevant, so the top-level firing premises in the composition of two rules become witness
premises by dropping the target state. For negative premises, top-level firing and witness
premises become negative in the composed rule, while top-level negative rules become wit-
ness. Thus the format is, indeed, preserved. ��
Example 7 To illustrate the above proof, consider the following three rules:

q1
a−→ q ′1 q234 /

bc−→ q56
d−→

q1q234q56
a−→ q ′1q234q56

,
q2

b−→ q ′2 q3 /
e−→ q4

c−→ q ′4
q2q3q4

bc−→ q ′2q3q ′4
,

q5
d−→ q ′5 q6

f−→
q5q6

d−→ q ′5q6
.

Substituting the second and third rules for the corresponding premises of the first rule, we
obtain the following three rules, differing only in their second premises:

q1
a−→ q ′1 q2 /

b−→ q5
d−→ q6

f−→
q1q2q3q4q5q6

a−→ q ′1q2q3q4q5q6
, q1

a−→ q ′1 q3
e−→ q5

d−→ q6
f−→

q1q2q3q4q5q6
a−→ q ′1q2q3q4q5q6

,

q1
a−→ q ′1 q4 /

c−→ q5
d−→ q6

f−→
q1q2q3q4q5q6

a−→ q ′1q2q3q4q5q6
.

Indeed, all these rules respect the format (14).

3.2.2 Inhibiting relation

In this section, we provide a technical definition that will be instrumental in the rest of the
paper.

Definition 15 We call a function f : X → Y a choice function and write

f : X ⇒ Y : (x).Φ(x, f ),

where Φ(x, y) is a predicate over X × Y , if, for each x ∈ X , holds Φ
(
x, f (x)

)
.

For example, for a set R of rules in the format (11) above, the choice function

h : R ⇒
⋃

r∈R
Hr : (r).h ∈ Hr (15)

selects, for each rule r ∈ R, one of its negative premises. (It is well defined for a set of rules
R, where each rule has at least one negative premise, i.e. Hr �= ∅.)
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Consider a family of disjoint sets of ports (Pi )ni=1 and a non-redundant set R of rules in
format (11):

r ∈ R :
{
qi

ar∩Pi−−−→ q ′i
∣
∣
∣ i ∈ I r

} {
qi = q ′i

∣
∣
∣ i /∈ I r

} {
q j /

brj−→
∣
∣
∣ ( j, brj ) ∈ Hr

}

q1 . . . qn
ar−→ q ′1 . . . q ′n

.

Given an interaction a, we denote Ra =
{
r ∈ R

∣
∣ ar = a ∧ Hr �= ∅}, the set of rules with

the conclusion labelled by a, which have negative premises. Notice that, since R is non-
redundant, there are two possibilities: either 1) there is exactly one rule inRwith conclusion
a and no negative premises, in which case Ra = ∅; or 2) all rules with conclusion a have
negative premises, in which case Ra = {r ∈ R | ar = a}.

Clearly, for the interaction a to be inhibited by the negative premises, one negative premise
must be involved for each rule in Ra .

Wewill now define the inhibiting relationπ ⊆ 2P×(
22

P\{∅}\∅) by definingπ(a) for each
interaction a among the conclusions of the rules in R, such that Ra �= ∅. Intuitively, the set
π(a) comprises all possible sets of interactions, formed by combining negative premises from
all the rules with conclusion a, that would block a if enabled simultaneously. We need π(a)

to be a set of sets of interactions, rather than a set of interactions, in order to distinguish, for

example, two transitions q j

b
r1
j−→ and q j

b
r2
j−→ (with the same j) from a single one q j

b
r1
j b

r2
j−−−→.

Fix an interaction a as above and consider the choice function h in (15) over Ra , i.e.
h : Ra ⇒

⋃
r∈Ra H

r : (r).h ∈ Hr . We denote

Jh
de f= {

j ∈ [1, n] ∣∣ ∃r ∈ Ra : h(r) = ( j, _)
}

(16)

the set of indices involved in the premises chosen by h. Notice that different premises can
be associated to the same index in Jh . Therefore, for a given choice h, we consider another
choice function that selects, for each index in Jh , the label of one premise among those chosen
by h (recall (11) that Hr ⊆ [1, n] × 2P , for each r ∈ R):

bh : Jh ⇒ 2P : ( j).( j, bh) ∈ h(Ra). (17)

Consider now the interaction b = ⋃
j∈Jh bh( j). By construction of h, Jh and bh , we have

b ∩ Pj = bh( j) (recall (11) that, for each ( j, b j ) ∈ Hr , we have b j ∈ 2Pj \{∅}). Hence,
whenever b is enabled, we have q j

bh( j)−−−→, i.e. all the premises involved in the construction of
b are dissatisfied. Thus, by combining all possible choices of bh we obtain a set of interactions
that, if all are enabled, guarantees that each of the rules with the conclusion labelled by a has
a dissatisfied premise, thereby effectively blocking a. In order to define π(a), we consider
all possible choices of h to form a set of sets of interactions (in (18) below, we reproduce the
definitions from (15), (16) and (17)):

π(a)
de f=

⎧
⎨

⎩

{ ⋃

j∈Jh
bh( j)

∣∣∣ bh : Jh ⇒ 2P : ( j).( j, bh) ∈ h(Ra)
}
∣∣∣∣∣∣

h : R ⇒
⋃

r∈R Hr : (r).h ∈ Hr ,

Jh =
{
j ∈ [1, n] ∣∣ ∃r ∈ Ra : h(r) = ( j, _)

}

⎫
⎬

⎭
. (18)
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To illustrate the need for π(a) to be a set of sets of ports, compare the following four sets
of rules:5

P1 = {p},
P2 = {r , s}

q1
p−→ q ′1 q2 /

rs−→
q1q2

p−→ q ′1q2
π = {

(p, rs)
}

P1 = {p}, P2 = {r},
P3 = {s}

q1
p−→ q ′1 q2 /

r−→
q1q2q3

p−→ q ′1q2q3
,

q1
p−→ q ′1 q3 /

s−→
q1q2q3

p−→ q ′1q2q3
π = {

(p, rs)
}

P1 = {p},
P2 = {r , s}

q1
p−→ q ′1 q2 /

r−→
q1q2

p−→ q ′1q2
,

q1
p−→ q ′1 q2 /

s−→
q1q2

p−→ q ′1q2
π = {

(p, r · s)}

P1 = {p}, P2 = {r},
P3 = {s}

q1
p−→ q ′1 q2 /

r−→ q3 /
s−→

q1q2q3
p−→ q ′1q2q3

π = {
(p, r), (p, s)

}

Definition 16 Given a family of disjoint sets of ports (Pi )ni=1 and a non-redundant set R of
rules in format (11), the corresponding inhibiting relation π is defined by (18). If, for each
a in the domain of π , all sets in π(a) are singleton, we say that the inhibiting relation π is
simple. We call complex inhibiting relations that are not simple.

Among the four examples above, only the third one is not simple. In the first and second
examples, the set π(p) = {{rs}} contains one singleton set comprising the interaction rs.
In the third example, π(p) = {{r , s}} contains one set comprising two singleton interac-
tions r and s. Finally, in the fourth example, π(p) = {{r}, {s}} contains two singleton sets
comprising singleton interactions r and s, respectively.

3.2.3 Simple and acyclic restrictions of BIP-like SOS

For the sake of rendering the expressiveness hierarchy more explicit, we consider the two
restrictions of BSOS below.

First consider the operator defined by the rules

q1
p−→ q ′1 q2 /

r−→ q3 /
s−→

q1q2q3
p−→ q ′1q2q3

,
q2

r−→ q ′2 q3 /
s−→

q1q2q3
r−→ q1q ′2q3

,

q2
r−→ q ′2 q1 /

p−→
q1q2q3

r−→ q1q ′2q3
,

q3
s−→ q ′3 q1 /

p−→
q1q2q3

s−→ q1q2q ′3
. (19)

It has the simple inhibiting relation π = {
(p, r), (p, s), (r , ps), (s, p)

}
. Notice that the

(singleton) interactions p and s form a cycle in the inhibiting relation and they would block
each other if enabled simultaneously.

Since all sets in the codomain of a simple inhibiting relation are singleton, they can be
systematically opened, e.g. replacing (a, {b}) by (a, b), without loss of information. This
implies that a simple inhibiting relation on 2P × (

22
P\{∅}\∅) can be equivalently considered

as a relation on 2P × (2P\{∅}).
Definition 17 We say that a simple inhibiting relation is acyclic if it does not have any cycles
when considered as a relation on 2P × (2P\{∅}).
5 We denote by r · s the set of two singleton interactions r and s, as opposed to rs, which denotes one
interaction consisting of the two ports.

123



Expressiveness of component-based frameworks: a study of…

Definition 18 A simple BIP-like SOS operator is a composition operator defined as(
(Pi )ni=1,R

)
, where (Pi )ni=1 are disjoint sets of ports andR is a non-redundant set of BIP-like

SOS rules (11) with a simple inhibiting relation.

