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Abstract
Cyber-physical systems have developed into a very active research field, with a broad range of challenges and research
directions going from requirements, to implementation and simulation, as well as validation and verification to guarantee
essential properties. In this survey paper, we focus exclusively on the following fundamental issue: how to link physicality and
computation, continuous time-space dynamics with discrete untimed ones? We consider that cyber-physical system design
flow involves the following three main steps: (1) cyber-physical systems modeling; (2) discretization for executability; and
(3) simulation and implementation. We review—and strive to provide insight into possible approaches for addressing—the
key issues, for each of these three steps.

Keywords Cyber-physical systems design · Structural equational modeling · Modelica · Linear graphs · Bond graphs ·
Idealization · Abstraction · Hybrid dataflow networks · Discretization · Language embedding

1 Introduction

Over the past 8 years, cyber-physical systems have devel-
oped into a very active research field. There already exists
a rich literature about research challenges and directions
spanning all aspects of cyber-physical system design from
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requirements to implementation and simulation as well as
validation and verification to guarantee essential proper-
ties [9,21,22,28,35,43,48,54]. Despite considerable effort of
the involved research communities, it is important to rec-
ognize that we are still very far from reaching the desired
degree of domain integration. Each involved research com-
munity privileges aspects and approaches they are familiar
with. One can distinguish three main work directions.

The first direction, centered on the Modelica language,
privileges a pragmatic and practically oriented approach
focusing mainly on tools. The strength of Modelica over
other approaches is that it allows freedom of expression, in
particular differential algebraic equations (DAE), by keep-
ing seamless all aspects related to execution e.g., causality
of models, treatment of Zenoness. The second builds on
dataflow languages including Matlab/Simulink and syn-
chronous languages in general. It focuses on extending these
languages to support directly the description of systems
of ordinary differential equations (ODE) and event-driven
mechanisms. The third takes as the basis model, hybrid
automata that directly integrate event-driven mechanisms
andODE.Thismodel has been thoroughly studied, especially
theoretical aspects including semantics, analysis and synthe-
sis techniques. It is closer to the world of event-driven sys-
tems e.g., programming languages and execution platforms.
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The objective of cyber-physical system modeling is
twofold. Firstly, simulation of such models provides means
for validating the system design. In particular, this is achieved
by exhibiting behaviors that emerge from composing con-
tinuously evolving physical processes with discrete control
sub-systems. The latter react to events generated by the phys-
ical processes (detecting zero-crossings), by changing their
operational modes and resetting parameter values. The sec-
ond objective of cyber-physical systems design is to provide
the means for the generation of executable code for the dis-
crete control sub-system.

To achieve these objectives, the paper advocates the inte-
gration of the three work directions described above in an
ideal cyber-physical systems design flow involving three
steps. Each work direction prevails in one of the consid-
ered steps. The focus is exclusively on the key issue: how
to link physicality and computation, continuous time-space
dynamics with discrete untimed ones? We do not address
other important issues that are generic such as requirements
specification, validation and verification, analysis and per-
formance, architectures etc.

Linking the realms of physical systems and computing
systems requires a better understanding of differences and
points of contact between them. How is it possible to define
models of computation encompassing quantities such as
physical time and resources? Significant differences exist
in the approaches and paradigms adopted by physical and
computing systems engineering.

Cyber-physical systems design flows should consistently
combine component-based frameworks for the description
of both physical and cyber systems. The behavior of compo-
nents for physical systems is described by equations, while
cyber components are transition systems. Furthermore, con-
nectors for physical systems are just constraints on flows,
while for cyber systems they are synchronization events
(interactions) with associated data transfer operations. Phys-
ical systems are inherently parallel, while computational
models are built out of interacting components that are inher-
ently sequential.

Physical systems engineering is primarily based on con-
tinuous mathematics, while computing is rooted in discrete
non-invertible mathematics. It relies on the knowledge of
laws governing the physical world as it is, while computing
is rooted in a priori concepts. Physical laws are declarative
by their nature. Physical systems are modeled by differential
equations involving relations between physical quantities.
They are governed by simple laws that are to a large extent,
deterministic and predictable. Synthesis is the dominant
paradigm in physical systems engineering. We know how to
build artifacts meeting given requirements (e.g., bridges or
circuits), by solving equations describing their behavior. By
contrast, state equations of very simple computing systems,
such as an RS flip-flop, do not admit linear representations

in any finite field. Computing systems are described in exe-
cutable formalisms such as programs and machines. Their
behavior is intrinsically non-deterministic. For computing
systems, synthesis is in general intractable. Correctness is
usually ensured by a posteriori verification. Non-decidability
of their essential properties implies poor predictability.

Despite these differences, both physical and computing
systems engineering share a common objective which is the
study of dynamic systems. We attempt below a comparison
for a simplified notion of dynamic system.

A dynamic system can be described by equations of the
form X ′ = f (X ,Y ) where X ′ is a “next state” variable, X is
the current state and Y is the current input of the system. For
physical systems, variables are functions of a single real-
valued time parameter. For computing systems, variables
range over discrete domains. The next state variable X ′ is
typically dX/dt for physical systems, while for computing
systems it denotes system state in the next computation step.

Figure 1 shows a program computing the GCD of two
integer variables and a mass-spring system. The operational
semantics of the programming language associates with the
program a next-state function, while the solution of the dif-
ferential equation describes the movement of the mass. The
set of reachable states of the program is characterized by the
invariant GCD(x, y) = GCD(x0, y0), where x0 and y0 are
the initial values of x and y, respectively. This invariant can
be used to prove that the program is correct if it terminates. In
exactly the same manner, the law of conservation of energy
kx20/2 − kx2/2 = kv2/2 determines the movement of the
mass as a function of its distance from the origin x , its initial
position x0, and its speed v.

This example illustrates remarkable similarities and also
highlights some significant differences. Programs canbe con-
sidered as scientific theories. Nonetheless, they are subject
to specific laws (invariants) enforced by their designers and
which are hard to discover. Finding program invariants is a
well-known non-tractable problem.On the contrary, all phys-
ical systems, and electromechanical systems in particular, are
subject to uniform laws governing their behavior.

Another important difference is that, for physical systems,
variables are functions of a single time parameter. This dras-
tically simplifies their specification and analysis. Operations
on these variables are defined on streams of values, while,
as a rule, operations on program variables depend only on
current state.

In contrast to physical systemmodels that inherently have
time-space dynamics, models of computation, e.g., automata
and Turing machines, do not have a built-in notion of time.
For modeling/simulation purposes, logical time is repre-
sented by state variables (clocks) that must be increasing
monotonically and synchronously. Nonetheless, clock syn-
chronization can be achieved only to a certain degree of
precision and can generate significant performance over-
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Fig. 1 Behavior and laws
characterizing a GCD program
and a spring-mass system

head. This notion of logical time as a state variable explicitly
handled by execution mechanisms, significantly differs from
physical time modeled as an ever increasing time parameter.
In particular, logical time may be blocked or slowed-down.

We consider that cyber-physical system design flow
involves the following three main steps:

1. Cyber-physical systems modeling Designers need meth-
ods and tools for faithful modeling of complex systems.
A first difficulty to overcome is structural modeling of
physical systems. If for simple electrical or mechani-
cal systems, theory allows rigorous modeling, this is
far from being the case for complex electromechani-
cal systems. Furthermore, we badly need support for
deciding whether the models are semantically sound,
detecting Zeno situations and for simplifying models
modulo some abstraction criterion. Last but not least,
we need adequate languages supporting modularity of
descriptions and allowing mixed coordination mecha-
nisms e.g., dataflow and event driven.

2. Discretization for executability Given an equational
model of a cyber-physical system e.g., in Modelica,
we need discretization techniques to produce executable
models. These should be supported by theory allow-
ing decision at reasonable costs of model causalization.
For cyber-physical system models that are amenable to
execution, discretization techniques should be composi-
tional, in particular to support heterogeneity of solvers.

3. Execution and implementation techniques For a dis-
cretized model, a network of components with a given
dataflow relation and discrete synchronization events, we
need techniques for efficient code generation and imple-
mentation. This is already a non-trivial problem for syn-
chronous languages such as Lustre [17] or Simulink [20].
It is desirable that the generated code preserve the struc-
ture of the source model. Generating monolithic code is
a much simpler problem but it precludes composition of
sub-systems with existing systems and multi-site imple-
mentation. To ensure coherency between simulation and
implementation the upstream code generation process
should be common. It could diverge later to take into
account specific requirements.

