(2

Component-Based Design

of Concurrent Software
n BIP

Lecture @ AUTh
16th of October, 2019

Simon Bliudze
https://www.bliudze.me/simon

Inria Lille — Nord Europe

W Hauts-de-France

https://www.bliudze.me/simon

Example: Rescue robot

m

<_measure > -

[Navigator \

;advance>

'Sensor < t°in front 31/

Safety constraints

S
S
S
S

Na

Na

a

Na

not advance and rotate at the same time
stay within the region
stay in the area that is safe or hot (but not burning)

update navigation and sensor data at each move

When objective is found, the robot shall stop

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

[Engine J

2 | 63

Coordination

EN AN 2000

Control-centric Data-centric
Synchronisation is primitive Data exchange is primitive
Locks, semaphores etc. Messages, split-join etc.
Concurrent execution Distributed execution
Critical systems Data-intensive computation

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 3 /63

Coordination

EN /AN 2000 A

The two views are complementary

—

Control-centric Data-centric
Synchronisation is primitive Data exchange is primitive
Locks, semaphores etc. Messages, split-join etc.
Concurrent execution Distributed execution
Critical systems Data-intensive computation

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 3 /63

Semaphores, locks, monitors, etc.

Coordination based on low-level primitives rapidly
becomes unpractical.

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 4 | 63

Synchronisation

ST S2
LI)
Process 1: ’ ‘ Process 2:
.. \ /] \) ..
free (S1) ; take (S1);
take (S2) ; free(S2);

A simple synchronisation barrier I— SR—

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 5 / 63

Synchronisation

Process 1: Process 2: Process 3:
free (S1); take (S1) ; take (S1) ;
free(S1l); free(S2); take (S2) ;
take (S2) ; free (S2); free(S3);
take (S3) ; take (S3); free (S3);

Three-way synchronisation barrier

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 6 / 63

Synchronisation with data transfer

Process 1: Process 2:

x = f1(shl, sh2); v = gl (shl,shZ2);
free(Sl); take (S1) ;

take (S2) ; free (S2);

shl = f2(shl,x); sh?2 = g2 (y,sh2);
free(S1l); take (S1) ;

take (S2) ; free (S2);

x = f£3(shl, sh?2); vy = g3(shl,sh2);

Coordination mechanisms mix up with
computation and do not scale.
Code maintenance is a nightmare!

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 7 | 63

Synchronisation with data transfer

Process 1: Process 2:

x = fl1l(shl,sh?2); vy = gl(shl,shZ2);
free(S1l); take (S1) ;

take (S2) ; free (S2) ;

shl = f2(shl,x); sh?2 = g2 (y,sh2);

free (S1); take (S1) ;

take (S2) ; free (S2) ;

x = f£3(shl, sh?2); vy = g3(shl,sh2);

Coordination mechanisms mix up with ’

computation and do not scale. %5

Code maintenance is a nightmare!

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 7 | 63

Priorities (conflict resolution)

Interactions (collaboration)

Bl el allv][1][o][u][Rr]

The BIP framework

Components

0O: input (m,n>0);

1: while(m != n) {
2: 1f (m > n)

3: m =m - n;

4: else //m < n

5: n =n - m;

6: }

7: //m=n=gcd(m, n)

There is a canonical transformation

The choice of abstraction level is important

Taking a transition

1. 1s allowed if the guard evaluates to true
. label, [guard], action
2. executes the action Q >©

3. updates current state

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 9 /63

BIP by example: Mutual exclusion

l

b.

f

.

l

work

b,

f,

work

Interaction model:
{b1, f1, b2, f2, b1 f2, b2f1}

Maximal progress:
D1 < bif2, bo < bof

(Design view\

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

@emantic vievv)

10 / 63

ENngine-based execution

1. Components notify the
Engine about enabled

| transitions. " H‘ il H‘ AARALRAL T il

2. The Engine picks an * f
I INnteraction and Iinstructs

B

the components.

