
To appear in EPTCS.

Extended Connectors: Structuring Glue Operators in BIP

Eduard Baranov and Simon Bliudze
École Polytechnique Fédérale de Lausanne

Rigorous System Design Laboratory
INJ Building, Station 14, 1015 Lausanne, Switzerland

{firstname.lastname}@epfl.ch

Based on a variation of the BIP operational semantics using the offer predicate introduced in our
previous work, we extend the algebras used to model glue operators in BIP to encompass priorities.
This extension uses the Algebra of Causal Interaction Trees, T (P), as a pivot: existing transfor-
mations automatically provide the extensions for the Algebra of Connectors. We then extend the
axiomatisation of T (P), since the equivalence induced by the new operational semantics is weaker
than that induced by the interaction semantics. This extension leads to canonical normal forms for
all structures and to a simplification of the algorithm for the synthesis of connectors from Boolean
coordination constraints.

1 Introduction

Component-based design is based on the separation between coordination and computation. Systems are
built from units processing sequential code insulated from concurrent execution issues. The isolation of
coordination mechanisms allows a global treatment and analysis.

Fundamentally, each component-based design framework consists of a behaviour type B [3], defin-
ing the underlying semantic domain and the key properties such as the relevant equivalence relations,
and a set G of glue operators of the form f : 2B→B. As argued in [15], an important property for glue
operators is the possibility to be flattened: given a behaviour g(f (B1, . . . ,Bk),Bk+1, . . . ,Bn) obtained by
hierarchical composition with two glue operators, there must be an equivalent1 behaviour h(B1, . . . ,Bn)
obtained by applying a single glue operator to the same atomic components. In other words, G must be
closed under composition. Flattening enables model transformations, e.g. for optimising code generation
or component placement on multicore platforms [9, 10].

BIP is a component framework for constructing systems by superposing three layers: Behaviour, In-
teraction and Priorities. In the classical BIP semantics [4], behaviour is modelled by Labelled Transition
Systems (LTS), i.e. triples B=(Q,P,→), where Q is a set of states, P is a set of ports, and→⊆Q×2P×Q
is a set of transitions, each labelled by an interaction (a subset of ports). Glue operators are defined using
interaction and priority models.

For a set of behaviours {Bi = (Qi,Pi,→) | i ∈ [1,n]}, an interaction model is a set of interactions
γ ⊆ 2P, where P =

⋃n
i=1 Pi (all Pi are assumed to be pairwise disjoint). The behaviour γ(B1, . . . ,Bn) is

defined by the behaviour (Q,P,→γ), with Q = ∏
n
i=1 Qi and the minimal transition relation→γ satisfying

the rule (we use set notation to group premises of the same type)

a ∈ γ

{
qi

a∩Pi−→ q′i
∣∣∣a∩Pi 6= /0, i ∈ [1,n]

} {
qi = q′i

∣∣∣a∩Pi = /0, i ∈ [1,n]
}

q1 . . .qn
a−→γ q′1 . . .q

′
n

. (1)

1 The notion of equivalence, in this context, is given by the behaviour type B [3].

2 Extended Connectors in BIP

p q
1

2

q p

r s
3

4

s r

t

6

5

t

t

(a) Atomic components B1, B2 and B3

p q r s

t

p≺ r

{p,q,s,rt}

B1 B2

B3

(b) Composed system

???

tp q r s

{p,q,s,rt}

B3B1 B2

(c) Flat system

Figure 1: BIP component that cannot be flattened (Example 1.1).

For a behaviour B = (Q,P,→), a priority model is a strict partial order≺ on 2P. When a≺ a′, we say

that the interaction a′ has higher priority than a. We put B≺
∆
= (Q,P,→≺), with the minimal transition

relation→≺ satisfying the rule

q a−→ q′
{

q 6 a′−→
∣∣∣a≺ a′

}
q a−→≺ q′

. (2)

Each n-ary glue operator in BIP is obtained as the composition of an interaction model (an n-ary
operator), composing several behaviours into a single one, and a unary priority model.2 In general, when
combined hierarchically such glue operators cannot be flattened. Indeed, consider the following example.

Example 1.1. Let B1, B2 and B3 be the three atomic behaviours shown in Figure 1a and consider the
composed behaviour g(f (B1,B2),B3) (Figure 1b), with the glue operator f defined by the interaction
model {p,q,r,s} (omitted in Figure 1b) and priority model {p ≺ r}; g defined by the interaction model
{p,q,s,rt} without any additional priority model. One can prove that it is not possible to represent this
behaviour as a flat one (Figure 1c). Indeed, it is not sufficient to replace the priority p≺ r by p≺ rt: in
the global state (1,3,6) of the composed behaviour in Figure 1b, interaction p is inhibited by the priority
p ≺ r; in the same state of the composed behaviour in Figure 1c, p would not be inhibited by p ≺ rt,
since interaction rt is not enabled.

Furthermore, although this goes beyond the scope of this paper, one can prove that there is no flat glue
operator h in the classical BIP semantics given by (1) and (2), such that g(f (B1,B2),B3) be equivalent to
h(B1,B2,B3,B4) with any additional helper behaviour B4.

The impossibility of flattening in the above example is due to the fact that the information used by the
priority model refers only to interactions authorised by the underlying interaction model. All the infor-
mation about interactions enabled in atomic components is lost after the application of f . For instance,
one can consider that, in Example 1.1, transitions p and r model respectively taking and liberating a
semaphore. Thus p should be disabled whenever r is possible, independently of whether r can actually
be taken on not (e.g. when r is blocked waiting for a synchronisation, as in Figure 1b).

In [8], a variation of the BIP operational semantics was introduced. In this variation, a behaviour is
defined as an LTS with an additional offer predicate, i.e. a quadruple B= (Q,P,→,↑), such that↑ ⊆Q×P
and, for any q ∈ Q and p ∈ P, holds the implication (∃a ⊆ P : p ∈ a∧ q a→) =⇒ q↑ p. The converse
implication is not required. In particular, when a transition labelled p in a sub-component of a composed

2 Notice that both interaction and priority models can be trivial: a trivial interaction model over the set of ports P is the set
of singleton interactions {{p}| p ∈ P}; a trivial priority model is empty with none of the interactions having higher priority
than any other.

E. Baranov, S. Bliudze 3

behaviour is blocked waiting for a synchronisation, p is still considered as offered.3 In [8], we have
established the equivalence between, on one hand, glue operators defined by sets of SOS rules having
positive premises in terms of the transition relations→ and offering predicates ↑ and negative premises
in terms of the offering predicates only, and, on the other hand, Boolean formula with the so-called firing
and activation variables. We have also studied the expressiveness of such glue operators and compared
it with classical BIP.

Using the offer predicate instead of the transition relation in the negative premises of (2), ensures
that the resulting set of glue operators is closed under composition.

In this paper, we show how the algebras representing interaction models can be naturally generalised
to also define priorities, based on the use of activation and firing variables.