The paper assumes that the reader has some basic knowl-
edge of Mechatronics (some notions of Mechanical Engi-

neering or Electrical Engineeringmay suffice) and is familiar
with the modeling techniques for hybrid and timed systems.
It is structured as follows. In Sect. 2, we discuss issues related
to cyber-physical systems modeling. In Sect. 3, we discuss
discretization of cyber-physical systemmodels and in partic-
ular aspects dealing with executability and quality. In Sect. 4,
we discuss the principle for translating discretized models
of cyber-physical systems into executable event-based lan-
guages using embeddings. These are structure-preserving
homomorphisms that guarantee by-construction modularity.
Section 5 concludes with a discussion pointing out future
research directions.

2 Cyber and physical systemmodeling

In order to achieve the first objective mentioned in the
introduction—that is allow faithful and efficient simulation
of models exhibiting complex interactions between contin-
uous physical and discrete control processes—semantics of
cyber-physical systems models must account for the physi-
cality of the underlying processes, most significantly, their
continuous nature.Modeling languages should be adequately
restricted and equipped to be amenable to analysis. In the
following sub-sections, we discuss three aspects of cyber-
physical systems modeling that are key to addressing these
requirements.

2.1 Structural equational modeling of physical
systems

Complex physical systems are typically described as net-
works of interconnected elements, whose conceptual limits
depend on various assumptions made by the model designer.
Derivation of equations from such networks by hand requires
a lot of discipline from users: In particular, one has to make
sure that the resulting system of equations captures invari-
ants known as laws of conservation (like Kirchhoff laws for
instance, which express conservation of energy and charge
in the electrical domain). Corresponding equations actually
depend on the interconnection of constitutive elements of
models, and it is hard in general to find sets of independent
such equations when models are complex. In the subsequent
sections, we present domain-independent techniques based
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on dedicated structures, from which independent equations
capturing the laws of conservation can be derived in a sys-
tematic way. The use of such structures characterizes the so-
called structural equational modeling of physical systems.

Beyond the problem of completing systems of equations
by means of independent additional constraints, another
important aspect ofmodeling, forwhich structural equational
modeling of physical systems is of great help is the debugging
of physicalmodels.When amodeling language does not offer
syntactic support for structural equational modeling, one can
only resort to lower-level constructs (such as equations) to
build correct models. This is error-prone, and possible result-
ing errors are left undetected by modeling language compil-
ers. This makes debugging of complex models extremely
cumbersome [25,26]. Notice that such errors appear pre-
cisely in complex models. On the other hand, with syntactic
support for structural equational modeling, many program-
ming errors are simply impossible to commit—because users
no longer have to directly, explicitly program conserva-
tion laws—and, when an error is detected, its cause can be
explained at a higher level of abstraction [25,26]: it is clearly
more informative for a user to be told that, for instance, two
designated high-level model elements are in conflict, than to
be given their associated equations with a message saying
that these equations constitute a singular sub-system.

The problem of deriving equational models from physi-
cal systems has led to various approaches based on physical
analogies. In Sects. 2.1.3 and 2.1.4, we describe two such
approaches among the most popular ones, namely the linear
and bond graphs. But before describing these approaches, we
quickly recall some elements of the history of mechanical–
electrical analogies.

2.1.1 Understanding physical phenomena with the help of
analogies

Mechanical–electrical analogies can be used to explain
mechanical phenomena from electrical ones and vice-versa
by identifying suitable conjugate variables whose product
has the dimension of a power (i.e., energy per unit of time)1

and from which it is possible to derive similar equations
in both domains (these equations may even have the same
numerical solutions under suitable normalization).

In the force–voltage analogy (also known as Maxwell’s
analogy), conjugate variables are called effort variables (rep-
resenting voltage in the electrical domain and force in the
mechanical domain) and flow variable (representing cur-
rent in the electrical domain and velocity in the mechanical
domain), respectively.

1 For this reason, approaches to physical system modeling based on
these analogies are often termed energetic approaches.

In the force–current analogy (also known as Firestone’s
analogy), conjugate variables are called across variable (rep-
resenting voltage in the electrical domain and velocity in the
mechanical domain) and through variable (representing cur-
rent in the electrical domain and force in the mechanical
domain) respectively.

Moreover, mechanical–electrical analogies can be gener-
alized to other physical domains, through the identification
of suitable conjugate variables. This leads to uniform treat-
ment of physical systems and allows general formalisms to
be devised to treat a wide variety of physical modeling prob-
lems.

2.1.2 A preliminary remark regarding causality

We typically assume that physical models can be interpreted
as “effects following causes”. This is important if one needs
to explain or evenpredict phenomena.This “effects following
causes” property is often referred to as physical causality.

It could then be tempting to consider physical causality as
a fundamental concept in the design of cyber-physical system
tools. However, we will prefer another notion of causality in
practice, called computational causalitywhich, in addition to
physical causality, also captures some computational aspects.
In particular, we need validation procedures which ensure
the existence of a processing order of elementary operations
required to produce simulation results.

This is why “causality” typically refers to computational
causality in the context of the modeling approaches pre-
sented in the following sections. In particular, the bond graph
approach traditionally requires causality analysis [31] to be
performed over models, both as a validation step and as
an ordering of operations required to compute simulation
results.

2.1.3 The linear graph approach to physical system
modeling

We now introduce linear graphs—the first of the two
approaches, mentioned in the opening of this section. In
the linear graph approach [50], basic elements representing
elementary physical phenomena (storage and dissipation, to
which one can add sources to model boundary conditions, as
well as transducers to model energy transduction)2 are asso-
ciated with arcs of an oriented graph whose nodes represent
in some sense “boundaries” between identified phenomena.
This approach makes use of Firestone’s analogy to identify
conjugate variables which appear in constitutive equations
characterizing each elementary phenomenon. In Table 1, we

2 In this short introduction to linear graphs, we will not consider trans-
ducers for the sake of simplicity. The interested reader can refer to any
decent book about linear graphs formore information about transducers.
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Table 1 Examples of conjugate
quantities in linear graphs

Physical domain Across quantity (unit) Through quantity (unit)

Electrical Voltage drop (V) Current (A)

Mechanical (translational) Velocity difference (m/s) Force (N)

Fluid Pressure difference (P) Volumetric flow rate (m3/s)

Fig. 2 Linear graph modeling example. a A simple electrical system, b linear graph construction, c linear graph of the system, d orientation of
cycles

give a few examples of conjugate quantities over which con-
jugate variables range in the corresponding physical domain.

As a direct consequence of Tellegen’s theorem [49], lin-
ear graphs ensure global energy balance of models: this is of
considerable help in practice to enforce correctness of mod-
els.

To illustrate the use of linear graphs in physical system
modeling, consider the simple electrical circuit of Fig. 2a.
Its linear graph representation can be constructed by iden-
tifying nodes and elementary dipoles in the model (which
are given a conventional orientation). Figure 2b illustrates
the construction of the graph and Fig. 2c shows the final
result.

A system of differential and algebraic equations can be
derived from this model by merging:

– constitutive equations attached to interconnected ele-
ments (e.g., vR = RiR for the resistor), and

– connection equations associated with the graph struc-
ture (in our example, these correspond to applications
of Kirchhoff laws, since we are in the electrical domain).

Connection equations can be obtained by considering
fundamental circuits and fundamental cut-sets in the graph
(defined with respect to a reference spanning tree chosen
arbitrarily). Figure 2d shows a particular spanning tree of the
linear graph of Fig. 2c (the root is b and branches correspond
to edges R and C, in bold on the picture). From this tree, two
fundamental circuits can be identified (curved arrows indi-
cate their orientation, chosen arbitrarily), which yield two
across equations (taking circuit orientation in account):

vS + vR = vC ,

vI = vC .

Similarly, two through equations can be derived from the
cut-sets incident on a and c, respectively (appearance on one
side of the equal sign depends on the direction of the incident
arc with respect to the node under consideration):

iR = iS,

iS + iC + i I = 0.

123



S. Bliudze et al.

The equational model associated with our example is
obtained by merging the sets of across equations, through
equations, and constitutive equations:

vS = V0 sin (ωt + ϕ),

vR = RiR,

q̇C = iC ,

qC = CvC ,

ṗI = vI ,

pI = LiI ,

vS + vR = vC ,

vI = vC ,

iR = iS,

iS + iC + i I = 0.

From this equational model, it is possible to derive an
executable model as follows. Notice first that only qC and
pI are defined by means of differential equations: they hold
the state of the system. From their current value, we expect
that it is possible to approximate the evolution of the system
by integrating the differential equations numerically.3 This
requires the original equational model to be transformed into
a sequence of elementary computational steps following a
certain discretization technique. In this example, since all
equations can be rewritten to turn them into explicit func-
tions of some known variables,4 it is possible to derive the
following simple sequence of assignments (inputs are the
current values of qC and pI , and outputs are their “next”
values, i.e., their approximated values after ε units of time):

vC := qC/C,

vI := vC ,

vR := vC − V0 sin (ωt + ϕ),

iR := vR/R,

iS := iR,

i I := pI /L,

iC := −iS − i I ,

qnextC := qC + εiC ,

pnextI := pI + εvI .