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 11 / 63

Satellite software design

A collaboration with the EPFL Space Engineering Center

Component-based design in BIP of the control software for a nano-satellite
Control and Data Management System (CDMS)

Communication with other subsystems through an [2C bus

A collaboration with ThalesAlenia Space (France) and
Aristotle University of Thessaloniki (Greece)

“Catalogue of System and Software Properties”

Funded by ESA

eSpace ThaIesAIerf I

ENGINEERING ies / Fomeccarica Corta vSpace UNIVERSITY OF
CENTER THESSALONIKI

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 13 / 63

Satellite software design

A collaboration with the EPFL Space Engineering Center

Component-based design in BIP of the control software for a nano-satellite
Control and Data Management System (CDMS)

Communication with other subsystems through an [2C bus

A collaboration with ThalesAlenia Space (France) and
Aristotle University of Thessaloniki (Greece)

“Catalogue of System and Software Properties”

Funded by ESA

eSpace ThaIesAIerf I

ENGINEERING ies / Fomeccarica Corta vSpace UNIVERSITY OF
CENTER THESSALONIKI

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 13 / 63

Example 1

Nominal housekeeping routine

I2C NOFAIL

MEM_WRNF
INTERFACE INTERFACE
ask 12C PL error res_I2C_TTC (ENABLED
failure res_I2C_PL

™

I\ 7

disable

DISABLED

7\

read_HK l HK switch]
[PERIOD]

anomaly
IPacke store swilchl send MEM
START
FAILURE

E res_mem 27" 2 STATE
read_HK J >0 read HK gisable enable
< WAIT £ [~ f + enable §b
GCTIVE STATa

transition—#
MEMORY
ask_ l2C PL enabled tr.
{compose essage}' ' disable enable
i ure error connector
[STATUS ==
success (e ROR] (e
o e 1T ~’4_>_>_4_? send_TM enabled cnctr.
res_ IZC PL , - L L L ._ send MEM &send_TM)
{decodewessage;) write_request ' l - disable enable . synchron
+
SEND_HK_ ask_I2C_
REPORT EPS

NOMINAL

N

res_12C_

ask_12c_fTc EPS 1

{comp?eMessage;)

write_request
{selWrute

ANOMALY [guard]
g SEND_TM > (w\?g:/:g)iv)success - resE_IZSC {external_function;}
anomaly A ask_IZIC_EPS
res_12C_TTC res mem enable [TIMER > MAX]
HK .
SUCCESS)/ - success {composer essage:}

P trigger

failure
sucress {timer = 0}

read - transition name

=
_/

failure

CRITICAL enadle_ slide courtesy of
disabl -
WK FALURE | | o e Marco Pagnamenta
HK PL - Status PS
0—‘ *—o0—
S.Bliudze @ AUTh, Thessaloniki, 16t of October, 2019

15 / 63

12C 12C_NOFAIL
INTERFACE INTERFACE
error
ask 12C PL error res_|I2C_TTC
failure res_12C_PL res_mem
read_HK
(WAIT
read_HK
IPETOD] anomaly

ask_I2C_PL

(FAILURE >
{composeMessage;} / f

MEM_WRNF

failure
error
[STATUS ==
12C
sucgess < 7 ERROR]
|

I HK PL I

ask_IZC_TTCI @7
write_request 17

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

T

INTERFACE
readHK
(ENABLED 2
[[€ read_ HK gisable enable
ye [[] + enable
> - disable (DISABLED
I HK switch]

[Packe store swilch] send MEM

4

o)

@®- send_MEM

(MEMORY

disable

enable

send_TM
“disable enable

i

res 12C_PL L
{decode&essage;} [|
SEND_HK_ ask_12C_
REPORT EPS
res_|12C_
ask_I2C_TTC write_request EPS
{comp?eMessage;} {setWrite%
gsewo_w> (wRITE > _ e
} anomaly -
res 12C_TTC res mem enable
HK
SUCCESS)4/ - success
failure

NOMINAL

N

4 failure
Sucfess {timer = 0;)

ANOMALY

)
N

ask_I2C_EPS
[TIMER > MAX]
{composeMessage;}

CRITICAL_ enable_

FAILURE

N

disable
_PS

STATE

()
(lmmone)

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name
[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