Several algebraic structures are used to define and manipulate interaction models in BIP [4, 7].
The Algebra of Interactions, AI(P), is isomorphic to 22P

. It provides a simple algebraic represen-
tation of interaction models simplifying the definition of the semantics of other algebras.

The Algebra of Connectors, A C(P), defines the connectors in the form used in the BIP language,
well adapted for graphical representation and for the specification of data transfers.

The Algebra of Causal Interaction Trees, T (P), defines an alternative semantic domain for con-
nectors with the explicit causality relation between ports. Coherence results for the AI(P) and T (P)
semantics of connectors have been provided in [7].

Systems of Causal Rules, C R(P), derived from causal interaction trees define a Boolean represen-
tation of connectors, suitable for symbolic manipulation and for specification of state safety properties.

In [7], the four transformations were provided between A C(P) and T (P), and between T (P) and
C R(P). In particular, this allows to synthesise connectors from B[P] Boolean formulæ.

In this paper, we study the extension of the above algebras to represent both interaction and priority
models. Equivalence induced by the new operational semantics is weaker than that induced by the
interaction semantics. We extend accordingly the axioms of T (·) and provide corresponding normal
forms for terms of the considered algebras. Finally, we show that, in this context, the connector synthesis
algorithm in [7] can be simplified by considering only the causal rules with firing variables in the effect.

The rest of the paper is structured as follows. We start, in Section 2, by a short discussion of some
related work. In Section 3, we briefly recall the syntax and semantics of all the considered algebras.
Section 4 presents the new semantic model for BIP based on the offer predicate. Main contributions
of the paper, namely the extensions of the algebras encompassing the activation and negative ports are
presented in Section 5. We illustrate the extended algebras with a connector synthesis example presented
in Section 6. Finally, Section 7 concludes the paper.

2 Related work

The results in this paper build on our previous work cited above. However, the following related work
should also be mentioned. The approach we use for the Boolean encoding of glue constraints is close to
that used for computing flows in Reo connectors in [13], where it is further extended to data flows.

Several methodologies for synthesis of component coordination have been proposed in the literature,
e.g. connector synthesis in [1, 2, 14]. Both approaches are very different from ours. In [1], Reo circuits
are generated from constraint automata. This approach is limited, in the first place, by the complexity of
building the automaton specification of interactions. An attempt to overcome this limitation is made in

3 As a side effect, the offer predicate can be used to distinguish between atomic and composite behaviours: a behaviour is
atomic iff (∃a⊆ P : p ∈ a∧q a→)⇐⇒ q↑ p [8].

4 Extended Connectors in BIP

[2] by generating constraint automata from UML sequence diagrams. In [14], connectors are synthesised
in order to ensure deadlock freedom of systems that follow a very specific architectural style imposing
both the interconnection topology and communication primitives (notification and request messages).

Recently a comparative study [12] of three connector frameworks—tile model [11], wire calculus
[16] and BIP—has been performed. From the operational semantics perspective, this comparison only
accounts for operators with positive premises. In particular, priority in BIP is not considered. It would
be interesting to see whether using “local” offer predicate instead of “global” priorities of the classical
BIP could help generalising this work.

3 Representations of the interaction model

In this section, we briefly recall the syntax and semantics of the algebras used to represent BIP interaction
models. The semantics of the Algebra of Interactions is given in terms of sets of interactions by a
function ‖·‖ : AI(P)→ 22P

. Two terms x,y ∈ AI(P) are equivalent x ' y iff ‖x‖ = ‖y‖. For any
other algebra, A (P), among those mentioned in the introduction, we define its semantics by the function
|·| : A (P)→AI(P). A function ‖·‖ : A (P)→ 22P

is obtained by composing |·| : A (P)→AI(P) and
‖·‖ : AI(P)→ 22P

. The axiomatisation of AI(P) given in [4] is sound and complete with respect to '.
Hence, for other algebras, the equivalences induced by ‖·‖ and |·| coincide.

Below, we assume that a set of ports P is given, such that 0,1 6∈ P.

3.1 Algebra of Interactions

Syntax. The syntax of the Algebra of Interactions, AI(P), is defined by the following grammar

x ::= 0 | 1 | p ∈ P | x · x | x+ x | (x) , (3)

where ‘+’ and ‘·’ are binary operators, respectively called union and synchronisation. Synchronisation
binds stronger than union.

Semantics. The semantics of AI(P) is given by the function ‖ · ‖ : AI(P)→ 22P
, defined by

‖0‖ = /0, ‖1‖ = { /0}, ‖p‖ =
{
{p}
}
,

‖x1 + x2‖ = ‖x1‖∪‖x2‖,

‖x1 · x2‖ =
{

a1∪a2

∣∣∣a1 ∈ ‖x1‖,a2 ∈ ‖x2‖
}
,

‖(x)‖ = ‖x‖,

(4)

for p ∈ P, x,x1,x2 ∈AI(P). Terms of AI(P) represent sets of interactions between the ports P.

Sound and complete axiomatisation of AI(P) with respect to the semantic equivalence is provided
in [4]. In a nutshell, (AI(P),+, ·,0,1) is a commutative semi-ring idempotent in both + and ·.

E. Baranov, S. Bliudze 5

p q r

(a) Rendezvous pqr
‖pqr‖= {pqr}

p q r

(b) Broadcast p′qr
‖p′qr‖= {p, pq, pr, pqr}

p q r

(c) Atomic broadcast p′[qr]
‖p′[qr]‖= {p, pqr}

p q r

(d) Causal chain p′[q′r]
‖p′[q′r]‖= {p, pq, pqr}

Figure 2: Basic connector examples

3.2 Algebra of Connectors

Syntax. The syntax of the Algebra of Connectors, A C(P), is defined by the following grammar

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | x+ x | (x) ,

(5)

for p ∈ P, and where ‘+’ is binary operator called union, ‘·’ is a binary operator called fusion, and
brackets ‘[·]’ and ‘[·]′’ are unary typing operators. Fusion binds stronger than union.

Fusion is a generalisation of the synchronisation in AI(P). Typing is used to form typed connectors:
‘[·]′’ defines triggers (can initiate an interaction), and ‘[·]’ defines synchrons (need synchronisation with
other ports in order to interact).
Semantics. The semantics of A C(P) is given by the function | · | : A C(P)→AI(P):

|[p]|= p , |x1 + x2|= |x1|+ |x2| ,
∣∣∣ n

∏
i=1

[xi]
∣∣∣= n

∏
i=1
|xk| , (6)

∣∣∣ n

∏
i=1

[xi]
′

m

∏
j=1

[y j]
∣∣∣= n

∑
i=1
|xi|

(
∏
k 6=i

(
1+ |xk|

) m

∏
j=1

(
1+ |y j|

))
, (7)

for x,x1, . . . ,xn,y1, . . . ,ym ∈A C(P) and p ∈ P∪{0,1}.
Sound and complete axiomatisation of A C(P) with respect to the semantic equivalence is provided

in [5]. We omit it here, since we will not need it in the rest of this paper.
Figure 2 shows four basic examples of the graphical representation of connectors. Triggers are

denoted by triangles, whereas synchrons are denoted by bullets. The interaction semantics of the four
connectors is given in the subfigure captions.