Definition 19 An acyclic BIP-like SOS operator is a composition operator defined as(
(Pi )ni=1,R

)
, where (Pi )ni=1 are disjoint sets of ports andR is a non-redundant set of BIP-like

SOS rules (11) with a simple and acyclic inhibiting relation.

We will denote by SiBSOS and AcBSOS the frameworks, which have the same semantic
domain and atomic components as above, but use, respectively, simple and acyclic BIP-like
SOS operatorswith the semanticmapping defined by the corresponding sets of rules in format
(11).

Note 3 Notice that, for any classical BIP operator
(
(Pi )ni=1, γ, π

)
, the inhibiting relation of

the set of BIP-like SOS rules defining its semantics coincides with π and, therefore, is simple
and acyclic.

3.3 Modifications of BIP

3.3.1 Relaxation of priority models

The first option proposed in [3] is the relaxation of the priority model.

Definition 20 Let P be a set of ports. A relaxed priority model on P is a relation π ⊆
2P × (2P\{∅}).

The key point that distinguishes relaxed priority models from the classical ones is that π
can be an arbitrary relation.

Definition 21 A relaxed BIP operator is a triple
(
(Pi )ni=1, γ, π), where (Pi )ni=1 are disjoint

sets of ports and, denoting P
def= ⋃n

i=1 Pi , γ ⊆ 2P is an interaction model and π ⊆ 2P ×
(2P\{∅}) is a relaxed priority model.

Notice that we do not require the relation π to be acyclic or transitive. If all interactions
involved in a cyclic dependency in π are enabled simultaneously, they block each other,
potentially introducing a deadlock. We have also removed the restriction π ⊆ γ × γ , which
requires a slight modification of semantics. Clearly, the behaviour of γ 〈C1, . . . ,Cn〉 does
not have transitions, whereof labels are not in γ . Hence, the rules defining the semantics of
a priority model will have no effect for all priorities outside γ × γ . Thus, we need to apply
interaction and priority models simultaneously.

Given components (Ci )
n
i=1, such that σ(Ci ) = (Qi , Pi ,−→i ), the semantics of the simul-

taneous application of an interaction model γ and a priority model π is defined by putting

σ(πγ (C1, . . . ,Cn))
de f= (Q, P,−→πγ ), with Q = ∏n

i=1 Qi and the minimal transition rela-
tion −→πγ inductively defined by the set of rules

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
qi

a∩Pi−−−→ q ′i
∣∣∣ i ∈ I

}
{qi = q ′i | i /∈ I }

{
q j(b) /

b∩Pj(b)−−−−→
∣∣∣ b ∈ π(a)

}

q1 . . . qn
a−→πγ q ′1 . . . q ′n

∣∣∣∣∣∣∣∣∣

a ∈ γ,

j : π(a) ⇒ [1, n] : (b).b ∩ Pj �= ∅

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(20)
where I = {i ∈ [1, n] | a ∩ Pi �= ∅}.
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The negative premises of each rule in (20) are determined by the choice function j :
π(a) ⇒ [1, n] : (b).b ∩ Pj �= ∅. Intuitively, for an interaction a to be blocked by a higher-
priority interaction b, every rule with the conclusion labelled by a must have at least one of
its premises violated. Here, for every such rule and for every higher-priority interaction b, we
choose one component, i.e. that indexed by j(b), involved in b and test that the corresponding

sub-interaction is disabled: q j(b) /
b∩Pj(b)−−−−→. Thus, whenever b is enabled, every rule authorising

a has at least one of its premises violated.
We will denote by RBIP the framework that extends CBIP with relaxed operators using

the semantic mapping defined by (20). Notice that for the operators with classical priority
models the classical and the modified semantics coincide.

3.3.2 BIP with complex priority relations

A further modification of BIP consists in extending priority models to rely on sets of inter-
actions to inhibit another one, instead of a single interaction. This extension will allow us to
recover the full expressiveness of BIP-like SOS through complex inhibiting relations.

Definition 22 Let P be a set of ports. A complex priority model on P is a relation π ⊆
2P × (

22
P\{∅}\{∅}).

Definition 23 A complex BIP operator is a triple
(
(Pi )ni=1, γ, π

)
, where (Pi )ni=1 are disjoint

sets of ports, γ ⊆ 2P is an interaction model and π ⊆ 2P × (
22

P\{∅}\{∅}) is a complex
priority model.

Given components (Ci )
n
i=1, such that σ(Ci ) = (Qi , Pi ,−→i ), the semantics of the simul-

taneous application of an interaction model γ and a complex priority model π is defined

by putting σ(πγ (C1, . . . ,Cn))
de f= (Q, P,−→πγ ), with Q = ∏n

i=1 Qi and the minimal
transition relation −→πγ inductively defined by the set of rules
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
qi

a∩Pi−−−→ q ′i
∣∣∣ i ∈ I

}
{qi = q ′i | i /∈ I }

{
q j(α) /

b(α)∩Pj(α)−−−−−−→
∣∣∣ α ∈ π(a)

}

q1 . . . qn
a−→πγ q ′1 . . . q ′n

∣∣∣∣∣∣∣∣∣

a ∈ γ,

b : π(a) ⇒
⋃

π(a) : (α).b ∈ α,

j : π(a) ⇒ [1, n] : (α).b(α) ∩ Pj �= ∅

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(21)
where I = {i ∈ [1, n] | a ∩ Pi �= ∅}.

The negative premises of each rule in (21) are determined by two choice functions
b : π(a) ⇒

⋃
π(a) : (α).b ∈ α and j : π(a) ⇒ [1, n] : (α).b(α) ∩ Pj �= ∅. Intu-

itively, for an interaction a to be blocked by a higher-priority set of interactions α, every
rule with the conclusion labelled by a must have at least one of its premises violated. Here,
for every such rule and for every higher-priority set of interactions α, the choice function b
selects the interaction b(α) ∈ α, while the choice function j selects one of the components

involved in b(α), i.e. such that b(α)∩Pj(α) �= ∅. The corresponding premise q j(α) /
b(α)∩Pj(α)−−−−−−→

tests whether b(α) is disabled. Thus, whenever all interactions in α are enabled, every rule
authorising a has at least one of its premises violated.

We will denote by XBIP the framework which has the same semantic domain and atomic
components as above, but uses complex BIP operators with the semantic mapping defined
by (21).
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Notice that by taking, for a relaxed priority model π ∈ 2P × (2P\∅), the complex priority

model π̃
de f= {

(a, {b}) ∣
∣ (a, b) ∈ π

}
, relaxed BIP operators can be canonically transformed

into complex ones. The relaxed and the complex semantics for these operators coincide, since
there is only one possible choice function b in the semantics (21) of π̃ .

3.3.3 Extension of behaviour with the offer predicate

In the previous sections, we have observed that with the classical semantics information
about transitions enabled in the components was lost after the application of the interaction
model, preventing relaxed priority from taking effect. We have addressed this to some extent
by modifying the way the semantics mapping is defined through combining the SOS rules
for interaction and for priority models into one.

An alternative approach, consists in extending the definition of the component behaviour
to integrate part of this information about the active transitions of its subcomponents. In
order to do this we extend the notion of behaviour with an additional offer predicate
[3,12]. The notable difference with the approach of the previous section is that informa-
tion is made available about the active transitions of the atomic subcomponents at the
lowest levels of the hierarchy instead of the one immediately underneath the considered
one.

Definition 24 An extended behaviour is a quadruple B = (Q, P,−→,↑), where (Q, P,−→)

is an LTS and ↑ is an offer predicate on Q × P , such that q↑p holds (the port p ∈ P
is offered in the state q ∈ Q) whenever there is a transition from q containing p, that is

(∃a ∈ 2P : p ∈ a ∧ q
a−→)⇒ q↑p.

The offer predicate extends to sets of ports: for a ∈ 2P , q↑a def= ∧
p∈a q↑p. Notice that

q↑∅ ≡ true. We denote q � a
def= ¬(q↑a) = ∨

p∈a q � p.

Definition 25 Two extended behaviours Bi = (Qi , Pi ,−→i ,↑i ), with i = 1, 2, are equivalent
if P1 = P2 and there exists a bisimulation relation R ⊆ Q1 × Q2, total on both Q1 and
Q2, such that the offer predicates coincide on bisimilar states, i.e. for all (q1, q2) ∈ R and
p ∈ P1, holds q1↑1 p⇔ q2↑2 p.
Note 4 In the rest of the paper we assume that all behaviours are extended. The classical
and relaxed BIP as well as various formats of SOS rules require a simple modification
of the corresponding semantic mapping in order to work with extended behaviours. Given
a framework F = (G,C,B,�, σ ), where the semantic domain (B,�) is the LTS with
bisimilarity-based equivalence from Definition 10, we define the corresponding extended
version F ′ = (G,C,B′,�′, σ ′), where B′ is the set of extended behaviours as in Defini-
tion 24, �′ is the equivalence from Definition 25 and the semantic mapping σ ′ is defined by
putting σ ′(C)

de f= (Q, P,−→,↑), with (Q, P,−→) = σ(C) and

q↑p def⇔
{
∃a ∈ 2P : p ∈ a ∧ q

a−→, if C ∈ C,

∃i ∈ [1, n] : qi↑p, if C = o〈C1, . . . ,Cn〉 and q = (q1, . . . , qn).