Well-known techniques based on variants of matching algo-
rithms in suitable bipartite graphs can be used to obtain

3 Analytical integration is generally not practicable in real-world appli-
cations, for performance reasons and also because tools cannot often be
given a symbolic version of equations to be solved.
4 This is of course not possible for any equation in general. More elabo-
rated techniques (including somefixpoint determination)will be needed
in case inversion is not possible by means of simple symbolic manipu-
lations.

assignment sequences from equational models in an efficient
way.We advise the interested reader to refer to, e.g., Fritzson
[23] for a detailed overview of this.

2.1.4 The bond graph approach to physical system
modeling

Bond graphs [31]—the second approach mentioned in the
opening of this section—constitute another means to yield
equational models of physical systems. This approach is also
energetic: in bond graphs, power exchanges are materialized
by bonds (i.e., “arcs” of bond graphs, graphically repre-
sented by half-arrows ) connecting elements. This approach
makes use of Maxwell’s analogy to identify conjugate vari-
ables appearing in constitutive equations. Table 2 gives some
examples of conjugate quantities following the bond graph
convention (notice the difference with linear graphs regard-
ing the mechanical convention).

In bond graphs, terminal elements representing physical
phenomenaof interest in amodel (e.g., power supply, dissipa-
tion and storage) have to interact through a junction structure
composed of interconnected zero- and one-junctions, and
transducers.5 Zero-junctions are n-port elements whose pur-
pose is to impose, on each connected bond, the same effort
and the zero algebraic sum of flows (the sign of each flow in
the sum depending on the orientation of the corresponding
bond). Similarly, one-junctions impose, on each connected
bond, the same flow and the zero algebraic sum of efforts.

To illustrate the idea with a concrete example, we will
again consider the example of Fig. 2a. The construction of
the junction structure and its ramifications toward terminal
elements is illustrated in Fig. 3a (no orientation is chosen for
the moment).

The idea is the following. Considering the fundamental
circuits associated with an arbitrary spanning tree of the
underlying graph structure (as in the case of linear graphs),
we associate a one-junction with each fundamental circuit.
Notice that, by construction, there is exactly one edge per
fundamental circuit that does not belong to the spanning tree
and, moreover, this edge belongs to a unique fundamental
circuit. Consequently, we choose this edge as the reference
edge of the associated fundamental circuit. Connections are
then introduced as follows:

– terminal elements associated with reference edges (the
source and the inductor in our example) are directly con-
nected to their associated one-junction, and

– each remaining terminal element (the resistor and the
capacitor in our example) is connected to an interme-

5 As in the case of linear graphs, wewill not consider transducers in this
short presentation of bondgraphs.Again,we advise the interested reader
to refer to any decent book about bond graphs for more information.
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Table 2 Examples of conjugate
quantities in bond graphs

Physical domain Effort quantity (unit) Flow quantity (unit)

Electrical Voltage (V) Current (A)

Mechanical (translational) Force (N) Velocity (m/s)

Fluid Pressure (P) Volumetric flow rate (m3/s)

Fig. 3 Bond graph modeling
example. a Bond graph
construction, b bond graph
preorientation, c conventionally
oriented bond graph

diate zero-junction, which in turn is connected to the
one-junctions corresponding to fundamental cycles con-
taining the terminal element (actually the zero-junction
plays the role of a proxy for the associated terminal ele-
ment as seen from the one-junctions).

In order to obtain connection equations, we need to fix
an orientation for each bond of the graph. These orientations
have to be consistent with the corresponding linear graph
model defined before. To this end, we choose an equivalent
orientation (curved arrows of Fig. 3b correspond to orienta-
tion of fundamental cycles of Fig. 2d). We can proceed as
follows. First, we give the unoriented bond graph a globally
consistent preorientation:

– bonds connecting terminal elements to junctions are ori-
ented toward the terminal element,

– remaining bonds (connecting zero-junctions to one-
junctions) are oriented toward the one-junction if the edge
whose zero-junction is a proxy of is negatively oriented
with respect to the reference orientation, and toward the
zero-junction otherwise.

The obtained bond graph, depicted in Fig. 3b, is how-
ever not correctly oriented according to the usual bond graph
convention, which requires external power exchanges (i.e.,
associated with source elements) to have opposite signs with

respect to their linear graph counterparts. The following cor-
rection step has then to be applied:

– direction of bonds incident to zero- and one-junctions,
which are directly connected to, respectively, an effort
and a flow source have to be inverted, and

– direction of bonds connecting zero- and one-junctions to,
respectively, flow and effort sources have to be inverted.

The final, conventionally oriented bond graph is depicted
in Fig. 3c.

As in the case of linear graphs, connection equations can
be obtained from bond graphs by exploiting their structure.
Remember that we carefully constructed our bond graph
according to a reference spanning tree and corresponding
cycle basis of the associated linear graph (Figs. 2d, 3b). Ele-
mentary reasoning about properties of this transformation
reveals a one-to-one mapping between, respectively:

– fundamental cycles of the linear graph and one-junctions
of the bond graph, and

– nodes of the spanning tree of the linear graph, except the
root, and zero-junctions of the bond graph.

Remember also that, bydefinition, zero- andone-junctions
impose algebraic sum of, respectively, flows and efforts to be
zero. We can then exploit the aforementioned mappings and
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Fig. 4 Derivation of effort and
flow equations from a bond
graph. a Derivation of an effort
equation, b derivation of a flow
equation

these properties of junctions to directly obtain the desired
effort and flow equations from our bond graph. Figure 4a
shows how to derive the effort equation associated with the
leftmost one-junction. The neighbors of this junction are the
source and the two zero-junctions serving as proxies for the
resistor and the capacitor. According to orientation of bonds
incident to the junction (in bold), we obtain the following
effort equation:

vR = vS + vC .

Similarly, Fig. 4b shows how to derive a flow equation
from a zero-junction: we simply have to exchange the roles
of zero- and one-junctions in previous recipe.6 We obtain the
following flow equation:

iS + iC + i I = 0.

Gathering all connection equationswith constitutive equa-
tions of terminal elements finally leads to the following
equational model:

vS = −V0 sin (ωt + ϕ),

vR = RiR,

q̇C = iC ,

qC = CvC ,

ṗI = vI ,

pI = LiI ,

vR = vS + vC ,

vI = vC ,

iS + iC + i I = 0,

iR = iS .

Notice that the sign of vS differs from the sign of vS in the
equational model obtained previously from the linear graph.
This is because of the bond graph’s sign convention having

6 The noteworthy symmetry between both recipes reflects the duality
property of efforts and flows in the underlying physical model [30]. In
contrast, linear graphs do not enjoy such a symmetry.

for sole consequence a difference of interpretation of signs
with respect to its linear graph counterpart.

As in the case of linear graphs, executable models can be
obtained from bond graphs bymeans of matching algorithms
[23].7

2.1.5 A comparison of linear graph and bond graph
approaches

Both approaches have their own merits and drawbacks that
we discuss below.

Linear graphs benefit from strong mathematical founda-
tions: graph theory provides many useful results to prove
the correctness of algorithms processing graph structures,
whereas Tellegen’s theorem [49] has played a central role
in the use of linear graphs for physical system model-
ing. Moreover, linear graphs naturally lead to compositional
approaches in the design of physicalmodels. Indeed, nodes of
linear graphs represent boundaries between identified phys-
ical phenomena in models: as such, they constitute natural
connection points with a topological interpretation.8 As a
consequence, there is typically a nice mapping between the
“technological representation” of amodel and its linear graph
representation (see the electrical example of Fig. 2b, where
both representations are superimposed).

On the other hand, as noticed by some proponents of the
bond graph approach [30], linear graphs impose a certain
choice for across and through quantities that does not always
correspond to a natural choice as far as the physical nature
of quantities is considered. Recall Table 1 in Sect. 2.1.3: in
order to preserve the mapping between technological rep-
resentations of mechanical models and their linear graph
representations, velocity needs to be an across quantity. But
from a physical point of view, velocity is associated with the

7 Causality analysis [31] can also be used to obtain executable models
directly from the bond graph structure. However, this technique has
been superseded in most industrial tools by the more modern matching
approaches which are more general (they don’t require the initial model
to be a bond graph) and more efficient (they achieve polynomial time
performance in the worst case).
8 They are actually “virtual measurement points” according to the com-
mon interpretation of linear graphs following Trent [50].
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motion of particles, like electrical current. From this point
of view, velocity and current should be considered similar.
However, linear graphs treat them as of different nature (the
same remark can be formulated for force and voltage drop).