3.3 Algebra of Causal Interaction Trees

Syntax. The syntax of the Algebra of Causal Interaction Trees, T (P), is given by

t ::= a |a→ t | t⊕ t , (8)

where a ∈ 2P∪{0,1} is an interaction, and ‘→’ and ‘⊕’ are respectively the causality and the parallel
composition operators. Causality binds stronger than parallel composition. Notice that a causal interac-
tion tree can have several roots.

The causality operator is right- (but not left-) associative, thus for interactions a1, . . . ,an, we can
abbreviate a1→ (a2→ (· · · → an) . . .)) to a1→ a2→ ··· → an. We call this construction a causal chain.

6 Extended Connectors in BIP

Semantics. The semantics of T (P) is given by the function | · | : T (P)→AI(P)

|a|= a , |a→ t|= a
(

1+ |t|
)
, |t1⊕ t2|= |t1|+ |t2|+ |t1| |t2| , (9)

where a is an interaction and t, t1, t2 ∈T (P).
A sound (although not complete) axiomatisation of T (P) is provided in [7]. Rather than reproduce

it here, we indicate the differences after the extension provided in Section 5.1.

3.4 Systems of Causal Rules

Below, for any set X of propositional variables, we denote by B[X] the corresponding Boolean algebra
generated by X . For presentation clarity, we will often omit the conjunction operator and write a∨ bc
instead of a∨ (b∧ c).
Definition 3.1. A causal rule is a B[P] formula E⇒C, where E (the effect) is either a constant, tt, or a
port variable p ∈ P, and C (the cause) is either a constant, tt or ff, or a positive B[P\{p}] formula in
disjunctive normal form.
Remark 3.2. Notice that a1∨a1 a2 = a1, and therefore causal rules can be simplified by replacing p⇒
a1∨a1 a2 with p⇒ a1). We assume that all the causal rules are simplified by this absorption rule.

Definition 3.3. A system of causal rules is a set R= {p⇒ xp}p∈Pt , where Pt ∆
=P∪{tt}, having precisely

one causal rule for each port variable p ∈ Pt . An interaction a ∈ 2P satisfies the system R (denoted
a |= R), iff the characteristic valuation of a on P satisfies the formula

∧
p∈Pt (p⇒ xp). We denote by

|R| ∆
= ∑a|=R a the union (in terms of the Algebra of Interactions) of the interactions satisfying R. Thus

we have | · | : C R(P)→ AI(P), where C R(P) is the set of all systems of causal rules over the set of
port variables P.

3.5 Transformations between different representations

Transformations A C(P)
τ

�
σ

T (P) and T (P)
R
� C R(P) were defined in [7] and shown to respect '.

Below, we will only need the transformations σ : T (P)→A C(P) and R : T (P)→ C R(P). The former
is defined recursively by putting

σ(a) = [a] , σ(a→ t) = [a]′ [σ(t)] , σ(t1⊕ t2) = [σ(t1)]′ [σ(t2)]′ . (10)

We define R : T (P)→ C R(P) by putting

R(t) = {p⇒ cp(t)}p∈P∪{tt} , (11)

where the function cp : T (P)→ B[P] is defined recursively as follows. For a ∈ 2P (with p 6∈ a) and
t, t1, t2 ∈T (P), we put

cp(0) = ff , ctt(0) = ff ,

cp(p→ t) = tt , ctt(1→ t) = tt ,

cp(pa→ t) = a , ctt(a→ t) = a ,

cp(a→ t) = a∧ cp(t) ,

cp(t1⊕ t2) = cp(t1)∨ cp(t2) , ctt(t1⊕ t2) = ctt(t1)∨ ctt(t2) .

Observe that this transformation associates to each port p ∈ P a causal rule p⇒ C, where C is the
disjunction of all prefixes leading from roots of t to some node containing p, including the ports of this
node other than p.

E. Baranov, S. Bliudze 7

4 Modification of the semantic model

We now present the variation of the BIP operational semantics based on the offer predicate [8].

Definition 4.1. A labelled transition system (LTS) is a triple (Q,P,→), where Q is a set of states, P is a
set of ports, and→⊆ Q×2P×Q is a set of transitions, each labelled by a non-empty set of ports. For
q,q′ ∈Q and a ∈ 2P, we write q a→ q′ iff (q,a,q′) ∈→. A label a ∈ 2P is active in a state q ∈Q (denoted

q a→), iff there exists q′ ∈ Q such that q a→ q′. We abbreviate q 6 a→ ∆
= ¬(q a→).

Below, it is assumed that, for all q ∈ Q, q /0→ q. All results of the paper can be reformulated without
this assumption, but making it simplifies the presentation. We write pq for the set of ports {p,q}.
Definition 4.2. A behaviour is a pair B= (S,↑) consisting of an LTS S = (Q,P,→) and an offer predicate
↑ on Q×P such that q↑p holds (a port p∈P is offered in a state q∈Q) whenever there is a transition from
q containing p, that is (∃a ∈ 2P : p ∈ a∧q a→)⇒ q↑ p. We write B = (Q,P,→,↑) for B = ((Q,P,→),↑).

The offer predicate extends to sets of ports: for a ∈ 2P, q↑a ∆
=
∧

p∈a q↑ p. Notice that q↑ /0≡ tt.

Remark 4.3. In the following, we assume, for any Bi = (Qi,Pi,→,↑) with i ∈ [1,n], that {Pi}n
i=1 are

pairwise disjoint (i.e. i 6= j implies Pi∩Pj = /0) and P ∆
=
⋃n

i=1 Pi.
To avoid excessive notation, here and in the rest of the paper, we drop the indices on → and ↑ , as

they can always be unambiguously deduced from the corresponding state variables.

Let P be a set of ports. We denote Ṗ ∆
= {ṗ | p ∈ P} and P ∆

= {p | p ∈ P}. We call the elements of P, Ṗ
and P respectively activation, firing and negative port typings.

Definition 4.4. An interaction is a subset a⊆ P∪ Ṗ∪P.
For a given interaction a, we define the following sets of ports:

• act(a) ∆
= a∩P, the activation support of a,

• fire(a) ∆
= {p ∈ P | ṗ ∈ a}, the firing support of a,

• neg(a) ∆
= {p ∈ P | p ∈ a}, the negative support of a.

Definition 4.5. Let Bi = (Qi,Pi,→,↑), with i ∈ [1,n] and P =
⋃n

i=1 Pi, be a set of component behaviours.