Notice that the predicate ↑ is defined by the same rule, for all composition operators.
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In [12], a set of composition operators has been proposed that utilise the information about
offered ports. They are defined by the rules in the following format:

{
qi

a∩Pi−−−→ q ′i
∣
∣ i ∈ I

} {
qi = q ′i

∣
∣ i /∈ I

}

{
qk � bk

∣
∣ (k, bk) ∈ H

} {
q j↑c j

∣
∣ j ∈ J

}

q1 . . . qn
a−→ q ′1 . . . q ′n

,
(22)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅}, J ⊆ [1, n], c j ∈ 2Pj , for all j ∈ J , H ∈ [1, n] × 2P

and for each (k, bk) ∈ H holds bk ∈ 2Pk\{∅}. In (22), there are three types of premises
respectively called firing, negative and activation premises. Firing and activation premises
are collectively called positive. Notice that, while the firing premises are the same as in BSOS,
the negative ones are based on a different predicate. Notice, furthermore, that q↑c1∧q↑c2 =
q↑(c1 ∪ c2). Hence one activation premise per component is sufficient to define any inference
rule.

Definition 26 An FNASOS operator is the composition operator defined as
(
(Pi )ni=1,R

)
,

where (Pi )ni=1 are disjoint sets of ports and, denoting P
def= ⋃n

i=1 Pi , R is a non-redundant
set of SOS rules in the format (22).

We denote by FNASOS the framework with the same atomic components as in CBIP,
the semantic domain consisting of the set of extended behaviours and their equivalence as
per Definition 24 and Definition 25, and the set of FNASOS composition operators with the
semantic mapping defined by the corresponding sets of rules (22).

Proposition 5 FNASOS possesses uniform flattening.

Sketch of the proof The proof follows by taking the classical composition of SOS rules.
Notice that, for any n-ary composition operator, the definition of the offer predicate can
also be written as a set of SOS rules:

{
qi↑p

q1 . . . qn↑p
∣∣∣∣ i ∈ [1, n]

}
. (23)

Thus, we only have to notice that this composition trivially preserves the format (22).
Indeed, for firing premises, the rules in the same format are substituted directly. For, negative
and activation premises, substituted rules are in format (23) and, therefore, negative premises
are substituted by negative premises, witness premises—by witness premises. ��

3.3.4 Offer BIP

The offer predicate can be used instead of the transition relation for the definition of priorities.
This offer semantics has been extensively studied in [3], wherewe have shown, among others,
that instead of separating interaction and prioritymodels, the same composition operators can
be equivalently defined by including negative and activation port typings into interactions.
Thus priorities are incorporated into extended interaction models, which can be encoded as
Boolean formulas. In this paper we use this equivalent definition, since the Boolean encoding
facilitates some of the proofs of expressiveness relations below. Notice, however, that this
choice is purely a matter of convenience, since priority models can be defined explicitly in a
straightforward manner, based on the inhibiting relation as in Sect. 3.2.3.

For a set of ports P , we denote Ṗ
de f= { ṗ | p ∈ P} and P

def= {p | p ∈ P}. We call the
elements of P , Ṗ and P activation, firing and negative port typings respectively.
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Definition 27 For a given set of ports P , an extended interaction is a subset a ⊆ P ∪ Ṗ ∪ P .
An extended interaction model is a set of extended interactions γ ⊆ 2P∪Ṗ∪P .

For a given extended interaction a, we define the following sets of ports:

– act(a)
de f= a ∩ P , the activation support of a,

– fire(a)
de f= {p ∈ P | ṗ ∈ a}, the firing support of a,

– neg(a)
de f= {p ∈ P | p ∈ a}, the negative support of a.

Definition 28 An offer BIP glue operator is defined by
(
(Pi )ni=1, γ

)
, where (Pi )ni=1 are dis-

joint sets of ports and, denoting P
def= ⋃n

i=1 Pi , γ ⊆ 2P∪Ṗ∪P is an extended interaction
model.

The semantics is defined for a set of components Ci such that σ(Ci ) = (Qi , Pi ,−→,↑)6,

with i ∈ [1, n] by putting σ(γ 〈C1, . . . ,Cn〉) de f= (
Q, P,−→γ ,↑γ

)
with Q = ∏n

i=1 Qi , the

offer predicate ↑γ defined by q1 . . . qn↑γ p def⇐⇒ ∃i ∈ [1, n] : qi↑p and the transition relation
−→γ inductively defined by the rule

a ∈ γ
{
qi

fire(a)∩Pi−−−−−−→ q ′i
∣∣∣ i ∈ I

} {
qi = q ′i

∣∣ i /∈ I
}

{
qi↑

(
act(a) ∩ Pi

) ∣∣ i ∈ [1, n]} {
qi � p

∣∣ i ∈ [1, n], p ∈ neg(a) ∩ Pi
}

q1 . . . qn
fire(a)−−−→γ q ′1 . . . q ′n

,
(24)

where I = {i ∈ [1, n] |fire(a) ∩ Pi �= ∅}.
We will denote by OBIP the framework, which has the same semantic domain and atomic

components as FNASOS, but uses the set of offer BIP glue operators with the semantic
mapping defined by (24).

3.3.5 Activation BIP

Finally, for the sake of comparison,we consider another framework,whichmixes the classical
and offer semantics by relying on the usual transition relation to define the semantics of
priority models, but using the offer predicate for that of non-firing positive premises.

Definition 29 For given sets of ports P , an interaction with activation is a subset a ⊆ P ∪ Ṗ .
An interaction model with activation is a set γ ⊆ 2P∪Ṗ of interactions with activation.

Definition 30 An activation BIP glue operator is defined by
(
(Pi )ni=1, γ, π

)
, where (Pi )ni=1

are disjoint sets of ports, γ ⊆ 2P∪Ṗ is an interaction model with activation and π ⊆ 2P∪Ṗ ×(
22

P\{∅}\{∅}) is a priority model.

The semantics of the application of an operator
(
(Pi )ni=1, γ, π

)
is defined for any set

of components C1, . . . ,Cn such that σ(Ci ) = (Qi , Pi ,−→i ,↑i ), for i ∈ [1, n], by putting

σ(πγ 〈C1, . . . ,Cn〉) de f= (Q, P,−→πγ ,↑πγ ), with Q = ∏n
i=1 Qi and the minimal transition

relation −→πγ satisfying the rule

6 As in Note 1, we omit the indices on ↑, whenever they are clear from the context.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
qi

fire(a)∩Pi−−−−−−→ q ′i
∣
∣ i ∈ I

}

{
qi = q ′i

∣
∣ i /∈ I

}

{
q j(α) /

b(α)∩Pj(α)−−−−−−→
∣
∣
∣ α ∈ π(a)

}

{
qk↑(a ∩ Pk)

∣
∣ k ∈ K

}

q1 . . . qn
a−→πγ q ′1 . . . q ′n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣

a ∈ γ,

b : π(a) ⇒
⋃

π(a) : (α).b ∈ α,

j : π(a) ⇒ [1, n] : (α).b(α) ∩ Pj �= ∅

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (25)

where I = {i ∈ [1, n] | a ∩ Ṗi �= ∅} and K = {k ∈ [1, n] | a ∩ Pk �= ∅}. The offer predicate
↑πγ is defined as above by q1 . . . qn↑πγ p

def⇐⇒ ∃i ∈ [1, n] : qi↑i p.
We will denote by ABIP the framework, which has the same semantic domain and atomic

components as FNASOS, but uses the set of activation BIP glue operators with the semantic
mapping defined by (25).

4 Proofs of the expressiveness relations

In this section we prove the relations depicted in Fig. 1. First, in Sect. 4.1, we show in-depth
comparison of classical BIP and simple BIP-like SOS explaining the limitations of CBIP and
how one could circumvent them. Then, in Sect. 4.2, we prove the rest of relations between
the different frameworks.

Note 5 Since the first element of all composition operators is the disjoint sets of ports (Pi )ni=1,
we will omit mentioning it explicitly in most of the following proofs. Indeed, if we want to
apply twocomposition operators to the same sets of behaviours, their disjoint sets of ports have
to be equal. Instead, we will speak of composition operators over P , where P = ⋃n

i=1 Pi ,
with (Pi )ni=1 being mostly implicit.

By Lemma 3, all the frameworks considered in the paper are compositional. Furthermore,
they all share the same set of atomic components and—the extension of behaviours with the
offer predicate being canonical—the same semantic domain. Therefore, to prove strong/weak
full expressiveness relations we will rely on Proposition 3. Thus we only have to exhibit
operators that, given pairs of sets of components where corresponding pairs of components
have the same behaviour, produce components with the same behaviour. In this context, the
sets of states and ports, as well as offer predicates of the composed behaviours coincide
trivially. Thus, in the proofs we will only check the equality of transition relations. The
following lemma shows that it is not necessary to consider target states of transitions and it
is sufficient to compare labels of outgoing transitions for each state of composed systems.