16 / 63

12C 12C_NOFAIL MEM_WRNF
INTERFACE A INTERFACE INTERFACE
readHK
ask 12C PL error res_|2C_TTC (ENABLED
fa]lure !eS_|2C_PL feS_mem N [[
read_HK s < read_ HK gisable enable
WAIT € [‘ f j enable
o am— disable DISABLED
read HK I HK switch]
[PETOD] anomaly
IPacke store switchl send MEM
START
FAILURE (MEMORY
ask_ I2C PL ‘
{compose essage;} disable enable
f Iure
[STATUS ==
ERROR] Tic
\‘< LY . send TM
ask_12C_TTC m K }
feS_IZC_PL . A AN L ‘_ d MEM Send ™
{decodeMessage;} write_request C (l send_ “disable enable
SEND_HK_ ask_|2C_
res_12C_ 4
ol
ask_I2C_TTC write_request EPS success {umaélrllieo.}
{compyseMessage;} {sethe f {
ANOMALY
WRITE_
anomaly S ask_I12C_EPS
res_I2C_TTC res mem en:l:(le [TIMER > MAX]
SUCCESS >/ - success {compose&/\ essage:}
| HK process I | failure CRITICAL_ o
disale FAILURE |
_HK Stat disable
l HK PL I | aus PS

o—o—

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name
[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

17 | 63

12C_NOFAIL
INTERFACE

MEM_WRNF

INTERFACE /

readHK

ENABLED 2
[[read HK

o

ask_I12C_TTC I

res_ IZC PL .
{decodewessage;} write_request
SEND_HK_
REPORT
ask_12C_TTC write_request
{composeMessage;} {setWrite;}
WRITE_
g SEND_TM > (MEMORY)success
anomaly

res 12C_TTC

| HK process I

res n\em
SUCCESS
[HK PL]

ask _12C _PL error res_|I2C_TTC
failure res_|12C_PL res_mem
read_HK
WAIT
reaJ HK
[PETOD] anomaly
START
FAILURE
ask_ I2C PL
{compose essage}
|Iure
error
[STATUS ==
ERROR]
success _f@itl

— res_|2C
_EPS I
— ask 12C_EPS
enable [TIMER > MAX]

)

I W ¢ _ disable enable
e— 54 4 enable
E [disable DISABLED
I HK switch]

[Packe store switch] send MEM

(MEMORY

disable enable

TTC
w send_TM

\

send TM
> l send_MEM “disable enable

~

ask_I12C_

EPS NOMINAL

N

res_|2C_
EPS 4 failure
suci:ess {timer = 0;}

(ANOMALY

N

{composeMessage;}
success

failure CRITICAL enaie_

N

disable FAILURE | PR
_HK Status disable
oo -

o—o—

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name
[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

18 / 63

12C_NOFAIL MEM_WRNF
INTERFACE INTERFACE/
readHK
ask 12C PL error res_I2C_TTC (ENABLED
failure res_I2C_PL res_mem
read_HK € [[£ read_HK disable enable
WAIT £ [[j enable
o € disable DISABLED
read_HK l HK switch]
[PE 'OD] anomaly
[Packe store switch] send MEM
START
FAILURE < MEMORY >
ask_ IZC PL
{compose essage;} disable enable
f |Iure
error
[STATUS ==
ERROR
ask_I12C_TTC I ? K
res_ I2C PL _ L 1L L send TM
{decodewessage:) Wike_request ([@ l send_MEM ‘disable enable
SEND_HK_ ask_I2C_
REPORT EPS NOMINAL)
res_12C_ ’
ol
ask_12C_TTC write_request S SUCCess (tima:ru ieo.}
{comp?eMessage;) {seante r {
WRITE_ ANOMALY
g SEND_TM > < MEMORY)success — resE_IZSC<
anomaly — ask_12C_EPS
res_|I2C_TTC res mem enable [TIMER > MAX]
- HK .
SUCCESS > - success {composesn essage:)
HK process . failure CRITICAL _ v
disable FAILURE iy
_HK Status disable
l HK PL I | _Pl S

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name
[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

19 / 63

12C I2C_NOFAIL MEM_WRNF

INTERFACE error INTERFACE INTERFACE

readHK

ask_12C_PL error res_|I2C_TTC < ENABLED 2
failure res_I2C_PL res_mem STATE
read HK J_t_[“ ¢ read HK disable enable
(WAIT < enable
o GEEn disable (DISABLEO
readI HK HK switch ACTIVE STATE