Let γ ⊆ 2P∪Ṗ∪P be a set of interactions. The composition of {Bi}n
i=1 with γ is a behaviour γ(B1, . . . ,Bn)

∆
=

(Q,P,→,↑) with

• the set of states Q = ∏
n
i=1 Qi—the cartesian product of the sets of states Qi,

• the strongest (i.e. inductively defined) offer predicate↑ satisfying the rules, for each i ∈ [1,n],

qi ↑ p
q1 . . .qn ↑ p

(12)

(recall that the sets of ports Pi are pairwise disjoint),

• the minimal transition relation→ satisfying the rule

a ∈ γ

{
qi

fire(a)∩Pi−→ q′i
}n

i=1

{
qi ↑(act(a)∩Pi)

}n

i=1

{
qi 6 ↑ p

∣∣∣ p ∈ neg(a)∩Pi

}n

i=1

q1 . . .qn
fire(a)−→ q′1 . . .q

′
n

. (13)

8 Extended Connectors in BIP

tp q r s

{p,q,s,rt}

p≺ r

B3B1 B2

Figure 3: Flat composed
system equivalent to the
one shown in Figure 1b.

Taking on the Example 1.1 from the introduction, a flat composition of
B1, B2 and B3 equivalent to that of Figure 1b in the semantics of Definition 4.5
is shown in Figure 3 on the right. This representation follows the classical BIP
approach with the exception of the priority, whereof the semantics is defined
in terms of the offer predicate. In terms of Definition 4.5, this is translated by
taking γ = {ṗ r, q̇, ṡ, ṙ ṫ} ⊆ 2P∪Ṗ∪P.

BIP composition operators, consisting of an interaction and a priority
model, can be given new operational semantics in terms of the offer predi-
cate: the semantics of the interaction model composition remains the same
(1), whereas the rule for priority becomes

q a−→ q′
{

q 6 ↑a′
∣∣∣a≺ a′

}
q a−→≺ q′

. (14)

Clearly, any combination of BIP interaction and priority models can be represented by an extended inter-
action model γ ⊆ 2P∪Ṗ∪P. A priority a≺ p1 . . . pn is translated into {ȧ p1, . . . , ȧ pn} (here ȧ is a shorthand
for the set of firing ports corresponding to ports in a). In general, when several inhibitors are defined for
the same interaction, that is a≺ pi

1 . . . pi
ni

, for i ∈ [1,m], this translates into {ȧ p1
k1
. . . pm

km
|ki ∈ [1,ni]}.

It is important to observe that, as stated by Lemma 4.6 below, the rule (13) in Definition 4.5 implies
that any interaction a ∈ γ such that fire(a) = /0 does not have any impact on the composed system.

Lemma 4.6. Let γ1,γ2 ⊆ 2P∪Ṗ∪P be two sets of interactions and denote γ14γ2
∆
= (γ1 \γ2)∪ (γ2 \γ1) their

symmetric difference. If fire(a) = /0, for all a ∈ γ14γ2, then γ1(B1, . . . ,Bn) = γ2(B1, . . . ,Bn).

Proof. It is easy to see that γ1(B1, . . . ,Bn) and γ2(B1, . . . ,Bn) behaviours can differ only in their respective
transition relations→.

Application of the rule (13) in Definition 4.5 to an interaction with empty firing support generates

a transition q1 . . .qn
fire(a)= /0−→ q1 . . .qn. As mentioned in the opening of this section, we assume that the

self-loop transition labelled by an empty set is enabled in all states. Therefore, the above transition is
present in both γ1(B1, . . . ,Bn) and γ2(B1, . . . ,Bn). By the assumption of the lemma, all interactions with
non-empty firing support belong to γ1 ∩ γ2. Hence all transitions labelled with non-empty interactions
also appear in both γ1(B1, . . . ,Bn) and γ1(B1, . . . ,Bn).

Lemma 4.7. Let γ1 ⊆ 2P∪Ṗ∪P be a set of interactions, γ2 = γ1∪{a}, with a⊆ P∪ Ṗ∪P, such that there
is an interaction b ∈ γ1, b⊆ a and fire(b) = fire(a). Then γ1(B1, . . . ,Bn) = γ2(B1, . . . ,Bn).

Proof. According to rule (13) any transition generated by the interaction a can also be generated by
the interaction b. Thus, interaction a does not impact the behaviour of the composed system, and
γ1(B1, . . . ,Bn) = γ2(B1, . . . ,Bn).

5 Algebra extensions

In Section 4, we have replaced the classical BIP combination of interaction and priority models with an
extended interaction model with ports of three types: firing, activation and negative.4 We can now extend
other algebras used for the glue representation.

4 Only firing and negative ports are necessary to define classical BIP composition operators. Activation ports allow for a
full correspondence with B[P, Ṗ] Boolean constraints. This correspondence and an expressivity study are given in [8].

E. Baranov, S. Bliudze 9

p

q̇

(a)

pq̇

(b)

ṗ

q

ṙ ṡ

(c)

ṗ

q ṙ q ṡ

(d)

Figure 4: Two pairs of equivalent trees: (a), (b) and (c), (d).

We start by considering the extension of the Algebra of Interactions, AI(P). Recall that x ' y iff
‖x‖ = ‖y‖. As a simple corollary of the results in [6], ‖x‖ = ‖y‖ is equivalent to ‖x‖(B) = ‖y‖(B), for
any finite family B of behaviours.

Below we will consider AI(P∪ Ṗ∪P) with the latter definition of term equivalence: two terms
x,y ∈ AI(P∪ Ṗ∪ P) are equivalent iff ‖x‖(B) = ‖y‖(B) (in terms of Definition 4.5), for any finite
family B of behaviours. In general, we define equivalence as follows.

Definition 5.1. Let A (P) be an algebra, ‖·‖ : A (P)→ 22P
. Two terms x,y ∈A (P) are equivalent x∼ y

iff, for any finite family B of behaviours, ‖x‖(B) = ‖y‖(B) (in terms of Definition 4.5).

Remark 5.2. Clearly ∼ is weaker than '.

We are now in position to similarly extend the other algebras. The interaction semantics of the
causal interaction trees |·| : T (P)→ AI(P) is transposed without any change to |·| : T (P∪ Ṗ∪P)→
AI(P∪ Ṗ∪P). Similarly, the functions τ : A C(P)→ T (P) and σ : T (P)→ A C(P) are transposed
identically to A C(P∪ Ṗ∪P) and T (P∪ Ṗ∪P). The same goes for the mapping R(t) associating to a
causal interaction tree t ∈T (P) the corresponding system of causal rules [7]. The only difference is that,
in C R(P∪ Ṗ∪P) we introduce the following additional axiom: ṗ⇒ p, for all p ∈ P.

Proposition 5.3. The equivalence relation ∼ on T (P∪ Ṗ∪P) is a congruence.

Sketch of the proof. The proof is the same as for T (P) [7]. For any two trees t1, t2 ∈ T (P∪ Ṗ∪ P)
and for any context C(z) ∈ T (P∪ Ṗ∪P∪{z}), we have to show that the equivalence t1 ∼ t2 implies
C(t1/z)∼C(t2/z), where C(ti/z) is the tree obtained, by replacing in C(z) all occurrences of z by ti. Since
the semantics T is compositional, structural induction on the context C(z) proves the proposition.