Lemma 5 Let (Ci )
n
i=1 be a set of components, with σ(Ci ) = (Qi , Pi ,−→,↑), and let P =⋃n

i=1 Pi . Let o1 and o2 be composition operators over P. Then, the following statement holds
for behaviours of composed systems σ(o1〈C1, . . . ,Cn〉) = (Q, P,−→o1 ,↑) and σ(o2〈C1,

. . . ,Cn〉) = (Q, P,−→o2 ,↑): for any state q ∈ Q and for any transition label a ∈ 2P , if

q
a−→o1 ⇔ q

a−→o2 then
{
q ′

∣∣ (q, a, q ′) ∈ −→o1

} = {
q ′

∣∣ (q, a, q ′) ∈ −→o2

}
.

Proof If q /
a−→o1 then q /

a−→o2 and both sets are empty.

Suppose now that (q, a, q ′) ∈ −→o1 , for some q ′ ∈ Q. Then q
a−→o1 q ′ and, by the

assumption of the lemma q
a−→o2 . Furthermore, there exists a corresponding interaction a,

interaction with activation or extended interaction b with fire(b) = a, or a rule r with the
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(a) (b)

Fig. 4 Component and behaviour for Example 8

conclusion q
a−→o1 q ′. Let q = (qi )ni=1 and q ′ = (q ′i )

n
i=1 and notice that, for all BIP glues

and all considered SOS rule formats, (q, a, q ′) ∈ −→o1 if, for all i ∈ [1, n], qi a∩Pi−−−→ q ′i ,
if a ∩ Pi �= ∅, and qi = q ′i otherwise. Since q

a−→o2 , there exists an enabled rule in the
semantics of o2 with the conclusion a. Since the enabledness of the rule does not depend on
the target states of the firing premises, we can consider the same firing premises as for o1,

i.e. qi
a∩Pi−−−→ q ′i , if a ∩ Pi �= ∅. Hence, q a−→o2 q ′ and, therefore, {q ′ | (q, a, q ′) ∈ −→o1} =

{q ′ | (q, a, q ′) ∈ −→o2}. ��

4.1 Expressiveness of the classical BIP

In [3, Example 2.9 and its discussion] we have shown an AcBSOS operator7 that cannot be
expressed as a CBIP operator. In the following example we provide a simplified version of
the one in [3] and an intuitive justification.

Example 8 Consider the BSOS operator defined by the following two rules:

q1
p−→ q ′1 q2 /

r−→
q1q2q3

p−→ q ′1q2q3
,

q2
r−→ q ′2 q3

s−→ q ′3
q1q2q3

rs−→ q1q ′2q ′3
(26)

with the port partition P = ({p}, {r}, {s}). Figure 4b shows the behaviour resulting from the
application of this operator to the components in Fig. 4a. If this operator were to be realised
by a single CBIP operator, then necessarily its interaction model would be γ = {p, rs}.
Since rs is only enabled in the state 124, there is no way to define the priority model so as to
suppress p in the states 124 and 125, but not in 134 and 135.

Since operator (26) is simple and acyclic, we conclude that CBIP does not have strong
full expressiveness w.r.t. SiBSOS and AcBSOS.

The example below shows that CBIP does not have even weak full expressiveness w.r.t.
SiBSOS, whereas the subsequent proposition shows that it does have it w.r.t. AcBSOS.

7 We have only introduced the term “AcBSOS” in the present paper. In [3], we speak of composition operators
defined by sets of SOS rules.
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Fig. 5 Component and behaviour
for Example 9

(a) (b)

Example 9 Consider a composition operator defined by the following two rules:

q1
p−→ q ′1 q1 /

r−→
q1

p−→ q ′1
,

q1
r−→ q ′1 q1 /

p−→
q1

r−→ q ′1
, (27)

applied to the component shown in Fig. 5a. The behaviour of the composed component is
shown in Fig. 5b. Assume that there exists a hierarchy of BIP glues, such that applying
them to the same component results in an equivalent composed component. States 1 and 2
of the composed component behaviour have outgoing transitions p and r , respectively, thus
all interaction models in the glues have to contain both interactions p and r . State 3 is a
deadlock. Interaction models do not forbid any transition from this state and priority models
cannot introduce deadlock by Lemma 4. This contradicts the assumption and, consequently,
the set of rules (27) is not expressible in CBIP.

The two fundamental reasons for this lack of expressiveness are related to the definition
of the priority model:

– the information used by the priority model refers only to interactions authorised by
the underlying interaction model—all the information about transitions enabled in sub-
components is lost [3];

– the priority model π must be a strict partial order.

As we explain below, among these two reasons, the first one is easily addressed to achieve
weak, rather than strong, full expressiveness, whereas the second one presents the main
difficulty.

What can be done without changing the BIP glue? As in Sect. 3.2.3, consider an n-ary
BIP-like SOS operator o = (

(Pi )ni=1, R
)
with R a non-redundant set of rules

{
qi

ar∩Pi−−−→ q ′i
∣∣∣ i ∈ I r

} {
qi = q ′i

∣∣ i /∈ I r
} {

q j /

brj−→
∣∣∣ ( j, brj ) ∈ Hr

}

q1 . . . qn
ar−→ q ′1 . . . q ′n

, (28)

for each r ∈ R, where, as before, I r = {
i ∈ [1, n] ∣∣ ar ∩ Pi �= ∅

}
, Hr ⊆ [1, n] × 2P

and, for each ( j, brj ) ∈ Hr , holds brj ∈ 2Pj . For an interaction a ∈ {ar | r ∈ R}, denote
Ra

def= {r ∈ R | ar = a ∧ Hr �= ∅} the set of rules with negative premises that have the
conclusion labelled by a. Let π be the inhibiting relation of o (Definition 16).

Note 6 As for the transition relations and offer predicates, wewill henceforth omit the indices
on the semantic mappings σ , since they will be clear from the context. For instance, in the
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proof of the proposition below, σ will refer to both the semantic mapping of CBIP and that
of AcBSOS.

Proposition 6 Ifπ is simple and acyclic, then the operator o can be realised by a hierarchical
composition of BIP glue operators.

Proof Since π is acyclic, we can associate a depth d(a) to each interaction a involved in π as
the length of the longest path leading to a in the directed acyclic graph defined by π . Denote

d
def= maxa d(a). Furthermore, for i ∈ [1, d], denote πi

de f= {(a, b) ∈ π | d(a) = i − 1}.
Clearly all πi are strict partial orders. Furthermore πi ⊆ π ⊆ γ1 × γ1, for all i ∈ [1, d]

and
γ1 = γ2 ∪

{
b

∣
∣ a ∈ γ2, (a, b) ∈ π

}
, where γ2 =

{
ar

∣
∣ r ∈ R

}
.

Hence, for all i ∈ [1, d], (γ1, πi ) is a BIP glue operator.
The operator o is equivalent to the composition (γ2,∅) ◦ (γ1, πd) ◦ · · · ◦ (γ1, π1). We

show that for any set of components Ci with σ(Ci ) = (Qi , Pi ,−→), for i ∈ [1, n], holds
σ
(
γ2〈πdγ1〈. . . π1γ1〈C1, . . . ,Cn〉 . . .〉〉

) = σ(o〈C1, . . . ,Cn〉). We denote

Bo = σ(o〈C1, . . . ,Cn〉), Bπγ = σ
(
γ2〈πdγ1〈. . . π1γ1〈C1, . . . ,Cn〉 . . .〉〉

)
.

The sets of states and ports of these behaviours are the same, thus we need to check only that
their transition relations coincide.

Let q1 . . . qn
a−→ q ′1 . . . q ′n in Bo. This means that, among the rules defining o, i.e. for some

r ∈ R, there is a rule
{
qi

a∩Pi−−−→ q ′i
∣∣∣ i ∈ I r

} {
qi = q ′i

∣∣∣ i /∈ I r
} {

q j /

brj−→
∣∣∣ ( j, brj ) ∈ Hr

}

q1 . . . qn
a−→ q ′1 . . . q ′n

, (29)

such that qi
a∩Pi−−−→, for all i ∈ I , and q j /

brj−→ for all ( j, brj ) ∈ Hr . By construction both γ1
and γ2 contain a. Hence, a is enabled in the state q1 . . . qn of σ(γ1〈C1, . . . ,Cn〉) and in the
same state of Bπγ , provided that it is not disabled by any of priorities π1, . . . , πd . Thus, we
have to show that no interaction available from this state has higher priority. By construction,
priority rules that contain a in the left-hand side can appear only inπd(a)−1, thus other priority
models cannot block a. Priority rules of the form a ≺ b have b = ⋃

s∈Ra b
s
j(s), for some

j : Ra ⇒ [1, n] : (s).( j, bsj ) ∈ Hs . Since all the premises of (29) are satisfied in q1 . . . qn ,

interaction brj(r) is disabled. Hence, b is also disabled. Thus q1 . . . qn
a−→ q ′1 . . . q ′n in Bπγ .