Compared to linear graphs, bond graphs clearly put more
emphasis on the physical nature ofmodels.As such, they con-
stitute a tool of choice for practitioners looking for insight
into characterization of fundamental physical phenomena in
physical systems. The apparent cryptic aspect of bond graph
notation (wrongly criticized in our opinion) reveals the pro-
found meaning of lumped parameter physical models.

On the other hand, bond graphs do not enjoy composition-
ality properties of linear graphs. In particular, a bond graph
representing a network of interconnected elements cannot be
directly obtained by composing the bond graphs representing
its sub-networks. This makes their direct application to the
design of physical modeling languages problematic: in prac-
tice, transition from technological representations to bond
graph representations requires substantial analysis of mod-
els. Furthermore, bond graphs lack the ability to be reduced
to a normal form (the profound cause lies in the ambiguity
between absolute and relative potentials in this formalism).
Finally, bond graphs lack a validation procedure that ensures
soundness of models in the general case9: causality analysis
of bond graphs [31] can be shown to be neither necessary, nor
sufficient for this purpose as soon as parameters of models
are “taken to the limit” (e.g., a resistance becomes infinite).
However, this limitation of bond graphs exists mainly for his-
torical reasons, since results from graph theory [34,42] show
that, under reasonable restrictions, bond graphs and linear
graphs are equally safe from this point of view.10

Ongoing work by Furic [24] suggests that it is possible to
merge bondgraphs and linear graphs into a newmathematical
structure that enjoys the compositionality features of linear
graphs as well as the regularity of bond graphs regarding the
physical nature of the underlying phenomena.

2.2 Semantic issues

To allow separate and independent compilation ofmodel sub-
systems, cyber-physical systems semantics must be modular.
It must be independent of parameters, such as simulation
step size and precision, which are specific to simulators and
code generators, but not to the underlying physical processes.
Furthermore, to allow faithful, but efficient simulation, cyber-
physical systems semantics must be amenable to model
simplifications by abstraction of low-level details of the phys-
ical processes. Ensuring correct abstraction andmodularity is
not trivial already for purely software systems—it becomes a

9 This is a necessary condition for executability.
10 In Sect. 2.1.4, we used these results to build the model based on bond
graphs.

major challenge in the cyber-physical systems context, where
continuous evolution of physical processes is combined with
discrete events, e.g., generated by digital controllers or user
actions.

2.2.1 Abstraction, idealization and non-determinism

There exist two sources of non-determinism: (1) non-
determinism in the system being modeled and (2) non-
determinism resulting from the abstraction of low-level detail
of the underlying physical processes. For an example of sys-
tem non-determinism, consider an object thrown vertically
and suppose that a discrete event is triggered when (and if)
the object attains a given threshold altitude. A slight varia-
tion in the initial conditions can affect whether the event is
triggered, potentially leading to radically different behaviors
of the composed system. Similarly, a physical system can
behave differently depending on the timing of a particular
control decision taken by a digital controller. Such timings
may depending on unpredictable variables, such as the state
of a cache of the processor performing the computations of
the controller. Thus, the absence of determinism in the initial
conditions of a physical process or timing of control deci-
sions gives rise to non-determinism intrinsic to the system
being modeled.

An example of non-determinism originating from behav-
ior abstraction is provided by Bliudze and Furic [10]. It
comprises a ramp voltage source and two fuses with differ-
ent rated currents (Fig. 5). A fuse behaves like an electrical
switch that is closedbydefault but that can eventually become
open if the branch current exceeds a limit. Consider first a
model, where only the fuse behavior is idealized, i.e., the
voltage generated by the source is initially zero, then linearly
augments until reaching the maximum value Vmax, whereas
the fuses melt instantaneously, when the current exceeds the
corresponding ratings. The only behavior of this system is
the following: both the voltage and the current raise contin-
uously until the first fuse melts, following which the current
instantaneously falls and thereafter stays constant at zero; the
remaining fuse does not melt. Consider now another variant
of this model, where the behavior of the source is also ide-
alized: initially, the generated voltage is zero until a certain
moment, when it instantaneously becomes Vmax. The behav-
ior of such model is non-deterministic: depending on which
of the instantaneous actions is “faster”, either one or both
fuses would melt.

When non-determinism occurs as a consequence of
abstraction and has significant influence on the behavior of
the model, this means that important information has been
discarded, e.g., relative speed of ramping up the voltage gen-
erated by the source and of fusemelting in the above example.
When the model is used for simulation, the objective is, pre-
cisely, to identify the parameters that have strong influence on
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Fig. 5 An electrical circuit with a ramp voltage source and two fuses

the system behavior. One cannot rely on (1) running the sim-
ulation a sufficient number of times for all possible behaviors
to manifest themselves and (2) the engineers being capable
of identifying the source of non-determinism, when it does
manifest. Thus, to be useful for simulation, model semantics
has to be sufficiently rich to allow simulators to identify and
report sources of non-determinism.

The fundamental issue, central to the ability of the model
semantics to capture the kind of phenomena described above,
is the model of time. Physical processes evolve in continuous
time, which is most intuitivelymodeled by positive real num-
bers. Given a model of sufficiently high fidelity, one could
argue that any change (typically, modifying the parameters
of physical processes) triggered by a discrete event has non-
zero duration. This would allow describing the evolution of
such systems within the same model of time, based on real
numbers.

However, high-fidelity models are not practical for at least
two reasons. Fine details of physical processes are usually
not known, due to imperfections of materials, environment
noise and other types of uncertainty. Therefore, one usually
employs idealized models often resorting, as in the above
example, to instantaneously resetting a signal to a known
value reached at the end of the transition phase. Furthermore,
when used for simulation, high-fidelity models—especially,
when representing the mode-changing dynamics—are com-
putationally very expensive.

Idealized models can exhibit sequences of cascading
instantaneous value changes (i.e., an ordered sequence of
discrete events occurring at the same real time). Models
based on the standard real-number representation of time
cannot capture such situations. Two alternative models have
been proposed: superdense time [36,37] and non-standard
time [7,11,45]. The former takes the model of time to be the
lexicographically ordered Cartesian product R × N, where
the moments (t, n) and (t,m) are considered simultane-
ous. The latter relies on non-standard analysis [39,44] and
takes the model of time to be the field of non-standard real

numbers that, in addition to usual, standard reals, contains
infinitesimals—numbers,whereof absolute values are strictly
positive, but less than any positive standard real—and the
infinitely great,which are the inverses of infinitesimals. Every
finite non-standard real can be uniquely represented as the
sum of a standard real—its standard part—and an infinitesi-
mal. The projection of finite non-standard reals onto the set
of standard reals, which discards the infinitesimal part of
this decomposition, is called standardization. Thus, both the
superdense and the non-standard models of time allow arbi-
trary numbers of distinct, but simultaneous time moments.

Another consequence of idealization is the emergence of
so-called Zeno behaviors, when an infinite number of events
happen within a finite time span. The classical example mod-
els a ball falling from a height h0 and losing a fraction
p ∈ [0, 1] of its speed due to non-elastic shock of bouncing
off the ground. In an idealized model, the speed of the ball
is instantaneously reset from its current value v to (p − 1)v.
It is easy to see that the infinite sequence of moments when
the ball bounces of the ground converges to a finite moment,
called the Zeno point.

Notice that the behavior of the bouncing ball model
described above is not defined beyond the Zeno point. Thus,
a faithful model has to comprise twomodes: before and after
the Zeno point. However, the problem remains of detecting
the Zeno behavior and deciding when the transition between
the modes can be taken without the risk of considerable devi-
ation from ideal behavior. Although this problem has been
studied by a number of authors [32,40,56], most existing
tools leave to the model designer the responsibility of pro-
viding, in the model, additional information, such as patterns
of energy dissipation, which allows deciding when the tran-
sition is to be taken. Although for simple examples, such as
the bouncing ball, providing such information is relatively
easy, doing so for complex realistic models is not practical.
When the model is used for simulation, this approach defeats
the purpose, which consists, precisely, in discovering such
information. We conjecture that a sufficiently rich semantic
model, for instance based on the non-standardmodel of time,
might be the key to addressing this problem.

2.2.2 Modularity

Physical system engineers rarely start from scratch when
designing new models. Most of the time, they reuse already
existing models and libraries. As in general-purpose pro-
gramming, modifying existing models (e.g., by replacing
given parts by “compatible” ones) or building models hierar-
chically requires means to incrementally assemble parts and,
ideally, the possibility to type-check the model and compile
its components separately.