The first consequence of the above extension is that, rather than extending the existing graphical
representation of connectors, it can be directly used in its present form to express priorities and activation
conditions (the use of the offer predicate in the positive premises of the rule (13)) by adding a trivalued
attribute to ports: firing, activation and negative. It is important to observe the difference between, on
one hand, adding an attribute to ports and, on the other hand, modifying the typing operator (synchron
vs. trigger typing), since the latter is applied at each level of the connector hierarchy, whereas the former
is applied to ports, that is only at the leaves of the connector.

5.1 Refinement of the extension

When we apply x,y∈AI(P∪ Ṗ∪P) to compose behaviour with operational semantics of Definition 4.5,
‖x‖(B) = ‖y‖(B) does not imply x = y. AI axioms are not complete (although still sound) with respect
to ∼, since this equivalence is weaker than '. Consequently, on T (P∪ Ṗ∪P), ∼ is also weaker than '.

10 Extended Connectors in BIP

Example 5.4. Let P = {p,q,r,s} and consider the T (P∪ Ṗ∪P) trees shown in Figure 4. The inter-
action semantics of the tree in Figure 4a is ‖p→ q̇‖ = {p, pq̇}. However, the interaction p does not
contain any firing ports. Therefore, as mentioned above (Lemma 4.6), it does not influence component
synchronisation and we have p→ q̇ ∼ pq̇ (cf. Figure 4b).

The causal interaction tree in Figure 4c also defines a redundant interaction. Indeed,

‖ṗ→ q→ (ṙ⊕ ṡ)‖ = { ṗ, ṗq , ṗq ṙ , ṗq ṡ , ṗq ṙ ṡ} .

Although the interaction ṗq does contain a firing port ṗ, it is redundant (Lemma 4.7). We conclude,
therefore, that the causal interaction trees in Figure 4c and Figure 4d are equivalent, since

‖ṗ→ (q ṙ⊕q ṡ)‖ = {ṗ, ṗq ṙ , ṗq ṡ , ṗq ṙ ṡ} .

The above example illustrates the idea that the nodes of causal interaction trees, which do not contain
firing ports, can be “pushed” down the tree.

Another notable case leading to redundant interactions corresponds to trees containing contradictory
port typings. For example, either of the two equivalent trees p→ ṗ and p ṗ authorises the interaction
p ṗ. However, when considered in the context of the rule (13), this interaction generates two conflicting
premises qi

p→ q′i and qi 6 ↑ p. Thus, this instance of the rule (13) does not authorise any transitions and
the interaction p ṗ can be safely discarded. This example corresponds to the additional axiom ṗ⇒ p
imposed in [8] on the Boolean formulæ in B[P, Ṗ]. Similarly, redundant interactions appear when a tree
contains other distinct port typings of the same port: p and p, generating conflicting premises qi ↑ p and
qi 6 ↑ p; p and ṗ, whereof the former generates the premise qi ↑ p redundant alongside the premise qi

p→ q′i
generated by the latter.

Below, we provide a set of axioms reducing interaction redundancy. We enrich axioms for T (P∪
Ṗ∪P) from [7] by adding some new ones, specific for the trivalued port attribute.

Axioms. 1. For all p ∈ P and a⊆ P∪ Ṗ∪P such that a 6= /0,

(a) a ·0 = 0,
(b) a ·1 = a, for a 6= 0,
(c) ṗ · p = ṗ (cf. the additional axiom ṗ⇒ p in C R(P∪ Ṗ∪P)),
(d) ṗ · p = p · p = 0.

2. Parallel composition, ‘⊕’, is associative, commutative, idempotent, and its identity element is 0.

3. a→ 0 = a, for all a⊆ P∪ Ṗ∪P.

4. 0→ t = 0, for all t ∈T (P∪ Ṗ∪P).

5. c→ a→ b→ t = c→ ab→ t for all a,b,c⊆ P∪ Ṗ∪P, such that fire(a) = /0, and t ∈T (P∪ Ṗ∪P).

6. ap→ b = ap→ bp for all a,b⊆ P∪ Ṗ∪P, p ∈ P∪ Ṗ∪P.

7. a→ (t1⊕ t2) = a→ t1 ⊕ a→ t2, for all a⊆ P∪ Ṗ∪P, t1, t2 ∈T (P∪ Ṗ∪P).

Axioms 1 equalise redundant interactions due to contradictory port typings, whereas Axiom 5 elim-
inates the nodes with empty firing support. Axioms 2, 3, 4 and 7 are the same as in [7].5

Proposition 5.5. The above axiomatisation is sound with respect to ∼.

5 The two remaining axioms from [7] are replaced by Lemmas 5.6 and 5.7 in this paper.

E. Baranov, S. Bliudze 11

Proof. Since, by Proposition 5.3, the equivalence relation ∼ is a congruence, it is sufficient to show that
all the axioms respect ∼. This is proved by verifying that the semantics for left and right sides coincide.

Axioms 2, 3, 4 and 7 are the same as in [7]. Hence, their respective left- and right-hand sides
are related by ', which is stronger than ∼. Axiom 1(a) and Axiom 1(b) are trivial. Axiom 1(c) is a
consequence of Lemma 4.7. In the Axiom 1(d), both pairs p and p, and ṗ and p produce conflicting
premises in the rule (13) and, therefore, do not generate any transitions. For the Axiom 5, we have

‖c→ a→ b→ t‖= {c, ac, abc}∪{abca2 |a2 ∈ ‖t‖} (15)

‖c→ ab→ t‖= {c, abc}∪{abca2 |a2 ∈ ‖t‖} (16)

The only difference between the interaction semantics of the two trees is the interaction ac. However,
any transition authorised by the rule (13) with this interaction is also authorised with interaction c, since
fire(a) = /0 (Lemma 4.7). Hence, the composed systems coincide.

For the Axiom 6, we have ‖ap→ b‖ = {ap, abp} = ‖ap→ bp‖. Thus ap→ b ' ap→ bp, which
implies ap→ b∼ ap→ bp.

Notice that our axiomatisation is not complete. For instance, the equivalence p→ q⊕q→ p∼ p⊕q
cannot be derived from the axioms.

Lemma 5.6. For all a,b⊆ P∪ Ṗ∪P, such that fire(b) = /0, holds the equality a→ b = a.

Proof. a→ b = a→ b→ 0→ 0 = a→ b ·0→ 0 = a→ 0→ 0 = a (Axioms 3, 5)

Lemma 5.7. For all a⊆ P∪ Ṗ∪P and t ∈T (P∪ Ṗ∪P), holds the equality a→ 1→ t = a→ t.

Proof. If t = 0 the statement of this lemma is a special case of Lemma 5.6 with b = 1. If t 6= 0 it can
be represented as a parallel composition of non-zero trees t =

⊕n
i=1 ri → ti, with ri ⊆ P∪ Ṗ∪P. By

Axioms 5 and 7, we have

a→ 1→ t =
n⊕

i=1

(a→ 1→ ri→ ti) =
n⊕

i=1

(a→ ri→ ti) = a→
n⊕

i=1

(ri→ ti) = a→ t .