Let q1 . . . qn
a−→ q ′1 . . . q ′n in Bπγ . This means that both γ1 and γ2 contain the interaction

a. Therefore, by the construction of γ2, there is at least one rule
{
qi

a∩Pi−−−→ q ′i
∣∣∣ i ∈ I

} {
qi = q ′i

∣∣∣ i /∈ I
} {

q j /
b j−→

∣∣∣ ( j, b j ) ∈ H
}

q1 . . . qn
a−→ q ′1 . . . q ′n

, (30)

with conclusion labelled by a among the rules defining o. Furthermore, the priority model
πd(a)−1 contains priorities of the form a ≺ b, with b = ⋃

s∈Ra b
s
j(s), for all j : Ra ⇒

[1, n] : (s).( j, bsj ) ∈ Hs . Notice that a priority rule b ≺ c such that a ≺ b cannot appear in
priorities π1, . . . , πd(a)−1 since d(b) ≥ d(a)+ 1. Assume that none of rules defining o, with

the conclusion labelled by a, applies in q1 . . . qn
a−→ q ′1 . . . q ′n . This necessarily means that

each of these rules has a negative premise that is not satisfied. Let b =⋃
s∈Ra b

s
j(s) with b

s
j(s),

for all s ∈ Ra , being the labels of dissatisfied premises. Then b is an enabled interaction in
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σ(γ1〈C1, . . . ,Cn〉) such that a ≺ b and b cannot be blocked by priorities π1, . . . , πd(a)−1.
Consequently, b is enabled in σ(πd(a)−1γ1〈. . . π1γ1〈C1, . . . ,Cn〉 . . .〉) and blocks a, which

contradicts the assumption q1 . . . qn
a−→ q ′1 . . . q ′n in Bπγ . Hence, there is at least one rule

of the form (30) in the definition of o with all premises satisfied in q1 . . . qn and, therefore,

q1 . . . qn
a−→ q ′1 . . . q ′n in Bo. ��

Thus, CBIP has weak full expressiveness w.r.t. AcBSOS.

What can be achieved by relaxing constraints on priority models? Instead of imposing
additional constraints on the set of BIP-like SOS operators we can relax the priority model
of BIP.

Definition 31 A semi-relaxed BIP operator is a triple
(
(Pi )ni=1, γ, π

)
, where (Pi )ni=1 are

disjoint sets of ports and, denoting P =⋃n
i=1 Pi , γ is an interaction model on P and π is a

relaxed priority model on γ , π ⊆ γ × γ .

Notice that the priority model is not required to be a partial order but, contrary to the relaxed
BIP (Definition 21), it can involve only interactions from the interaction model. Its semantics
is defined exactly as that of classical priority models, by (8).

Given a simpleBIP-like SOSoperator o = (
(Pi )ni=1, R

)
, we consider its inhibiting relation

π and the interaction models γ1, γ2 as in the proof of Proposition 6. Since π ⊆ γ1 × γ1,
the operator (γ1, π) is a semi-relaxed BIP operator. The operator o is then equivalent to the
composition (γ2,∅) ◦ (γ1, π), where π is considered as a relaxed priority model.

Proposition 7 For any set of components (Ci )
n
i=1 with σ(Ci ) = (Qi , Pi ,−→), for i ∈ [1, n],

holds

σ
(
γ2〈πγ1〈C1, . . . ,Cn〉〉

) = σ(o〈C1, . . . ,Cn〉).
Proof Denote Bo = σ(o〈C1, . . . ,Cn〉) and Bπγ = σ

(
γ2〈πγ1〈C1, . . . ,Cn〉〉

)
. The sets of

states and ports of these behaviours are the same. Thus, we need to check only that their
transitions coincide.

Let q1 . . . qn
a−→ q ′1 . . . q ′n in Bo. This means that, among the rules defining o, i.e. for some

r ∈ R, there is a rule
{
qi

a∩Pi−−−→ q ′i
∣∣∣ i ∈ I r

} {
qi = q ′i

∣∣∣ i /∈ I r
} {

q j /

brj−→
∣∣∣ ( j, brj ) ∈ Hr

}

q1 . . . qn
a−→ q ′1 . . . q ′n

, (31)

with all its premises satisfied for the respective behaviours σ(Ci ). By construction both γ1
and γ2 contain a. Hence, a is enabled in the state q1 . . . qn of σ(γ1〈C1, . . . ,Cn〉) and in the
same state of σ(γ2〈πγ1〈C1, . . . ,Cn〉〉), provided that it is not disabled by the priority π .
Thus, we have to show that no interaction available from this state has higher priority.

Priority rules in π that contain a are of the form a ≺ b, with b = ⋃
s∈Ra b

s
j(s), for some

j : Ra ⇒ [1, n] : (s).( j, bsj ) ∈ Hs . Since all the premises of (31) are satisfied in q1 . . . qn ,

interaction brj(r) is disabled. Hence, b is also disabled. Thus q1 . . . qn
a−→ q ′1 . . . q ′n in Bπγ .

Let q1 . . . qn
a−→ q ′1 . . . q ′n in Bπγ . This means that both γ1 and γ2 contain the interaction

a. Therefore, by the construction of γ2, there is at least one rule
{
qi

a∩Pi−−−→ q ′i
∣∣∣ i ∈ I

} {
qi = q ′i

∣∣∣ i /∈ I
} {

q j /
b j−→

∣∣∣ ( j, b j ) ∈ H
}

q1 . . . qn
a−→ q ′1 . . . q ′n

, (32)
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among the rules defining o. Furthermore, the priority model π has to contain priorities of the
form a ≺ b, with b = ⋃

s∈Ra b
s
j(s), for some j : Ra ⇒ [1, n] : (s).( j, bsj ) ∈ Hs . Assume

now that none of the rules defining o, with the conclusion labelled by a, applies in q1 . . . qn .

Since q1 . . . qn
a−→ q ′1 . . . q ′n in Bπγ , this necessarily means that each of these rules has a

negative premise that is not satisfied. Let b = ⋃
s∈Ra b

s
j(s) with bsj(s), for all s ∈ Ra , being

the labels of dissatisfied premises. Then b is an enabled interaction such that a ≺ b, which

contradicts the assumption q1 . . . qn
a−→ q ′1 . . . q ′n in Bπγ . Hence, there is at least one rule

of the form (32) in the definition of o with all premises satisfied in q1 . . . qn and, therefore,

q1 . . . qn
a−→ q ′1 . . . q ′n in Bo. ��

Thus, we conclude that semi-relaxed BIP (same as RBIP, but with semi-relaxed glue
operators instead of relaxed ones) has weak full expressiveness w.r.t. SiBSOS.

Notice that the relaxed priority model defined over the interaction model does not allow
recovering strong full expressiveness. For instance, consider the operator defined by the single
rule

q1
p−→ q ′1 q1 /

r−→
q1

p−→ q ′1
, (33)

applied to a component with the behaviour in Fig. 5. The composed component behaviour

has a single transition 1
p−→ 3. The interaction model of BIP cannot contain r , as it is not

possible to exclude transition 2
r−→ 3 with a priority model. The transition 3

p−→ 3 has to be
excluded by the priority model, however it cannot use r in the priority model.

Further relaxation of the definition of BIP operators by removing the restriction π ⊆
γ × γ results exactly in the relaxed BIP (Definition 21). With this relaxation we obtain
strong full expressiveness w.r.t. SiBSOS, since any simple BIP-like SOS operator o is then
clearly equivalent to (γ2, π) with γ2 containing interactions that label conclusions of the
rules defining o (as in the proof of Proposition 6), while π is the inhibiting relation of o.
Thus, RBIP has strong full expressiveness w.r.t. SiBSOS.

Consider another relaxation of the definition of BIP glue operators, by taking operators(
(Pi )ni=1, γ, π

)
, with P = ⋃n

i=1 Pi , such that the priority model π ⊆ 2P × (2P\∅) is a
strict partial order, without requiring that it refers only to interactions (i.e. we do not impose
π ⊆ γ × γ ). This relaxation does not recover even weak full expressiveness w.r.t. simple
BIP-like SOS operators. Indeed, Example 9 is still not expressible.

4.2 Comparison of themodifications of BIP and SOS formats

In this section, we provide the proofs for the expressiveness comparison between various
BIP glues and SOS rules formats shown in Fig. 1.
CBIP → AcBSOS and CBIP ⇒ SiBSOS: As shown in Sect. 4.1, CBIP has weak full
expressivenessw.r.t. AcBSOSand does not have evenweak full expressivenessw.r.t. SiBSOS.
Example 8 shows that CBIP does not have strong full expressiveness w.r.t. AcBSOS.

Since the semanticmapping of CBIP is defined through acyclic BIP-like SOS (seeNote 3),
both AcBSOS and SiBSOS have strong full expressiveness w.r.t. CBIP.
RBIP ⇔ SiBSOS: As observed in Sect. 4.1, RBIP has strong full expressiveness w.r.t.
SiBSOS. On the other hand, the semantic mapping of RBIP is defined through sets of rules
in the BIP-like SOS format with simple inhibiting relations. Thus SiBSOS also has strong
full expressiveness w.r.t. RBIP.
CBIP⇒ RBIP: Follows from CBIP⇒ SiBSOS and RBIP⇔ SiBSOS by Corollary 1.
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(a) (b)

Fig. 6 Component and behaviour for Example 10

RBIP ⇒ XBIP: XBIP is an extension of RBIP, thus it has strong full expressiveness w.r.t.
RBIP. The following example shows that RBIP does not have weak full expressiveness w.r.t.
XBIP.