Modularity and typing of physical models are, from our
point of view, in their very early days. Indeed, while a certain
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degree of modularity is supported in some languages, such
as VHDL-AMS (this language offers syntactic constructs to
build linear graph elements explicitly), users still experience
unexpected simulation errors due to the lack of expressive
power of the equation layer. A well-known example is the
ideal electrical switch model (which imposes a null current
when open and a null voltage when closed). This model is
perfectly legal in VHDL-AMS; however, there should not
exist any cut-set or any circuit only made of such switches
in the linear graph structure of the bigger model they belong
to. Indeed, if a cut-set of the graph contains only switches
and if those switches happen to be open at the same time dur-
ing simulation, then the system’s Jacobian matrix becomes
singular (its rank is no longer maximal). Similarly, if a cir-
cuit of the graph contains only switches, the same symptom
occurs when the switches happen to be closed at the same
time. Clearly, some improvements are necessary to enhance
expressiveness of the equation layer: in our example with
switches, it is possible to correct the model by hand, by com-
bining “conflicting” switches into one (by or-ing or and-ing
their switch conditions). However, this operation cannot be
performed automatically by the compiler. A possibility is to
resort to non-standard semantics: indeed, a switch can actu-
ally be modeled by a linear (although modulated) resistor
capable of taking infinite or infinitesimal resistance depend-
ing on the switch condition. Since ideal switches become
ordinary linear models under this semantics, they can be (for
instance) automatically combined by means of appropriate
rewrite steps (of the same kind as those already implemented
in most physical modeling languages).

Modularity deserves an additional comment in the context
of languages with no support for structural equational mod-
eling (such as Modelica). Let us consider the well-known
3-pin ideal operational amplifier, whereof theModelica code
is shown in Listing 1.

Listing 1 Modelica model of a 3-pin ideal operational amplifier
model IdealOpAmp3Pin

"Ideal operational amplifier (norator-nullator
pair), but 3 pins"

Interfaces.PositivePin in_p "Positive pin of
the input port";

Interfaces.NegativePin in_n "Negative pin of
the input port";

Interfaces.PositivePin out "Output pin";
equation

in_p.v = in_n.v;
in_p.i = 0;
in_n.i = 0;

end IdealOpAmp3Pin;

It should be noted that this model is only valid if the
out pin is connected from the outside (indeed, no equation
involves any of the connection variables of this pin inside
the model). Moreover, in order to deliver meaningful results,
this model requires additional collaboration from its environ-
ment: either a positive feedback loop or a negative feedback

loop should exist in the final model involving this opera-
tional amplifier. This is due to the fact that the first equation
actually results from a simplification of the model under this
assumption. As a consequence, it is easy to buildwrongmod-
els (i.e., having no physical interpretation) by means of this
ideal operational amplifier: many modeling assumptions are
simply not enforced by any language construct. More pre-
cisely, this model does not correspond to a valid piece of a
linear graph. Indeed, deriving the equations for such an ideal
operational amplifier using the linear graph approach, would
require (the effect of) amodulated voltage sourcewith infinite
gain driven by a voltage sensor with infinite impedance: as in
the case of ideal switches, we see again here the potential of
the coupling of linear graphs with an adequate non-standard-
based semantics (allowing infinite quantities to be explicitly
represented).

Type checking of physical models reflects the current sit-
uation with modularity: to the best of our knowledge, no type
system has been proposed so far in the field of physical mod-
eling languages that would be strong enough to guarantee
modularity. The state of the art today mostly consists in type-
checking expressions involving physical signals (including
physical connections) in programs. This is far from sufficient
to really enable modeling languages to protect their own
abstractions—if we suppose that abstractions are physical
sub-models—as exemplified above. Consequently, desirable
properties such as checking of sub-model physical compat-
ibility are simply not possible today at the type level: in
many cases, such incompatibilities are discovered at execu-
tion time, if ever.

2.3 Hybrid models for cyber-physical systems

Hybrid models combine discrete event and continuous
dynamics. In equational models, there may be hidden dis-
crete events when differential equations are associated with
constraints on continuous variables that specify regions
of validity. These discrete events characterize crossing of
regions with different dynamics without there being a jump
in the values of the continuous variables. As a rule, hybrid
models encompass continuous and discrete change by allow-
ing, in particular, jumps of values and non-determinism.

Equational models are declarative by their nature. It is not
always possible tofind apartial order of evaluation specifying
which unknown is determined by which equation. Transla-
tion of equational models into causal models is a step toward
discretization discussed in the next section. There are two
possible avenues for the definition of hybrid models.

2.3.1 Hybrid automata

Hybrid automata, introduced by Henzinger [29], can be
obtained by associating systems of differential equations
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Fig. 6 A hybrid automaton modeling a thermostat

to the states of a discrete model. In that case, states can
be interpreted as modes where time may progress until the
state is left by executing some transition. Figure 6 shows a
model of a thermostat consisting of two modes COOLING
and HEATING, with associated differential equations mod-
eling the evolution of temperature �. The discrete events
ON and OFF are triggered when the minimal temperature
m, respectively, the maximal temperature M is reached. The
constraints m ≤ � and � ≤ M determine the domain of
application of the differential equations.

The operational semantics of hybrid automata is defined
by means of relations involving two types of transitions:
timed transitions, labeled by positive real numbers, represent
the time elapsed at a certain mode when the correspond-
ing validity constraint continuously holds, and discrete event
transitions that may involve jumps of continuous values.
An important semantic issue is the urgency [14] of discrete
events in the presence of time non-determinism. For instance
consider in the Thermostat model that the guard � = M
is replaced by an interval guard Ml ≤ � ≤ Mu and the
constraint associated to state HEATING by � ≤ Mu . Such
a condition is practically more realistic because it replaces
a sharp event, impossible to implement, by another that
must happen between given bounds. This introduces non-
deterministic choice in the model that should be resolved by
respecting the constraint� ≤ Mu . Logically in this case, the
event OFF can occurwhenever the guard is respectedwithout
violating the upper bound Mu .

Composition of hybrid automata is event driven. It is
defined for hybrid automata having disjoint continuous vari-
ables. At semantic level, it boils down to building a product
automaton by synchronizing as required the discrete events.
A product state is a mode whose evolution is driven be the
union of the equations of constituent modes and the com-
position of the corresponding constraints. The latter defines
different ways for dealing with urgency [14].

2.3.2 Hybrid dataflow networks

Hybrid dataflow networks can be obtained by enriching con-
tinuous dataflow networks with discrete events that can in
particular stop and start integration processes. These events
can be either generated from continuous values when some
condition is met or be provided by the external environment.

Given a systemof explicit differential equations that repre-
sents a network of physical components, it is always possible

to obtain a continuous dataflow network (continuous block
diagram) involving primitive operators. The translation is
compositional and systematic as illustrated by Fig. 7 that
shows the network corresponding to the system of differen-
tial equations

v′
1 = f1(x, v1, v2) = ax + bv1 + cv2,

v′
2 = f2(x, v1, v2) = dx + ev1 + f v2

and its refinement, replacing the blocks that compute func-
tions f1 and f2 by equivalent sub-networks that use primitive
operators. In Fig. 7, v1 and v2 are state variables, x is an input
variable.

Each equation is implemented by a loop involving an inte-
grator. In addition to dataflow inputs and outputs, integrator
nodes have a discrete event input start that initiates the
integration with a given initial value.

The semantics of such networks is well understood: each
node continuously computes a function from input streams
of values to an output stream. Computation is synchronously
parallel. This model puts emphasis not on the physical com-
ponents and theway they are interconnected, but rather on the
mathematical operators and their causal dependency. Such a
translation proves to be very useful as it can provide a basis
for discretization: when integrators are replaced by iterative
integration programs (solvers), the resulting model is dis-
crete dataflow which is the basic model for languages such
as Lustre [17] or Simulink [20].

We can extend the continuous dataflow model to encom-
pass discrete events following an approach similar to
Simulink/Stateflow, where a discrete Stateflow controller
enables and disables Simulink blocks. To this end, we intro-
duce a when operator that receives as an input a continuous
signal y and is parametrized by a guard G and a function
H on y. The when operator is a trigger that simultane-
ously produces two eventsstop and startwhen the guard
G(y) = true. The parameter of start is the value H(y).
Using when operators, one can model the effect of a transi-
tion of a hybrid automaton (see Fig. 8). This raises similar
issues regarding urgency. Nonetheless, for hybrid automata
the modes are mutually exclusive which means that only a
single integration process is running at a time.

Although hybrid automata and hybrid dataflow networks
have the same expressive power, the underlying composition
mechanisms are very different. Hybrid automata privilege
event-driven compositionwhile, for dataflownetworks, com-
position is by giving constraints on flow variables (very
often equations). The latter holds any time, while the for-
mer defines instants in the system executionwhere composed
components can interact. As a rule these instants are deter-
mined dynamically over system execution.