Lemma 5.8. For all a,bi,c⊆ P∪ Ṗ∪P, such that fire(a) = /0 and ti ∈T (P∪ Ṗ∪P), holds the equality

c→ a→
n⊕

i=1

(bi→ ti) = c→
n⊕

i=1

(abi→ ti) .

Proof. As above, applying Axioms 5 and 7, we have

c→ a→
n⊕

i=1

(bi→ ti) =
n⊕

i=1

(c→ a→ bi→ ti) =
n⊕

i=1

(c→ abi→ ti) = c→
n⊕

i=1

(abi→ ti) .

Definition 5.9. A causal interaction tree t ∈ T (P∪ Ṗ∪P) is in normal form if it satisfies the following
properties:

1. All nodes of t except roots have non-empty firing support.

12 Extended Connectors in BIP

2. There are no causal dependencies between the same typing of the same port in t, that is for any
causal chain a→ ·· · → b within t, we have a∩b = /0.

3. There are no causal dependencies between different port typings of the same port in t, other than
dependencies of the form ap→ ··· → bṗ, where a,b⊆ P∪ Ṗ∪P, p ∈ P.

Proposition 5.10 (Normal form for causal interaction trees). Every causal interaction tree t ∈ T (P∪
Ṗ∪P) has a normal form t = t̃ ∈T (P∪ Ṗ∪P).

Proof. Consider t ∈ T (P∪ Ṗ∪P). We start by computing t1 = t with all nodes, except potentially the
roots, having non-empty firing support.

Let a be a non-root node of t with fire(a) = /0, such that the tree s rooted in a does not have any nodes
with empty firing support. If s is empty, that is a is a leaf then remove a from the tree (Lemma 5.6).
Otherwise, let c be the parent of a, which exists since a is not a root and move the parallel composition
operator up using Axiom 7:

c→

(
(a→ s)⊕

n⊕
i=1

ti

)
= (c→ a→ s)⊕

(
n⊕

i=1

c→ ti

)
. (17)

The sub-tree s can be further decomposed as s =
⊕n

i=1(bi→ si), so, by Lemma 5.8, we have

c→ a→ s = c→ a→
n⊕

i=1

(bi→ si) = c→
n⊕

i=1

(abi→ si) . (18)

Each of nodes abi has non-empty firing support, since fire(bi) = /0 by the choice of a. Substituting (18)
into (17) and applying Axiom 7, we obtain(

c→
n⊕

i=1

(abi→ si)

)
⊕

(
n⊕

i=1

c→ ti

)
= c→

((
n⊕

i=1

abi→ si

)
⊕

n⊕
i=1

ti

)
.

In the resulting tree, there is one node with empty firing support less than in t. Hence, repeating this
procedure as long as there are such nodes, we will compute a tree t1, where all nodes except roots have
non-empty firing support. This computation is confluent, since the order is irrelevant among causally
independent nodes, whereas among causally dependent ones it is fixed by the algorithm.

Consider a causal chain ap̃→ ·· · → bp̂ within t1, with p̃ and p̂ being two typings of the same port.
If p̃ = p and p̂ = ṗ, there is nothing to do, since such dependencies are allowed by Definition 5.9.
Otherwise, we propagate p̃ down by applying Axiom 6:

ap̃→ c1→ ··· → ck→ bp̂ = ap̃→ c1 p̃→ ··· → ck→ bp̂ = . . . = ap̃→ c1 p̃→ ··· → ck p̃→ bp̂p̃ .

Case 1: p̃ = p̂ or p̃ = ṗ and p̂ = p. We apply Axioms 1(c) and 6:

ap̃→ c1 p̃→ ·· · → ck p̃→ bp̂p̃ = ap̃→ c1 p̃→ ··· → ck p̃→ bp̃ = ap̃→ c1→ ··· → ck→ b .

Case 2: p̃ 6= p̂ and either p̃ = p or p̂ = p. We apply Axioms 1(d), 3 and 6:

ap̃→ c1 p̃→ ·· · → ck p̃→ bp̂p̃ = ap̃→ c1 p̃→ ··· → ck p̃→ 0 =

= ap̃→ c1→ ·· · → ck→ 0 = ap̃→ c1→ ··· → ck .

To compute t̃, we apply this transformation to all relevant causal chains within t.

E. Baranov, S. Bliudze 13

Definition 5.11. An A C(P∪ Ṗ∪P) connector is in normal form if the following conditions hold.

1. Nodes at every hierarchical level of the connector, except the bottom one, have at least one trigger.

2. Each node at the bottom hierarchical level, is a strong synchronisation of pairwise distinct ports.

3. Every node at the bottom hierarchical level, without firing ports, has only triggers as ancestors.

Corollary 5.12 (Normal form for connectors). Every connector x ∈ A C(P∪ Ṗ∪P) has an equivalent
normal form x∼ x̃ ∈A C(P∪ Ṗ∪P).

Sketch of the proof. Given a connector x, let t = τ(x) be the equivalent causal interaction tree and t̃ = t
its normal form. Put x̃ = σ(t̃). Since both σ and τ preserve ∼, we have x̃∼ x. Normality of x̃ is a direct
consequence of that of t̃ and the definition (10) of σ .

Proposition 5.13. Any causal interaction tree t ∈T (P∪ Ṗ∪P) can be represented by a system of causal
rules with only firing ports as effects, i.e. having only rules of the form ṗ⇒C, where C is a DNF Boolean
formula on Ṗ∪P without negative firing variables.

Proof. Applying the transformation R : T (P)→ C R(P) defined in Section 3.5 to a tree t ∈T (P), gives
a system of causal rules of the form p⇒C, where C is a DNF Boolean formula and each monomial is a
conjunction of the nodes on the way from a root of t to p (some prefix in t leading to p, excluding p).

We define the transformation R̃ : T (P∪ Ṗ∪P)→ C R(P∪ Ṗ∪P), by putting

R̃(t) ∆
= {p⇒ cp(t)}p∈Ṗ∪{tt} , (19)

that is we omit causal rules for port variables in P∪P (in (19), the set of rules is indexed by p ∈ Ṗ∪{tt}
as opposed to p∈ P∪{tt} in (11)). To prove the equivalence t ∼ R̃(t) it is sufficient to show R̃(t)∼ R(t).

R̃(t) has less constraints than R(t). Hence, it allows more interactions. Let a ∈ ‖R̃(t)‖\‖R(t)‖, i.e.
there exists p ∈ P∪P, such that p ∈ a and the rule p⇒C1 is violated by a. Let ã = a\ p.