Example 10 Consider an XBIP operator
({{p}, {r , s}}, γ = {p, r , s}, π ={

(p, {r , s})})
applied to components shown in Fig. 6b. The behaviour of the composed component is
shown in Fig. 6a. Assume there exists a hierarchy of RBIP operators such that applying
them to the same components results in an equivalent composed one. Clearly, all interaction
models have to involve p, thus transition p from the state 12 must be blocked by a relaxed
priority model. If this priority model contains p ≺ r or p ≺ pr , then the transition p would
also be blocked in the state 13. Similarly, for p ≺ s or p ≺ ps and the state 14. Priority rules
p ≺ rs and p ≺ prs cannot be applied in any state, since they require that transition rs be
available (see (20) and notice that r and s belong to the interface of the same component).
Thus, no priority rule can block p only in the state 12.

XBIP ⇔ BSOS: The semantic mapping of XBIP is defined in terms of the BIP-like SOS
format, implying that BSOS has strong full expressiveness w.r.t. XBIP. On the other hand,
given anyBIP-like SOS composition operator o = (

(Pi )ni=1,R
)
, theXBIP operator

(
(Pi )ni=1,

γ, π
)
, where γ is the set of interactions labelling the conclusions of the rules inR andπ is the

inhibiting relation, is clearly equivalent to o. Hence, XBIP also has strong full expressiveness
w.r.t. BSOS.
AcBSOS⇒ SiBSOS: Since AcBSOS is a restriction of SiBSOS, the latter has strong full
expressiveness w.r.t. the former. On the other hand, AcBSOS does not have weak full expres-
siveness w.r.t. SiBSOS. Indeed, that would imply that so does CBIP, which is not the case,
since we have already established CBIP⇒ SiBSOS.
SiBSOS⇒ BSOS: Follows from SiBSOS⇔ RBIP, RBIP⇒ XBIP and XBIP⇔ BSOS by
Corollary 1.
XBIP⇒ABIP:Clearly, ABIP is an extension ofXBIP. Thus, it has strong full expressiveness
w.r.t. XBIP. The following example shows that BSOS does not have weak full expressiveness
w.r.t. ABIP. By Lemma 1, since XBIP⇔ BSOS, this implies that XBIP does not have weak
full expressiveness w.r.t. ABIP either.

Example 11 Consider two components in Fig. 7a and the activation BIP glue operator
(({p},

{r , s}), { ṗr , ṙ , ṡ},∅). The semantics of this operator is given by the rules

q1
p−→ q ′1 q2↑r

q1q2
p−→ q ′1q2

,
q2

r−→ q ′2
q1q2

r−→ q1q ′2
,

q2
s−→ q ′2

q1q2
s−→ q1q ′2

. (34)
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(a) (b)

Fig. 7 Components and behaviour for Example 11

(a) (b)

Fig. 8 Components and behaviour for Example 12

The composed component behaviour (shown in Fig. 7b without the offer predicate) has a
transition p only in the state 12. Suppose that there exists a hierarchy of BIP-like SOS
operators with the equivalent semantics. All of them must contain rules allowing transitions
r and s. However it is not possible to allow transition p from state 12 but not from state 13,

since the only negative premise that can be used to block it is q2 /
s−→ and it would block p in

both states.

ABIP←→/ WBSOS: Activation BIP does not have weak full expressiveness w.r.t. WBSOS
as shown in the following example.

Example 12 Consider two components shown in Fig. 8a and the WBSOS operator defined
by the following set of rules:

q1
p−→ q ′1 q2

rs−→
q1q2

p−→ q ′1q2
,

q2
r−→ q ′2

q1q2
r−→ q1q ′2

,
q2

s−→ q ′2
q1q2

s−→ q1q ′2
,

q2
rs−→ q ′2

q1q2
rs−→ q1q ′2

.

Consider the states 12 and 13 of the composed component behaviour (shown in Fig. 8b with
ports offered in each state shown in parentheses): the former does not have an outgoing
transition p while the latter does. In ABIP any interaction with the firing support p would
allow the transition p from both states, since the two states are indistinguishable in terms of
the offer predicate. Thus the transition p from the state 12 has to be blocked by a relaxed
priority model. However, any priority rule blocking this transition in the state 12 also blocks
it in the state 13 since the set of enabled transitions in the state 12 is a subset of the set of
transitions enabled in the state 13. Thus, this system is inexpressible in ABIP.

The converse is shown by another example.

Example 13 Consider the atomic component C shown in Fig. 9a and an activation BIP glue
operator o1 =

({p, r}, γ, π
)
, with γ = { ṗ, ṙ} and π = {r ≺ {p}}. The behaviour of o1〈C〉

is shown in Fig. 9b.
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Fig. 9 An atomic component (a)
and the behaviour after
application of the first glue
operator (b) in Examples 13, 15
and 16 (ports offered in each state
are shown in parentheses)

(a) (b)

Consider an activation BIP operator o2 =
({p, r}, γ2, π2

)
, with γ2 = { ṗr} and π = ∅

applied to the composed component o1〈C〉. Both ports p and r are offered in the state 1 of
σ
(
o1〈C〉

)
, thus the interaction ṗr is enabled in this state despite the fact that the state does

not have any outgoing transition involving r . In the state 2, r is not offered and the interaction
is not enabled.

Consider now the (witness) BIP-like SOS operator o′1 defined by the rules

q
p−→ q ′

q
p−→o′1 q

′ ,
q

r−→ q ′ q /
p−→

q
r−→o′1 q

′ .

Clearly, σ(o′1〈C〉) = σ(o1〈C〉). However, it is not possible to construct a witness BIP-like
SOS operator that applied to o′1〈C〉 would result in a component with behaviour equivalent
to σ(o2〈o1〈C〉〉). Indeed, it is not possible to distinguish states 1 and 2, since they have
the same sets of outgoing transitions in σ(o1〈C〉). Thus, WBSOS does not have strong full
expressiveness w.r.t. AcBSOS and, since WBSOS possesses uniform flattening, it does not
have weak full expressiveness either.

BSOS ⇒ WBSOS: Witness BSOS is an extension of BSOS, thus, trivially, it has strong
full expressiveness w.r.t. BSOS. Example 12 presents a system with a WBSOS operator
inexpressible in ABIP and, consequently, in BSOS.
OBIP ⇔ FNASOS: It is clear by comparing (22) and (24) that any offer BIP operator
can be encoded in FNASOS. The inverse also holds: for any SOS rule in the FNASOS
format (24), we can provide a corresponding extended interaction, where firing, activation
and negation supports are obtained from firing, activation and negative premises respectively.
Since FNASOS possesses uniform flattening we can conclude the same for OBIP.

Corollary 3 OBIP possesses uniform flattening.

CBIP ←→/ OBIP: The incomparability of CBIP and OBIP was shown in [3]. The same
reasoning as in Example 9 proves that the offer BIP composition operator ({p, r}, γ ) with
γ = { ṗr , ṙ p}, whereof the semantics is given by the rules

q1
p−→ q ′1 q1 � r

q1
p−→ q ′1

,
q1

r−→ q ′1 q1 � p

q1
r−→ q ′1

,

is inexpressible in CBIP. The following example from [3] presents a system inexpressible in
OBIP.

Example 14 Consider the atomic components shown in Fig. 10 and the classical BIP compo-
sition operator

({{p, r}, {s}}, γ, π
)
with the interaction model γ = {p, r , pr , s} and priority

model π = {s ≺ pr}. Since, classical priority semantics refers to the enabledness of an
interaction, in the behaviour of the composed system the interaction s is available in the state
14, but not in the state 24. In the offer semantics, all three ports are offered in both states
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Fig. 10 Atomic components for
Example 14

(a) (b)

14 and 24 of this system. Therefore, these two states are indistinguishable and s cannot be
inhibited in only one of them by any hierarchical composition of OBIP operators.

OBIP ←→/ ABIP: Example 14 shows that OBIP does not have weak full expressiveness
w.r.t. CBIP. Since we have CBIP⇒ RBIP⇒ XBIP⇒ ABIP, this means that OBIP does not
have weak full expressiveness w.r.t. ABIP either. The following example shows that ABIP
does not have weak full expressiveness w.r.t. OBIP, i.e. OBIP and ABIP are incomparable.

Example 15 Consider an atomic component C shown in Fig. 9a. Both ports p and r are
offered in the state 1, while only p is offered in the state 2. Consider the offer BIP glue
operator o1 =

({p, r}, γ )
, with γ = { ṗ, ṙ p}. The behaviour of the composed component is

shown in Fig. 9b. Notice that the offer predicates of σ(C) and σ(o1〈C〉) coincide.
Consider the offer BIP glue operator o2 =

({p, r}, γ2
)
, with γ2 = { ṗr} applied to the

composed component o1〈C〉. Both ports p and r are offered in the state 1, thus the interaction
ṗr is not enabled in this state despite the fact that the state does not have any outgoing
transition involving r .