The advantage of hybrid dataflow networks over hybrid
automata is that they are intrinsically parallel; parallelism
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Fig. 7 Continuous data flow networks

Fig. 8 A hybrid automaton and the corresponding hybrid dataflow network

may be reduced using when operators to control the activity
of integrators. On the contrary hybrid automata are intrin-
sically sequential and to avoid state (mode) explosion for
complex systems, it is essential to find adequate decomposi-
tions.

The literature on cyber-physical systems modeling is very
rich, dealing with various aspects regarding the combination
of acausal (equational) and causal models as well as event-
drivenmodels. An overview of approaches and results can be
found in Alur [1] and Derler et al. [21]. This paper focuses on
an approach for relating basic models used in a design flow.

3 Discretization techniques for executability

3.1 Discretization algorithms and the problem of
algebraic equations

Most of the existing system-level simulation software tools
rely on the same mathematical model, namely differential

equations possibly accompanied with reset equations. These
equations drive the dynamics of signals which, as a con-
sequence of possible resets, exhibit a piecewise continuous
behavior. Thus, a numerical solver must solve a sequence of
initial value problems (IVPs), defined as a combination of
a system of ordinary differential equations together with the
initial condition, i.e., the set of initial values for the variables
of system. This process boils down to cyclically repeating the
following two phases: (1) the (re)initialization phase, which
consists in determining the new initial condition; (2) the
continuous integration phase, which consists in applying dis-
cretization algorithms to approximate the system dynamics,
while detecting discrete events, such as zero-crossings, that
cause the resets.

There are numerous techniques for solving ODEs in a
reasonably fast and robust way. Numerical solvers usually
combine different discretization algorithms and heuristics,
including event detection algorithms (which most of the time
simply consist in monitoring sign changes between solver
steps). The interested reader can refer to Cellier and Kofman
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[18] for a comprehensive overview of this aspect of cyber-
physical system simulation. Different approaches are also
used to analyze models and obtain equational descriptions
to be submitted to solvers. For instance, one should mention
variants of nodal analysis for SPICE [52] and block-lower-
triangular transformation for Modelica tools [53].

Although in some cases modeling tools manage to gen-
erate ODEs, in many situations, the resulting systems of
equations are DAEs. Indeed, in order to obtain an ODE
model, explicit formulations of derivatives as functions of
state variables have to be found. However, in general, it is
not possible to perform this transformation automatically.
Hence, simulation tools heavily rely on DAE solvers, which
allow implicit formulations to be directly processed. It is well
known, however, that solving DAEs poses hard problems:
there is no general criterion for deciding well-posedness of
an IVP whose dynamics are driven in part by means of alge-
braic equations (general algebraic equations may have zero,
one or many solutions). Moreover, additional issues arise
when so-called high-index11 problems have to be solved. In
these problems, algebraic equations impose constraints on
state variables, restricting trajectories of the associated sig-
nals.As a simple illustration, consider Listing 2,which shows
a variation of an example from Mattsson et al. [41]. Notice
in particular the algebraic constraint (Eq. 5), which forces
the trajectory of the moving end of the pendulum’s rod to
belong to a circle centered at the origin: x cannot evolve
independently of y.12

Initialization of this model is a difficult problem, because
for almost any value of x (except 1 and − 1), there are
two distinct solutions for y—a positive one and a negative
one—satisfying the algebraic constraint. So an unambiguous
initialization of the model seems to require both coordinates
to be given, but this is likely to contradict the algebraic
constraint. In practice, one will have to disambiguate the
problem by selecting the correct value of, say, y given the
value of x . Because of nonlinearities, initialization will typ-
ically require, in addition to known values, “guess values”
for unknowns with the hope that the numerical solver called
to the rescue will converge to a suitable solution (one gen-
erally expects the returned values to be “close” to the initial
guesses). In the most favorable situation, simulation eventu-
ally starts, typically after some interaction with the user who
contributed to the effort by refining guess values if needed,
and by confirming at some point that the returned solutions
were satisfactory. Alas, as specified by the “when” clause in
the program, the pendulum has to be reset as soon as time

11 Although several distinct definitions of the notion of index exist in
the literature, they all reflect the “distance” between a system of DAEs
and the corresponding system of ODEs.
12 It can be shown that this is also the case for vx with respect to vy,
see Mattsson et al. [41] for a complete discussion.

reaches 1: we are in the same situation as during initialization
but now we would like the solver to decide by itself how to
proceed with calculations! Notice that in our example, the
numerical solver is even presented with a singular problem
at reset time.13 Indeed, as in the case of initialization, one
needs to specify two coordinates to disambiguate the reset
position, while the algebraic constraint still holds. A possi-
bility to solve this problem would be for instance to allow
only the sign of either x or y to be specified, instead of the
actual value, but this solution is specific to our problem (we
know a priori that the algebraic equation has two solutions
with opposite signs). This very simple example illustrates the
difficulties of simulating models using unrestricted DAEs.

Listing 2 Modelica model of a planar pendulum using Cartesian coor-
dinates
model Pendulum "A simple planar pendulum of fixed

length 1, with reset"

parameter Real m(fixed=true) = 1;
constant Real g = 9.81;
Real x(start=0.6, fixed=true), vx(start=0.0,

fixed=false);
Real y(start = 0.8, fixed=true), vy(start=0.0,

fixed=false);
Real F(start=0.0, fixed=false);

equation

der(x) = vx "eq 1";
der(vx) = -x * F "eq 2";
der(y) = vy "eq 3";
der(vy) = -y * F - m * g "eq 4";
x * x + y * y = 1.0 "eq 5";

when time >= 1 then
reinit(x, 0.6) "eq 6";
reinit(y, 0.8) "eq 7";

end when;

end Pendulum;

On the other hand, IVPs involving ODEs pose no problem
regarding executability: given an initial state (and possible
reset values), an ODE specifies an explicit calculation of the
future given the current state, in a constant dimensional state
space. An interesting (and still open) question concerns the
existence of mathematical models enjoying this nice prop-
erty of ODEs while still allowing discretization algorithms
to be devised that would offer the same efficiency as current
DAE solving algorithms. Consider Listing 3 which shows
a variation of the previous pendulum model using the sta-
bilization method by Baumgarte [5]. This method consists
in replacing the original algebraic equations with a suitable
combination of its derivatives in order to get an ODE in place
of the original high-index DAE. This immediately solves
the initialization and reinitialization problems. However, the

13 Undetected at compilation time according to Modelica semantics
which only impose restrictions over the number of independent equa-
tions (determined based on syntax considerations). Here, the model is
found to have two degrees of freedom, we should then be able to reini-
tialize two state variables on discrete event instants.
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model now depends on a new parameter e, which must be
carefully tuned to avoid important numerical issues [2].14

Listing 3 Modelica model of a planar pendulum using Cartesian coor-
dinates, with Baumgarte’s stabilization
model StabilizedPendulum "A stabilized version of

the simple pendulum"

parameter Real e = 1e-3 "stabilization
parameter";

parameter Real m(fixed=true) = 1;
constant Real g = 9.81;
Real x(start=0.6, fixed=true), vx(start=0.0,

fixed=false);
Real y(start = 0.8, fixed=true), vy(start=0.0,

fixed=false);
Real F(start=0.0, fixed=false);

equation

der(x) = vx "eq 1";
der(vx) = -x * F "eq 2";
der(y) = vy "eq 3";
der(vy) = -y * F - m * g "eq 4";

-8 * e * e * e * (x * vx + y * vy) * F
- 2 * e * e * e * (x * x + y * y) * der(F)
- 6 * e * e * e * m * g * vy
+ 6 * e * e * (vx * vx + vy * vy)
- 6 * e * e * (x * x + y * y) * F
- 6 * e * e * m * g * y
+ 6 * e * (x * vx + y * vy)
+ x * x + y * y = 1.0; "eq 5";

when time >= 1 then
reinit(x, 0.6) "eq 6";
reinit(y, 0.8) "eq 7";
reinit(vx, 0) "eq 8";
reinit(vy, 0) "eq 9";
reinit(F, 0) "eq 10";

end when;

end StabilizedPendulum;

Another interesting open question concerns the link with
structural equational modeling: would it be possible to auto-
matically derive stable systems of differential equations like
in Listing 3without resorting tomanual encoding and param-
eter tuning (e in this example)? We hope that this could
be achieved by coupling mathematical models capable of
capturing idealized behavior [10] with structural modeling
approaches presented in Sect. 2.1, since the latter allow users
to precisely identify fundamental phenomena driving the
dynamics of cyber-physical systems.