Assume ã /∈ ‖R̃(t)‖, i.e. there exists q̇ ∈ Ṗ and a rule (q̇⇒C2) ∈ R̃(t), such that q̇ ∈ ã and the rule
q̇⇒C2 is violated by ã. This rule is not violated by a. Hence C2 = pC′2 and, consequently, p lies on all
prefixes in t, leading to q̇. a ∈ ‖R̃(t)‖, q̇ ∈ ã ⊆ a, thus there is at least one prefix in t, leading to q̇ and
contained in a. As p lies on this prefix, the rule (p⇒C1) is satisfied by a, contradicting the conclusion
above. Therefore our assumption is wrong and ã ∈ ‖R̃(t)‖.

Since ã ∈ ‖R̃(t)‖ and fire(ã) = fire(a), we have, by Lemma 4.7, ‖R̃(t)‖(B) = (‖R̃(t)‖\{a})(B) for
any family of behaviours B. Thus, for all a∈ ‖R̃(t)‖\‖R(t)‖, there exists ã a, such that ã∈ ‖R̃(t)‖ and
fire(ã) = fire(a). By Lemma 4.7, we have ‖R̃(t)‖(B) = ‖R(t)‖(B) for any family B, i.e. R(t)∼ R̃(t).

6 Connector synthesis (example)

on

off

off

err

b

on off b

1

2

3

Figure 5: Main module.

Consider a system providing some given functionality in two modes: normal
and backup. The system consists of four modules: the Backup module A can
only perform one action a; the Main module B (Figure 5) can perform an
action b corresponding to the normal mode activity, it can also be switched
on and o f f , as well as perform an internal (unobservable) error transition err;
the Monitor module M is a black box, which performs some internal logging
by observing the two actions a and b through the corresponding ports al and
bl; finally, the black box Controller module C takes the decisions to switch on or off the main module

14 Extended Connectors in BIP

through the corresponding ports onc and o f fc, furthermore, it can perform a test to check whether the
main module can be restarted.

We want to synthesise connectors ensuring the properties below (encoded by Boolean constraints).

• The main and backup actions must be logged: ȧ⇔ ȧl and ḃ⇔ ḃl ;

• Only Controller can turn on the Main module: ȯn⇔ ˙onc ;

• When Controller switches off the Main module must stop operation: ˙o f fc⇒ ˙o f f and ḃ⇒ ˙o f fc ;

• Controller can only test the execution of Backup: ˙test⇒ ȧ ;

• Backup can only execute when Main is not possible: ȧ⇒ b∨ ˙o f f ;

• Main can only switch off when ordered to do so or after a failure: ˙o f f ⇒ b∨ ˙o f fc ;

In order to compute the required glue, we take the conjunction of the above constraints together with
the progress constraint ȧ∨ ḃ∨ ȯn∨ ˙o f f ∨ ˙test∨ ȧl∨ ḃl∨ ˙o f fc∨ ˙onc stating that at every round some action
must be taken. In order to simplify the resulting connectors, we also use part of the information about
the behaviour of the Main module, namely the fact that on, on one hand, and b or o f f , on the other,
are mutually exclusive: on⇒ b∧o f f . Finally, we also apply the additional axiom imposed on Boolean
constraints: ṗ⇒ p. We obtain the following global constraint (omitting the conjunction symbol):

(ȧ⇒ ȧl a b ∨ ȧl a ˙o f f)(ȧl ⇒ ȧ al)(ḃ⇒ ḃl b ˙o f fc)(ḃl ⇒ ḃbl)(ȯn⇒ ˙onc on)(˙onc⇒ ȯn onc)

∧ (˙o f f ⇒ o f f b ∨ ˙o f fc o f f)(˙o f fc⇒ ˙o f f o f fc)(˙test⇒ ȧ test)
∧ (on⇒ b o f f)(ȧ ∨ ḃ ∨ ȯn ∨ ˙o f f ∨ ˙test ∨ ȧl ∨ ḃl ∨ ˙o f fc ∨ ˙onc) .

Recall now that causal rules have the form p⇒C, where p∈P∪Ṗ∪P∪{tt} and C is a DNF Boolean
formula on P∪ Ṗ without negative firing variables. By Proposition 5.13, it is sufficient to consider only
the rules with firing or tt effects. A system of causal rules is a conjunction of such clauses. Among the
constraints above, there are two that do not have this form: on⇒ b o f f and ḃ⇒ ḃl b ˙o f fc. Rewriting
them as on∨b o f f and ḃ∨ ḃl b ˙o f fc, distributing over the conjunction of the rest of the constraints and
making some straightforward simplifications, we obtain a disjunction of three systems of causal rules:

tt⇒ ȧ b o f f ∨ ȯn tt⇒ ȧ on ∨ ˙o f f tt⇒ ḃ ḃl

ȧ⇒ ȧl b ȧ⇒ ȧl b ∨ ȧl ˙o f f ȧ⇒ ff

ȧl ⇒ ȧ ḃ⇒ ff ȧl ⇒ ȧ ḃ⇒ ff ȧl ⇒ ff ḃ⇒ tt

ȯn⇒ ˙onc ḃl ⇒ ff ȯn⇒ ff ḃl ⇒ ff ȯn⇒ ff ḃl ⇒ tt

˙onc⇒ ȯn ˙o f f ⇒ ff ˙onc⇒ ff ˙o f f ⇒ b ∨ ˙o f fc ˙onc⇒ ff ˙o f f ⇒ ff

˙test⇒ ȧ ˙o f fc⇒ ff ˙test⇒ ȧ ˙o f fc⇒ ˙o f f ˙test⇒ ff ˙o f fc⇒ ff

Applying the procedure from [7], we obtain the T (P∪ Ṗ∪P) trees in Figure 6 and connectors in
Figure 7. In terms of classical BIP, one can easily distinguish here two priorities: x a al ≺ b bl and
x o f f ≺ b bl for all x not containing o f f o f fc. In general, priorities are replaced by local inhibitors. In
this example, these appear to characterise states of the Main module. For instance, ȧ ȧl b o f f defines
possible interactions involving a al when neither b nor o f f are possible, i.e. in state 1 (see Figure 5).

E. Baranov, S. Bliudze 15

ȧ ȧl b o f f

˙test

⊕ ȯn ˙onc

˙o f f ˙o f fc

ȧ ȧl

˙test

⊕

ȧ ȧl b on

˙test

⊕ ˙o f f b ḃ ḃl

Figure 6: Three causal interaction trees.

ȧ o f fbȧl ˙test ȯn ˙onc on ˙test ˙o f f bȧ bȧl

˙test˙o f f ˙o f fc

ȧ ȧl ḃ ḃl

Figure 7: Connectors corresponding to trees from Figure 6.

7 Conclusion

The work presented in this paper relies on a variation of the BIP operational semantics based on the
offer predicate introduced in [8]. Glue operators defined using the offer predicate are isomorphic to
Boolean constraints on activation and firing port variables B[P, Ṗ] with an additional axiom ṗ⇒ p [8].
By considering the negation of an activation port variable as a separate negative port variable (keeping,
however, the axiom p p = ff), we reinterpret the combination of interaction and priority models on P as
an interaction model on P∪ Ṗ∪P. This allows us to apply the algebraic theory, previously developed for
modelling interactions in BIP, to model interactions and priorities simultaneously. In particular, we can
synthesise such new connectors from arbitrary B[P, Ṗ] Boolean formulæ (in [7] we have shown how to
synthesise classical connectors from formulæ on port variables without firing/activation dichotomy).