Consider now the activation BIP operator o′1 =
({p, r}, γ, π

)
, with γ = { ṗ, ṙ} and

π = {r ≺ {p}}. Clearly σ(o′1〈C〉) = σ(o1〈C〉). However, there is no activation BIP glue
operator or a hierarchy of operators that, applied to o′1〈C〉 would produce a component
equivalent to o2〈o1〈C〉〉. Indeed, this would require forbidding the transition p from the state
1 without forbidding it from the state 2, as is the case in σ(o2〈o1〈C〉〉). Indeed, we have to
keep ṗ in the interaction model, since 2

p−→ 1, but there are no transitions from state 1 that
could be used to inhibit p through a complex priority model.

OBIP ←→/ WBSOS: By the same argument as above, Example 14 shows that OBIP does
not have weak full expressiveness w.r.t. WBSOS. The following example proves that they
are incomparable.

Example 16 Consider the same atomic component C and the same o1 as in Example 15.
Component C and the behaviour of o1〈C〉 are shown in Fig. 9.

Consider the offer BIP glue operator o3 =
({p, r}, γ3

)
, with γ3 = { ṗr} applied to the

composed component o1〈C〉. Both ports p and r are offered in the state 1, thus the interaction
ṗr is enabled in this state despite the fact that the state does not have any outgoing transition
involving r . In the state 2, r is not offered and the interaction is not enabled.

As in Example 13, it is not possible to construct a hierarchy of witness BIP-like SOS oper-
ators corresponding to o3, since the states 1 and 2 have the same sets of outgoing transitions
in σ(o1〈C〉) and are, therefore, indistinguishable by witness BIP-like SOS operators.

4.3 Additional results for flat systems

In the previous section, we have analysed the expressiveness relations among the introduced
frameworks. In particular, we have shown thatWBSOS, ABIP and OBIP are pairwise incom-
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parable. It is interesting to observe that, when restricted to flat systems, i.e. those consisting
of one operator applied to sets of atomic components, a comparison can be established:
every OBIP operator can be expressed as an ABIP operator and every ABIP operator can be
expressed as a WBSOS one.

The restriction to atomic components is crucial here: indeed, the equivalence q↑p⇔ ∃a :
q

a−→ ∧ p ∈ a holds only on atomic components.

Proposition 8 When restricted to flat systems, every OBIP operator can be expressed as an
ABIP one:

∀n ∈ N, ∀o ∈ OBIPn, ∃õ ∈ ABIPn :
∀C1, . . . ,Cn ∈ C, σ (õ〈C1, . . . ,Cn〉) � σ(o〈C1, . . . ,Cn〉). (35)

Proof Consider an OBIP glue operator o = (
(Pi )ni=1, γ

)
, with γ an extended inter-

action model on P = ⋃n
i=1 Pi . For a given extended interaction a ∈ γ we denote

Ia = {b ∈ γ |fire(b) = fire(a)} the set of all interactions in γ with the same firing sup-
port as a. Consider the following Boolean formula on P:

φa =
∧

p∈fire(a)

p ∧
∨

b∈Ia

( ∧

p∈act(b)
p ∧

∧

p∈neg(b)
p
)
.

For any set of atomic components C1, . . . ,Cn ∈ C with σ(γ 〈C1, . . . ,Cn〉) =
(
Q, P,−→,

↑)
, and for any state q ∈ Q, the valuation vq = (p = q↑p)p∈P satisfies φa (denoted

vq |� φa) if and only if some extended interaction from Ia is enabled in the state q .
For a given valuation v |� φa , we build an interaction with activation

bv
a =

{
ṗ

∣∣ p ∈ fire(a)
} ∪ {

p
∣∣ v(p) = true ∧ p /∈ fire(a)

}

and an associated set of priorities

πv
a =

{
bv
a ≺ {c}

∣∣ c ∈ 2P ∧ ∃p ∈ c : v(p) = false
}
.

The activation BIP glue operator equivalent to γ is õ = (
(Pi )ni=1, γ ′, π ′

)
, with

– an interaction model with activation γ ′ = {
bv
a

∣∣ a ∈ γ, v |� φa
}
,

– a complex priority model π ′ = ⋃
a∈γ

⋃
v∈Parta πv

a .

Consider a set of atomic components C1, . . . ,Cn ∈ C and suppose that q
fire(a)−−−→ in

σ(γ 〈C1, . . . ,Cn〉) for some a ∈ γ . Let vq = (p = q↑p)p∈P be the valuation induced by
the offer predicate in the state q . We have vq |� φa . By construction of γ ′, we have b =
{ ṗ | p ∈ fire(a)}∪{p | vq(p) = true ∧ p /∈ fire(a)} ∈ γ ′. Notice that all ports of b are offered
in the state q and fire(b) = fire(a). Thus, q

fire(b)−−−→ in σ(γ ′〈C1, . . . ,Cn〉). By construction
of π ′, all interactions with higher priority contain a port p, such that vq(p) = false, i.e. p is
not offered in the state q and, consequently, none of these interactions is enabled in q . Thus,

q
fire(a)−−−→ in σ(π ′γ ′〈C1, . . . ,Cn〉).
Suppose now that q

fire(b)−−−→ in σ(π ′γ ′〈C1, . . . ,Cn〉) for some b ∈ γ ′ and take v = (p =
p ∈ fire(b)∪ act(b))p∈P . Since b is enabled, we have v(p) ⇒ q↑p. Suppose that, for some
p ∈ P , we have q↑p∧¬v(p). Since all the components are atomic, there is an interaction c
enabled in q such that p ∈ c. By construction of π ′, there is a priority rule b ≺ {c} that would
block b in the state q , contradicting the assumption q

fire(b)−−−→. Hence, we have v(p) ⇔ q↑p,
for all p ∈ P . Let Ib = {a ∈ γ |fire(a) = fire(b)} and a Boolean formula φb built as above.

123



Expressiveness of component-based frameworks: a study of…

By construction, v |� φb. Since v(p) ⇔ q↑p, this means that some interaction from Ib is

enabled in the state q of σ(γ 〈C1, . . . ,Cn〉) and, therefore, q fire(b)−−−→ in σ(γ 〈C1, . . . ,Cn〉). ��
Despite the fact that ABIP does not have strong full expressiveness w.r.t. OBIP, for any

system obtainable inOBIP from a given set of atomic components, we can build an equivalent
one in ABIP from the same set of atomic components. Indeed, since FNASOS (hence, also
OBIP) possesses uniform flattening, any hierarchy of OBIP operators can be replaced by a
single operator. By Proposition 8, there exists a corresponding one in ABIP. These operators
applied to the same set of atomic components would result in equivalent systems.

A WBSOS composition operator equivalent to a given ABIP operator
(
(Pi )ni=1, γ, π

)
on

atomic components can be constructed as follows. Given an interactionwith activation a ∈ γ ,
we consider a set of witness BIP-like SOS rules Sa obtained by removing all redundant rules
from the set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
qi

fire(a)∩Pi−−−−−−→ q ′i
∣
∣
∣ i ∈ I

}

{
qi = q ′i

∣
∣ i /∈ I

}

{
q j(α) /

b(α)∩Pj(α)−−−−−−→
∣
∣∣ α ∈ π(a)

}

{
qk

c∩Pk−−−→
∣∣∣ c ∈ J , k ∈ Kc

}

q1 . . . qn
fire(a)−−−→ q ′1 . . . q ′n

∣
∣
∣
∣
∣
∣
∣
∣
∣∣∣∣∣∣∣∣∣

J ⊆ 2P , s.t. act(a) ⊆⋃
c∈J c ;

b : π(a) ⇒
⋃

π(a) : (α).b ∈ α,

j : π(a) ⇒ [1, n] : (α).b(α) ∩ Pj �= ∅

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (36)

where I = {i ∈ [1, n] |fire(a) ∩ Pi �= ∅} and Kc = {k ∈ [1, n] | c ∩ Pk �= ∅}. In the positive
premises we require a set of transitions J that has to be enabled in the state of the composed
component such that each port from the activation support of a is involved in at least one
transition and, consequently, offered (since we only consider atomic components here). In
the negative premises, we require all higher-priority sets of interactions to be disabled.

Proposition 9 Let
(
(Pi )ni=1, γ, π

)
be an ABIP operator and take a WBSOS operator o =(

(Pi )ni=1,
⋃

a∈γ Sa
)
, with Sa the set of rules (36), for each a ∈ γ . Then, for any set of atomic

components C1, . . . ,Cn, we have σ(πγ 〈C1, . . . ,Cn〉) = σ(o〈C1, . . . ,Cn〉).

Proof Let q
d−→ in σ(πγ 〈C1, . . . ,Cn〉). There exists an interaction with activation a ∈ γ

such that fire(a) = d , q↑p holds for all p ∈ act(a), and none of the higher-priority
sets of interactions α $ a are enabled. Consider the set of interactions J that are
enabled in the state q of the unrestricted parallel composition of C1, . . . ,Cn , i.e. J =
{
c ⊆ P

∣∣ (c ∩ Pi = ∅) ∨
(
qi

c∩Pi−−→ in σ(Ci )
)
, i ∈ [1, n]}. Notice that act(a) ⊆ ⋃

c∈J c,
since all ports in act(a) are offered. By construction of the operator o, there is a subset
of rules in Sa with the activation premises defined by J . Since all interactions in J are
enabled, these activations premises are satisfied in q . Since none of the sets α $ a is enabled,

we can choose, for each α, the corresponding bα ∈ α and jα ∈ [1, n], such that q jα /
bα∩Pjα−−−−→.