I

W
a4
—

[PERIOD] anomaly

lPacke store switch] send MEM

{external_function;}

START transition—#
FAILURE MEMORY
ask_llC_PL 4 enabled tr.
{composer‘essage;}f ' /‘ f disable enable
e
ilre 1 connector
e [STATUS == e
success E ROR] d ™™
send_ enabled cnctr.
I ask_12C_TTC C %
feS_lZC_PL 2 . AN S d MEM Send TM
{decodel&essage;} write_request C(@ send disable enable h
l A @ synchron
SEND_HK_ ask_12C_
(REPORT EPS NOMINAL)
] N res_I2C_ P trigger
ask_12C_TTC write_request EPS suc’ess t failure N
{compOfeMessage;) {setWrnte r {umer &0} read - transition name
(ANOMALY > [guard]

WRITE_

l
anomaly N ask_I2C_EPS
res_I2C_TTC res mem en:l:(le [TIMER > MAX]
¥ .
\>< SUCCESS)4/ = ' success \ °MP Y essage:}
: enable_ slide courtesy of

failure CRITICAL

HK process dlsable £ 3 PS
| I AILURE deble Marco Pagnamenta
l —] - | Status PS

*—o—

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 20 / 63

Example 2

Stopping housekeeping

12C_NOFAIL
INTERFACE

error res_|I2C_TTC

ask_I2C_PL

failure res_|2C_PL

res_mem
read HK
(WAIT
read_HK
START
FAILURE
ask_ l2C PL
{compose essage;}
f Iure
error
[STATUS ==
sucgcess ERROR]

res_ I2C PL
{decodewessage;}

SEND_HK_
REPORT

ask_12C_TTC
{comp&seMessage;}

WRITE_
gSEND TM) (MEMORY > success

anomaly

write_request
{sethe

res 12C_TTC

I HK process I
| HK PL I

ask_I2C_TTC
write_request t‘ T

MEM_WRNF
INTERFACE

W
e 4

readHK
ENABLED 2
e read_HK gisable enable
£ enable
J disable DISABLED

I HK switch]

[Packe store swilch] send MEM

WV
L

dlsable

(MEMORY
b
disable enable
¢ msend_TM 5
send M
Q@ send_MEM disable enable

ask_I12C_

EPS NOMINAL
res_l2C_

EPS 4 failure

sucress {timer = 0;}

ANOMALY
res 12C
EPS

ask_12C_EPS

le
- success

res mem enab
SUCCESS

[TIMER > MAX]
{composeMessage;}

CRITICAL e"?s'e—
FAILURE
disable

failure

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

._

o—o—

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name
[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

22 | 63

l2C NOFAIL
INTERFACE
ask_I2C_PL error res_12C_TTC
falure res_12C_PL res_mem
read_HK {
(WAIT
read HK
[PERIOD] anomaly
START
FAILURE
ask_| C PL

(compose essage;}

MEM_WRNF
INTERFACE

(—teadHK\

/

{ Iure
enor
[STATUS ==
success ERROR]
res IZC PL

{decode'&essage;}

SEND_HK_
REPORT

ask_12C_TT7C
{compgseMessage.}

write_request
(selee

ask_I12C_TTC I hd
write_request p

WRITE_
g SEND_TM > (MEMORY > success

res_12C_TTC res mem
SUCCESS

7

7\ .

enable

disable DISABI ED>
HK switch

IPacke store switchl send MEM

disable enable

| T3

@- send_MEM

dnsable enable

—.—1

ask _12C_
EPS NOMINAL
res_12C_

EPS failure
sucl;ess {timer = 0;}

ANOMALY
res IZC

ask_ I2C EPS
[TIMER > MAX]
{composeressage;)

success

failure CRITICAL_
FAILURE

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

23 | 63

Example 3

Switching destination of housekeeping data

I2C NOFAIL

MEM_WRNF
INTERFACE INTERFACE
ask 12C PL error res_I2C_TTC (ENABLED
failure res_I2C_PL