3.2 Discrete dataflowmodels

Given an executable continuous dataflow model the prin-
ciple of its discretization is very simple. It consists in
replacing each component computing a function F by a
synchronous iterative program. In this translation, that fully

14 A careful reader may have noticed that the actual value of e has no
influence on the numerical solution, at least theoretically. In practice,
however, numerical conditioning issues arise as a consequence of finite
precision of computer arithmetic.

preserves the structure of the network, the iterative program
for integrators can be obtained by application of well-known
integration techniques. For instance, we can apply Euler’s
method to approximate the solution of y′(t) = f

(
t, y(t)

)

with y(t0) = y0 by an iterative computation involving a
sequence of steps tn with the step size h: for every step
tn+1 = tn + h of the sequence, the computed approximation
is yn+1 = yn + h f (tn, yn). Figure 9 illustrates this transfor-
mation for integrators.

The transformation preserves the dataflow links for dis-
cretized flows. The unit delay component in the translation
is needed to store the value of y produced in one cycle, to
be reused in the next cycle. The unit delay in addition to
the start event, receives another discrete event act that
is used to trigger the beginning of an iteration cycle.

Discrete dataflow models are at the basis of synchronous
languages. These are networks of functional components
characterized by a function F with input and outputs and
a particular discrete event act. Components cyclically per-
form the computation of F , triggered by the event actwhich
plays the role of logical clock. For the component of Fig. 10,
at each instant t the inputs x and y are updated and an output
z is produced: z(t) = F(x(t), y(t)).

In discrete dataflow networks, data output ports of a
component may be connected to data input ports of other
components. This defines the dataflow relation. Events act
can be either external inputs or generated by using spe-
cific functions that generate events from data streams. These
events are subject to strong synchronization constraints as
they trigger the production of the data values by components.

Akey issue is the efficient compilation of discrete dataflow
models, so that the activation constraints are met. The signal
act can be defined in many possible ways. The simplest is
to admit a finest common granularity of computation with
the same integration step.

3.2.1 The synchronous execution assumption

The translation from continuous dataflow networks to dis-
crete dataflownetworksmakes a very strong implicit assump-
tion regarding the speed of the discretized system with
respect to its environment. This assumption known as the
synchronous execution assumption, says that the input x
(external environment) does not change or does not change
significantly between two successive act signals. Such
an assumption adopted by all synchronous reactive lan-
guages [6] must be respected for the translation to be faithful.

The need for the synchronous execution assumption can
be understoodwhenwe try to find an automaton that is behav-
iorally equivalent to a function as simple as a unit delay. A
unit delay is specified by the equation y(t) = x(t − 1). For
the sake of simplicity, we consider that x and y are binary
variables, functions of time t . The behavior of a unit delay can
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Fig. 9 Continuous dataflow model and the corresponding discrete dataflow model

Fig. 10 Discrete dataflow
component and discrete
dataflow network

Fig. 11 Timed automaton representing a unit delay y(t) = x(t − 1)

be represented by the timed automaton in Fig. 11 with four
states, provided that there is at most one change of x in one
time unit. The automaton detects for the input x , rising edge
(x↑) and falling edge (x↓) events and produces correspond-
ing outputs in one time unit. Reaction times are enforced by
using a clock τ . Notice that the number of states and clocks
needed to represent a unit delay, increases linearly with the
maximum number of changes allowed for x in one time unit.
So, there is no finite state computational model equivalent to
a unit delay if we do not make an assumption on the upper
boundof input changes over one timeunit! If the synchronous
execution assumption holds then the provided automaton is
behaviorally equivalent to the unit delay function.

3.3 Discrete event dataflowmodels

Discrete event dataflow models are obtained by extending
discrete dataflow models with a when operator. They can

also be considered as the model obtained after discretization
of hybrid dataflow models. Thus, their components can be
triggered by three different types of events:

1. act events that mark the beginning of a computation
cycle (step) of the component,

2. stop events that switch off the activity of a component,
3. start events that resume the activity of a component—

these are parametrized by the initial state of the compo-
nent.

A key issue is defining appropriate operational semantics
for such models. Following the synchrony assumption, com-
putation steps should run to completion—that is, they should
not be interrupted by stop (change of mode) events.

Another issue is how much the assumption about strong
synchronizationof act signals canbe relaxedwithout affect-
ing the overall behavior or essential properties. The activation
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Fig. 12 Embedding discrete dataflow models into event-driven models

policy for a component should also determine the integration
step. For variable integration step, each time a component
receives an act signal, it should also receive the amount of
time by which time can progress.

In the next section, we discuss the problem of translating
these models into event-based systems.

4 Execution and implementation techniques

To achieve the second objective of cyber-physical systems
modeling mentioned in the introduction—that is to enable
automatic code generation for the discrete components of a
cyber-physical systems model—code generation must pre-
serve the structure of the model. This allows the reuse of the
same code for both the simulation and the implementation
of control sub-systems. Furthermore, the ability to preserve
model structure at code generation is key to enabling separate
compilation, multi-site implementation and co-simulation.
These issues are addressed to some extent by the FMI
standardization initiative [13]. We discuss below the most
relevant and urgent research challenges.

4.1 Modular code generation

Given hybrid dataflow models, we discuss the problem
of their translation into an executable model that explic-
itly implements the relationships between the signals act,
start and stop. We show how techniques for embed-
ding synchronous languages can be adapted to discrete event
dataflow languages.

Compilers ofmost synchronous languages generatemono-
lithic code. This is clearly a limitation for multi-site imple-
mentation and linking thegenerated codewith existing legacy
one. We show how we can generate code that preserves the
structure of the source model using embeddings [47], based

on the results of Bozga et al. [15] and Sfyrla et al. [46] on
the translation of Lustre and Simulink, respectively, into the
BIP component framework [3,4,12]. 15

In this section, we discuss only the principle of a modular
translation of hybrid dataflowmodels intoBIP,which follows
the approach presented by Sfyrla et al. [46], and we skip
technical results, in particular those for checking whether
modular generation is possible using modular flow graphs.
The principle of the translation is illustrated in Fig. 12. On
the left, the discrete dataflow model in the source language
L consists of a set of functional components characterized
by the function they compute and their input and output data
ports. It is a network defined by the dataflow relation con-
necting outputs to inputs. Each component has an act event,
triggering computation cycles. These events are subject to
constraints enforcing relationships between the execution
speeds of the components.

The structured operational semantics of L defines an exe-
cution engine that coordinates the execution of components
as specified by synchronization constraints. The resulting
model in the host language is obtained by replacing each
function F of the source model by a component CF itera-
tively computing F . Each dataflow link in the source model
is replaced by a connector involving strong synchronization.
Furthermore, the execution engine for L is a synchronous
coordinator that orchestrates the triggering events act.

This construction involves separate translation of compo-
nents and the dataflow connections, explicitly defined by the
programmer in language L . The triggering events and their
relations are derived automatically, based on the operational
semantics of L .

The translation of a purely functional dataflow component
computing a function F is illustrated in Fig. 13 using the BIP

15 http://www-verimag.imag.fr/Rigorous-Design-of-Component-Bas
ed.html.
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Fig. 13 Translation of functional components and embedding

notation. The event-driven component has input and output
data ports corresponding to the input and output leads of the
functional component. In addition, it has an act action with
the corresponding port that initiates the computation cycle.
The latter terminates with a sync event. Reading the inputs
is followed by the computation of F and posting the produced
result.

The embedding consists in replacing dataflowconnections
by BIP connectors (rendezvous). The free act events (that
are not generated from signals) define a basic clock and must
be strongly synchronized. The sync event marks the end of
a cycle andmust be strongly synchronized (green connector).

Embedding hybrid dataflowmodels involves an additional
difficulty: handling not only act events but also start and
stop events that are needed to transition betweenmodes.We
are currently studying the principle of the implementation of
such an embedding illustrated in Fig. 14.

A functional node F of hybrid dataflow network is spec-
ified by its input and output ports and the events start,
stop and act. The former two events are generated by
when operators parametrized by guards G and actions H .
For instance, HstartF is used to compute the initial state of
F each time GstartF becomes true. The event stopF may
be generated by a when operator that starts some other node
G.

The translation is compositional. It generates the event
triggered component CF corresponding to the functional

node F controlled by another switching component that
determines whetherCF can be activated or not (action onF).
A change of mode can happen only upon completion of an
execution cycle. The syncF event is a triggering event con-
trolling the synchronization between ports.

This solution requires the stopA action to have higher
priority than the onA action.