By taking, in (36), the choice function realisations b : α %→ bα and j : α %→ jα , we obtain

a rule in Sa8, whereof the negative premises are also satisfied and we have q
d−→ in σ(o〈C1,

. . . ,Cn〉).
8 The rule Sa might be removed from the operator o as redundant, however this would imply the existence
of another rule with the same conclusion and whereof premises would also be satisfied in the state q.
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Let q
d−→ in σ(o〈C1, . . . ,Cn〉). There is a rule r ∈ Sa , for some a ∈ γ , that allows this

transition in the composed component behaviour. Let J be the set of interactions defining
the activation premises in r . Notice that all interactions c ∈ J are enabled in the state q . By
construction of r , fire(a) = d . For all ports p ∈ act(a), there is an interaction c ∈ J , such
that p ∈ c. Hence, q↑p. For each set of interactions α $ a, there is one negative premise in
r . Since this premise is satisfied, α is disabled. Thus, the interaction a is enabled in the state

q and q
d−→ in σ(πγ 〈C1, . . . ,Cn〉). ��

5 Related work

The results in this paper build mainly on our own previous work. However, the following
related work should also be mentioned.

Usually, formalisms are compared by flattening structure and reducing to a behaviourally
equivalent model, e.g. automata and Turing machines. In this manner, all finite state for-
malisms turn out to be expressively equivalent independently of the features used for the
composition of behaviours. Many models and languages are Turing-expressive, while their
coordination capabilities are tremendously different. [10]

A first framework formally capturing meanings of expressiveness for sequential program-
ming languages and taking into account not only the semantics but also the primitives of
languages was provided in [21]. It allows formal reasoning about and distinguishing between
core elements of a language and syntactic sugar. Although a number of studies have taken
a similar approach in the context of concurrency, we will point only to [22] and the refer-
ences therein. The key difference of our approach lies in the strong separation between the
computation and coordination aspects of the behaviour of concurrent systems. Indeed, we
consider that all sequential computation resides within the components of the system that
are not subject to any kind of modification. Thus, we focus on the following question: what
system behaviour can be obtained by coordination of a given set of concurrent components?

An extensive overview of SOS formats is provided in [30], including some results com-
paring their expressiveness. More results comparing different formats of SOS can be found
in [29]. The expressiveness property is closely related to the translation between languages.
One of the definitions of encoding compared with other approaches can be found in [37].
It should be noted, however, that the above mentioned separation of concerns principle also
leads to a very simple rule format. Indeed, the format that we consider is essentially a small
subset of GSOS. Our focus in this paper, is more on the expressiveness of the coordination
mechanism provided by BIP than on that of the various SOS rule features.

There exist several works comparing BIP with various connector frameworks. A com-
parative study of three connector frameworks—tile model [16], wire calculus [35] and BIP
[7]—was presented in [17]. An attempt to relate BIP and Reo has been made recently [19].
From the operational semantics perspective, these comparisons only take in account oper-
ators with positive premises. In particular, priority in BIP is not considered, whereas it is
central for the present paper.

Finally, in our formalisation of component-based frameworks, we rely on the notion of
“behaviour type”. This can cover a very large spectrum, ranging from programs and labelled
transition systems, through OSGi bundles and browser plug-ins, to systems of differential
equations etc. Behaviour types can be organised in type systems and studied separately, as,
for example, in the co-algebra theory [33]. However, this notion should be distinguished, for
instance, from classes in object-oriented programming or session [18,25] and behavioural
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[26] types for communication protocols. For instance, the notion of a class could be compared
to that of a behaviour type in our sense as follows: a programwould typically comprise a mul-
titude of classes, whereas a component framework has only one underlying behaviour type.
Although, in principle, component-based frameworks can be heterogeneous, e.g. Ptolemy II
[20], that is rely on several distinct behaviour types for the design process, those aimed at
the design of executable systems must have an underlying unifying behaviour type allowing
the study and manipulation of a system as a whole.

6 Conclusion

Our previous investigations [3] of several properties that we consider fundamental for
component-based design frameworks have revealed that the often encountered informal state-
ment: “BIP possesses the expressiveness of the universal glue” (or its equivalent in slightly
different formulations) is based on an erroneous proposition in previous work [10, Proposi-
tion 4]. We have, therefore, undertook an additional study of BIP expressiveness, whereof
the results have been presented in this paper.

To achieve this goal, we rely on the algebraic formalisation of the notion of component-
based design framework introduced in [3] and refined in this paper. We have defined two new
comparison relations among component-based frameworks, weak and strong full expressive-
ness, which characterise whether systems that can be constructed in one framework can also
be constructed in the other. Although these properties are stronger than the corresponding
expressiveness preorders introduced in [10], they provide a simpler setup for the comparison
of the expressiveness of component-based frameworks. The notion of weak full expressive-
ness is different from the weak expressiveness preorder in [10]: the former relaxes the strong
form of the property by allowing hierarchical composition of glue operators, whereas the lat-
ter considers only flat operators, but allows a limited use of additional coordinating behaviour.
Studying the combination of the two relaxations could be an interesting direction for future
work.

We have studied the weak and full expressiveness of BIP w.r.t. operators defined by SOS
rules in a particular format, which we call BIP-like SOS, and some of its restrictions. The
set of all the operators that can be defined using BIP-like SOS rules is the “universal glue”,
w.r.t. which full expressiveness has been erroneously claimed in [10]. The two restrictions
that we consider are characterised by the so-called inhibiting relation, which identifies the
interactions, enabledness whereof inhibits that of another given one. The first restriction,
SiBSOS, considers only sets of BIP-like SOS rules with simple inhibiting relations, where
the enabledness of one interaction is always sufficient to inhibit another one. To the con-
trary, operators defined by sets of rules with complex inhibiting relations might require a
combination of interactions to be enabled simultaneously to inhibit one given interaction.

Semantics of BIP operators is defined in terms of rules with only simple inhibiting
relations. We observe, however, that there are two obstacles to achieving strong full expres-
siveness w.r.t. SiBSOS: 1) a BIP priority model is required to be a strict partial order on
interactions and 2) by the definition of the BIP operational semantics, priorities can only
be applied to interactions that appear in the interaction model. The combination of these
two requirements ensures that priorities cannot introduce new deadlocks. However, negative
premises in BIP-like SOS rules—which correspond to priorities in BIP glue operators—can
do so. In order to introduce deadlocks, the inhibiting relation must have cycles. We show
that BIP glue operators have weak full expressiveness w.r.t. BIP-like SOS operators that have
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acyclic inhibiting relations, with at most d + 1 layers of glue necessary to encode a BIP-like
SOS operator, whereof the depth of the inhibiting relation is d .

A relaxation of both of the above requirements together recovers strong full expressiveness
w.r.t. SiBSOS. However, it calls for a definition of the operational semantics of BIP glue
operators, which combines the interaction and the priority models, as opposed to the classical
definition, where the interaction model is applied first, then the priority model is applied to
the resulting component.

A relaxation of only the first requirement, which does not require any other modifications
of the BIP semantics, leads to weak full expressiveness w.r.t. SiBSOS. Moreover, we have
shown that at most two layers of glue are necessary to encode any operator.

In order to achieve the expressive power of the full BIP-like SOS format, we have defined
an extension of BIP, called XBIP, which allows priorities to use combinations of interactions.

In order to put the above results into a broader perspective, we have also analysed the
expressiveness relations among several variations of BIP semantics and SOS formats used to
define these. In particular, we have considered two new types of premises that can be used to
define glue operators. The offer predicate q↑p (and its negative form q � p) is used to access
information about the activation of the port p in the current state of the corresponding atomic

component. Another variation, witness BIP-like SOS, using premises of the form q
a−→,

allows testing the enabledness of an interaction in the current global state without firing it.
The offer predicate is used to define the homonymous, offer semantics of BIP, introduced

in [12] and studied extensively in [3]. The Offer BIP turns out to be largely incomparable to
other variations of BIP considered in the paper. The advantages of offer BIP, as outlined in
[3], are that it possesses a number of nice properties, in particular strong full expressiveness
w.r.t. the rule format used to define its semantics and flattening.More importantly, contrary to
classical BIP and the variations obtained by adding positive premises, offer BIP lends itself
nicely to a Boolean encoding and, therefore, efficient implementations using, for instance,
Binary Decision Diagrams as in JavaBIP [8].

As mentioned above, studying the combination of the two weak forms of full
expressiveness—allowing both hierarchical glue and limited use of additional coordinating
behaviour—could be an interesting direction for future work. Another direction for future
work would consist in exploring the expressiveness of the full BIP framework, including the
data manipulation and transfer as formalised in [13].
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