™

I\ 7

disable

DISABLED

7\

read_HK l HK switch]
[PERIOD]

anomaly
IPacke store swilchl send MEM
START
FAILURE

E res_mem 27" 2 STATE
read_HK J >0 read HK gisable enable
< WAIT £ [~ f + enable §b
GCTIVE STATa

transition—#
MEMORY
ask_ l2C PL enabled tr.
{compose essage}' ' disable enable
i ure error connector
[STATUS ==
success (e ROR] (e
o e 1T ~’4_>_>_4_? send_TM enabled cnctr.
res_ IZC PL , - L L L ._ send MEM &send_TM)
{decodewessage;) write_request ' l - disable enable . synchron
+
SEND_HK_ ask_I2C_
REPORT EPS

NOMINAL

N

res_12C_

ask_12c_fTc EPS 1

{comp?eMessage;)

write_request
{selWrute

ANOMALY [guard]
g SEND_TM > (w\?g:/:g)iv)success - resE_IZSC {external_function;}
anomaly A ask_IZIC_EPS
res_12C_TTC res mem enable [TIMER > MAX]
HK .
SUCCESS)/ - success {composer essage:}

P trigger

failure
sucress {timer = 0}

read - transition name

=
_/

failure

CRITICAL enadle_ slide courtesy of
disabl -
WK FALURE | | o e Marco Pagnamenta
HK PL - Status PS
0—‘ *—o0—
S.Bliudze @ AUTh, Thessaloniki, 16t of October, 2019

25 | 63

12C 12C_NOFAIL
INTERFACE INTERFACE
error
ask 12C PL error res_|I2C_TTC
failure res_12C_PL res_mem
read_HK
(WAIT
read_HK
IPETOD] anomaly

ask_I2C_PL

(FAILURE >
{composeMessage;} / f

MEM_WRNF

failure
error
[STATUS ==
12C
sucgess < 7 ERROR]
|

I HK PL I

ask_IZC_TTCI @7
write_request 17

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

T

INTERFACE
readHK
(ENABLED 2
[[€ read_ HK gisable enable
ye [[] + enable
> - disable (DISABLED
I HK switch]

[Packe store swilch] send MEM

4

o)

@®- send_MEM

(MEMORY

disable

enable

send_TM
“disable enable

i

res 12C_PL L
{decode&essage;} [|
SEND_HK_ ask_12C_
REPORT EPS
res_|12C_
ask_I2C_TTC write_request EPS
{comp?eMessage;} {setWrite%
gsewo_w> (wRITE > _ e
} anomaly -
res 12C_TTC res mem enable
HK
SUCCESS)4/ - success
failure

NOMINAL

N

4 failure
Sucfess {timer = 0;)

ANOMALY

)
N

ask_I2C_EPS
[TIMER > MAX]
{composeMessage;}

CRITICAL_ enable_

FAILURE

N

disable
_PS

STATE

()
(lmmone)

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name
[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

26 | 63

START

)
N

(FAILURE >

ask_ I2C PL
{compose essage} } 7
failure

[STATUS ==

Success E ROR]

/\
\/&

ask_12C_TTC

res_|12C_PL
{decodeMessage;}

SEND_HK_
REPORT

write_request

ask_12C_TT7C write_request
{compOfeMessage;} {sethte
WRITE_
gSEND_TM> < MEMORY > success
anomaly
res 12C_TTC

res mem
SUCCESS

| HK process I

I2C_NOFAIL
INTERFACE

ask_12C_PL error res_I2C_TTC
failure res_|12C_PL res_mem
read_HK
WAIT
reaJ HK
[PETOD] anomaly

MEM_WRNF
INTERFACE

readHK

CWQ

read HK

L
~

disable
enable

A

disable

enable
(DISABLED ﬁ
| HK switch I

Packe store switch

send_MEM

< MEMORY }

disable

enable

7T\

o ()

@
N ’
N I

4

| HK PL |

h 4

| — -
_EPS T
— e
enable
_HK omposeMessage,
success {compos * ssage:}

send
._l send_MEM Aisable enable

—o

ask_I12C _
EPS NOMINAL

_/

res_|12C_
EPS ’ failure
sucress {timer = 0;}

ANOMALY
res 12C

)
N

ask_I2C_EPS

[TIMER > MAX]

enable

_ failure CRITICAL_
disable FAILURE iy
_HK disable
| Status PS

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

27 | 63

MEM_WRNF
INTERFACE

12C_NOFAIL
INTERFACE

error res_|2C_TTC

readHK

< ENABLED

STATE
disable le
WAIT

disable (DISABLED
read] HK | HK switch I ACT'VE STATE
[PETOD] anomaly

Packe store switch send MEM

< START > transition—
(FAILURE > < MEMORY)
enabled tr.