4.2 Co-simulation techniques

A recent trend in system-level simulation deals with the
coupling of heterogeneous simulation models. This is usu-
ally needed in the context of industrial system simulations,
where large systems may be composed of many sub-systems
designed by different teams, departments, companies, etc.
System engineers use large interconnected models to sim-
ulate the behavior of these systems in order to anticipate
potential inter-system issues or design control algorithms for
the whole system (as opposed to local control loops that are
part of the sub-systems). Standards for model coupling thus
emerged in the simulation software industry, either ad hoc,
like the Simulink S-functions [20], or designed by industrial
consortia, like the recent Functional Mock-up Interface ini-
tiative [13]. Model coupling currently comes in two flavors:
model exchange and co-simulation.

Coupling continuous system-level simulation models
through model exchange means that some models are cre-
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Fig. 14 Embedding discrete event dataflow models into event-driven models

atedwith differentmodeling tools and are exported toward an
importing environment. This environment provides a unique
numerical solver that is able to simulate the new system
modelwhich results from the interconnection of the imported
models. To achieve this, it is assumed that the exporting
tools share a common model semantics with the importing
environment. The most common semantics for continuous
system-level simulation model is the continuous data flow
network that is represented using a block diagram defining
the right-hand side of a set of ordinary differential equations
(ODEs).

Each exported model thus defines an ODE system:

ẋi = fi (xi , ui ),

yi = gi (xi , ui ),

where xi is the state vector, ui is the vector of the exogenous
inputs, and yi is the vector of the system outputs.

In the importing environment, the systemdesigner—using
the model exchange coupling technique—specifies inter-
connections of sub-models using block diagrams. This is
equivalent to specifying a connection {0, 1}-matrix K such
that:

u = Ky,

where u = (ui ) and y = (yi ) are the vectors of all inputs
and outputs, respectively.

The importing environment handles the simulation prob-
lem by constructing and solving a semi-explicit differential
algebraic equation (DAE) representation of the data flow net-
work:

ẋ = f (x, Ky),

y = g(x, Ky).

Model coupling through model exchange is a well-posed
problem as long as (1) sub-models are, indeed, continuous,
and (2) consistent initial conditions for state and algebraic
variables have been provided. These conditions are not,
in general, satisfied in the context of cyber-physical sys-
tems, which mix continuous-time differential equations with
discrete-time equations. As illustrated by Benveniste et al.
[8], system-level simulators typically resort to ad hoc seman-
tics to handle the discrete events in such models. This makes
composition of sub-models into a common, well-defined
model a complex process, heavily relying on the designers’
insight.

Coupling of simple piecewise continuous models (i.e.,
ODE with reset equations) can produce DAEs in the result-
ing composed model. In such cases, restart conditions to be
applied following a discontinuity become difficult to spec-
ify, due to the algebraic constraints. This requires system
designers to have a global understanding of the intercon-
nected systems, which is usually not the case. In absence
of well-specified initial or restart conditions, the importing
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Fig. 15 Basic explicit co-simulation scheme involving two simulators

environment has to rely on the algebraic solving methods
described in Sect. 3.1, for which convergence is not guaran-
teed.

Finally, even if constituent models do not have direct feed-
throughs, the resulting set of ODEs that are integrated in
the importing environment may exhibit unexpected compu-
tational performance degradation, since the numerical solver
must adapt its step size to the dynamics of the fastest sub-
system. This is also a practical issue from the point of view
of the system designers, who build constituent models that
display good computational performance individually, but
perform poorly when the system, coupled through model
exchange, is simulated.

Co-simulation was introduced about thirty years ago
byGear [27] as themulti-rate integrationmethod, andLelaras-
mee et al. [38] as the waveform relaxation method. It was
first used as a way to speed up electronic circuit simulations,
before being applied more recently to mechatronics systems
byKübler and Schiehlen [33]. It consists in coupling the sim-
ulators themselves, each sub-system model being equipped
with its own (and a priori best fitted) numerical solver. A lim-
ited set of signals are exchanged at predefined macro-time
steps (as opposed to numerical micro-time steps taken by the
numerical solvers involved in the coupled system). A com-
mon co-simulation scheme is depicted in Fig. 15 in the case
of two coupled sub-systems. This basic explicit scheme con-
sists in sampling the output signals of each sub-system along
a fixed sample rate T . The input signals are thus held con-
stant throughout the duration of a macro-step. The numerical
solver of each sub-system is used to simulate the local mod-
els up to the end of the macro-step. Variants of this scheme
were proposed, but seldom implemented in practice, using
variable macro-step size to control the extrapolation error,
through multistep higher-order extrapolation schemes.

Since co-simulation explicitly discretizes the coupling
signals it aims at decoupling the continuous dynamics of
the sub-systems wherever possible. This apparent increase
in robustness and practical simplicity of the method is, how-
ever, counterbalanced by possible loss of numerical stability
resulting from the discretization of high dynamics that reside

in the coupling itself, even if the numerical solvers taken
alone work in their stability domain.

A large body of work (e.g., [16,51]) is dedicated to
the semantics and the design of master algorithms for co-
simulation standards, notably FMI [13]. Such standards pave
the way to a wider adoption of co-simulation. However, they
fall short of addressing the fundamental problem of numeri-
cal stability, which still requires further research.

4.3 Distributedmodular simulation

Asdiscussed inSect. 4.2, simulators of physical systems rely-
ing on co-simulation require models to be compiled into a
set of distinct sub-models to be executed separately (possibly
in different processes), with adequate coordination between
them. In current co-simulation frameworks, including the
FMI standard [13], the importing environment is responsible
for the global coordination of involved simulators.Moreover,
the coordination scheme requires each simulator to provide
the value of its locally managed signals at some predeter-
mined dates.

We exposed above some performance issues raised by cur-
rent co-simulation techniques. We want to discuss here some
challenges regarding efficient distributedmodular simulation
of physical systems.We illustrate the problemby an example.
Consider the circuit of Fig. 16 involving components R, I
and C . To simulate its behavior, the usual method consists in
solving the system of equations describing the dynamics of
the components and the constraints on currents and voltages
induced by the connectors (represented by bullets). An alter-
native approach that would avoid the construction of a global
model, is to run simulation programs PR , PI and PC for R, I
andC , respectively, separately. The needed coordination can
be in principle achieved by communication protocols includ-
ing proper enforcement of Kirchhoff’s laws (represented by
the� symbols), the interconnection topology being statically
computed by the compiler based on the physical semantics
discussed in Sect. 2.1.

The problem of coordination of sub-models in distributed
simulations involving signals with discrete evolution is well
understood [55]. In contrast, efficient coordination of contin-
uous and hybrid sub-models constitutes an open challenge
and an active research topic with encouraging results [19].
However, idealization poses additional problems among
which correct composition, as discussed in Sect. 2.Wewould
like composition not to compromise modularity by requiring
involved parts of models to be combined as a whole. How-
ever, composition of ideal models typically results in DAEs
whose algebraic parts require global fix point calculations:
this seems to go against the idea of modularity. Finally, an
important challenge for the distributed simulation of con-
tinuous systems is to design adequate higher-order solvers
capable of efficiently handling stiff problems.
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Fig. 16 Distributed modular simulation

The interesting open question is whether distributed mod-
ular simulation of cyber-physical systems is at all possible,
moreover with decent performance, given these constraints.

5 Discussion

This paper attempts to perform a fair assessment of the state
of the art and of the state of the practice in cyber-physical
system design. Though its findings and conclusions contrast
with the optimism of some other surveys, the main mes-
sage is that we are still very far from reaching the vision.
There exist some very basic theoretical difficulties to be
overcome by proposing methodologies adequately combin-
ing tool automation and designer ingenuity.

The problem of writing faithful and consistent models
from networks of physical components is still open. We have
discussed various issues related to semantics, in particular
the adequate treatment of Zenoness, modularity and determi-
nacy of models. We need languages for equational modeling
such as Modelica, allowing the right level of abstraction and
supporting structured approaches.

For discretization, we need effective methods for decid-
ing model executability at low cost. We also need theory
for assessing the quality and safety of integration tech-
niques. Discrete dataflow languages should be adequately
enriched to support both clocks and events that force change
of mode without jeopardizing overall synchrony of compu-
tation.

Efficient and rigorous code generation still remains a
distant goal for both simulation and real-time control, in cen-
tralized and distributed contexts. To enforce consistency, it is
desirable that the code generation process is as common as
possible, differing only in order to take into account specific
needs.

Finally, it is essential that theory integration is accompa-
nied by its application in design flows that support consistent
integration of tools [21,22,48]. Work in that direction should
go hand in hand with developing theoretical foundations
for elaborating sound principles for compositionality and
componentization, and defining sufficiently abstract compo-
nent interfaces ensuring independence from modeling tools
selected by developers.
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