The equivalence induced by the new operational semantics on the algebras (x∼ y ∆⇔‖x‖(B)= ‖y‖(B)
for any finite set of behaviours B) is weaker than the standard equivalence induced by the interaction se-
mantics (x' y ∆⇔|x|= |y|). Extending the axioms of the Algebra of Causal Interaction Trees accordingly,
we define normal forms for connectors and causal interaction trees. This, in turn, allows us to simplify
the causal rule representation, by considering only rules with firing effects. Algebra extensions are illus-
trated on a connector synthesis example.

In this paper, we have only extended the axiomatisation of T (P∪ Ṗ∪P). Studying corresponding
extensions for the axiomatisations of other algebras as well as their completeness could be part of the
future work. More urgently, we intend to study the differences between the classical BIP semantics and
the offer variation. For example, it is clear that the two semantics are equivalent on flat models. The
divergence on hierarchical models remains to be characterised.

References
[1] Farhad Arbab, Christel Baier, Frank de Boer, Jan Rutten & Marjan Sirjani (2005): Synthesis of Reo Cir-

cuits for Implementation of Component-Connector Automata Specifications. In: Coordination Models and
Languages, LNCS 3454, Springer, Berlin / Heidelberg, pp. 236–251, doi:10.1007/b135676.

[2] Farhad Arbab & Sun Meng (2008): Synthesis of Connectors from Scenario-Based Interaction Specifications.
In: CBSE’08, LNCS 5282, Springer Berlin/Heidelberg, pp. 114–129, doi:10.1007/978-3-540-87891-9.

http://dx.doi.org/10.1007/b135676
http://dx.doi.org/10.1007/978-3-540-87891-9

16 Extended Connectors in BIP

[3] Simon Bliudze (2012): Towards a Theory of Glue. In: ICE 2012: Distributed coordination, execution models,
and resilient interaction, EPTCS 104, pp. 48–66, doi:10.4204/EPTCS.104.6.

[4] Simon Bliudze & Joseph Sifakis (2007): The Algebra of Connectors — Structuring Interaction in BIP. In:
Proc. of the EMSOFT’07, ACM SigBED, pp. 11–20, doi:10.1145/1289927.1289935.

[5] Simon Bliudze & Joseph Sifakis (2008): The Algebra of Connectors—Structuring Interaction in BIP. IEEE
Transactions on Computers 57(10), pp. 1315–1330, doi:10.1109/TC.2008.26.

[6] Simon Bliudze & Joseph Sifakis (2008): A Notion of Glue Expressiveness for Component-Based Systems.
In Franck van Breugel & Marsha Chechik, editors: CONCUR 2008, LNCS 5201, Springer, pp. 508–522,
doi:10.1007/978-3-540-85361-9 39.

[7] Simon Bliudze & Joseph Sifakis (2010): Causal semantics for the algebra of connectors. Formal Methods
in System Design 36(2), pp. 167–194, doi:10.1007/s10703-010-0091-z.

[8] Simon Bliudze & Joseph Sifakis (2011): Synthesizing Glue Operators from Glue Constraints for the Con-
struction of Component-Based Systems. In Sven Apel & Ethan Jackson, editors: 10th International Confer-
ence on Software Composition, LNCS 6708, Springer, pp. 51–67, doi:10.1007/978-3-642-22045-6 4.

[9] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf & Joseph Sifakis (2010): From high-
level component-based models to distributed implementations. In: Proceedings of the tenth ACM inter-
national conference on Embedded software, EMSOFT ’10, ACM, New York, NY, USA, pp. 209–218,
doi:10.1145/1879021.1879049.

[10] Marius Bozga, Mohamad Jaber & Joseph Sifakis (2009): Source-to-source architecture transformation for
performance optimization in BIP. In: Industrial Embedded Systems, 2009. SIES ’09. IEEE International
Symposium on, pp. 152–160, doi:10.1109/SIES.2009.5196211.

[11] Roberto Bruni, Ivan Lanese & Ugo Montanari (2006): A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1), pp. 98–120, doi:10.1016/j.tcs.2006.07.005.

[12] Roberto Bruni, Hernn Melgratti & Ugo Montanari (2012): Connector Algebras, Petri Nets, and BIP. In
Edmund Clarke, Irina Virbitskaite & Andrei Voronkov, editors: Perspectives of Systems Informatics, Lecture
Notes in Computer Science 7162, Springer Berlin Heidelberg, pp. 19–38, doi:10.1007/978-3-642-29709-0 2.

[13] Dave Clarke, José Proença, Alexander Lazovik & Farhad Arbab (2009): Deconstructing Reo. ENTCS 229(2),
pp. 43–58, doi:10.1016/j.entcs.2009.06.028.

[14] Paola Inverardi & Simone Scriboni (2001): Connectors Synthesis for Deadlock-Free Component-
Based Architectures. In: ASE ’01, IEEE Computer Society, Washington, DC, USA, pp. 174–181,
doi:10.1109/ASE.2001.989803.

[15] Joseph Sifakis (2005): A Framework for Component-based Construction. In: 3rd IEEE Int. Conf. on Software
Engineering and Formal Methods (SEFM05), pp. 293–300, doi:10.1109/SEFM.2005.3. Keynote talk.

[16] Pawel Sobocinski (2009): A non-interleaving process calculus for multi-party synchronisation. In Fil-
ippo Bonchi, Davide Grohmann, Paola Spoletini & Emilio Tuosto, editors: ICE, EPTCS 12, pp. 87–98,
doi:10.4204/EPTCS.12.6.

http://dx.doi.org/10.4204/EPTCS.104.6
http://dx.doi.org/10.1145/1289927.1289935
http://dx.doi.org/10.1109/TC.2008.26
http://dx.doi.org/10.1007/978-3-540-85361-9_39
http://dx.doi.org/10.1007/s10703-010-0091-z
http://dx.doi.org/10.1007/978-3-642-22045-6_4
http://dx.doi.org/10.1145/1879021.1879049
http://dx.doi.org/10.1109/SIES.2009.5196211
http://dx.doi.org/10.1016/j.tcs.2006.07.005
http://dx.doi.org/10.1007/978-3-642-29709-0_2
http://dx.doi.org/10.1016/j.entcs.2009.06.028
http://dx.doi.org/10.1109/ASE.2001.989803
http://dx.doi.org/10.1109/SEFM.2005.3
http://dx.doi.org/10.4204/EPTCS.12.6

	Introduction
	Related work
	Representations of the interaction model
	Algebra of Interactions
	Algebra of Connectors
	Algebra of Causal Interaction Trees
	Systems of Causal Rules
	Transformations between different representations

	Modification of the semantic model
	Algebra extensions
	Refinement of the extension

	Connector synthesis (example)
	Conclusion