ask_12C_PL
failure reS_IZC_PL

Ny

res_mem

read HK

read_HK

A
A 4
A

enable

A N
NN
P, -,

ask_ I2C PL
{compose essage}f ' dis ble enable
""e r connector
[STATUS ==
sucgess ERROR] e
Coo C send_TM enabled cnctr.
ask_I2C_TTC
i |2C PL write_request ‘—“ 27 send_MEM
{decodel&essage;} - d'Sab|e enable . synchron
F —
SEND_HK_ ask_12C_
REPORT EPS NOMINAL) .
res_12C_ ’ . tngger
EPS failure
ask_12C_TTC ite_request : -0 2t
{composeMessage;} w{nsetvr\lnczz ’ Slleess {timer =0;} read - transition name
[guard]
ANOMALY : "
gSEND—TM> < NY;‘:AIB%Y >5UCCQSS _— reSE—IZSC {eXterna|_funCt|0n,}
anomaly — ask_IZIC_EPS
res_I12C_TTC res mem enable [TIMER > MAX]
HK .
SUCCESS >/ - Success {compose*Message.}
| failure CRITICAL_ enablo_ slide courtesy of
disable FAILURE dishbie Marco Pagnamenta
l HK PL I - | PS
—0—

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 28 |/ 63

ask_I2C_PL

failure reS_IZC_PL

WAIT

read_HK
[PETOD]

START

(

ask_12C_PL
{composerlessage;}

_/

f

12C

/\
~

|
res_|12C_PL
{decode&essage;}

SEND_HK_
REPORT

N

ask_I2Cc_TTC
{compzseMessage;}

error

res_|2C_TTC

res_mem

read_HK

anomaly

FAILURE >

ilure f

error
[STATUS ==
ERROR]

ask_I12C_TTC

write_request

write_request

{setWrite;%

res_12C_TTC

WRITE
(SEND_TM > < MEMORY >success
res_mem
SUCCESS

anomaly

12C_NOFAIL
INTERFACE

MEM_WRNF
INTERFACE

readHK

=

ENABLED

read_HK

I

disable

enable

A~/

enable

I\ 7T\

disable

N

DISABLED

NP

I HK switch]

IPacke store switchl sind MEQ

MEMORY >

L —
enable

HK

disable

| HK PL I

_HK

os

t‘:;;

send TM
send TM
send_MEM disable enable
* —
ask_12C_
EPS NOMINAL
res_|2C_
EPS 4 failure
suci:ess {(imer = 0;}
ANOMALY
res 12C
_EPS
ask_I2C_EPS
[TIMER > MAX]
composeMessage;
success ¢ P Sr ssege:)
failure CRITICAL _ en‘aaze_
FAILURE dicable
is
2s
e e

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

>

read - transition name

[guard]
{external_function;}

trigger

slide courtesy of
Marco Pagnamenta

29 |/ 63

l HK process I

ask 12C PL error res_I2C_TTC
failure res 12C_PL res_mem
read_HK
(WAIT
read_HK
[PE 'OD] anomaly
START
FAILURE
ask_ IZC PL
{compose essage;}
f Iure
[STATUS
success ERROR]
ask_12C_TTC
res_ |2C PL ‘
{decodel\'llessage;} write_request
SEND_HK_
REPORT
ask_I2C_TTC write_request
{comp?eMessage;} {sethe
WRITE_
g SEND_TM > (MEMORY)success
anomaly
res_I2C_TTC res mem
SUCCESS

12C_NOFAIL
INTERFACE

MEM_WRNF
INTERFACE

readHK

enable

HK PL

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

t‘)

I

read_HK disable

(ENABLED 2

+ enable

disable

A\

enable
<DISABLED§
l HK switch I

[Packe store switch] send MEM
Fo-N

dlsable

MEMORY >
-/
disable enable
TTC
. . send_TM
|| send TM
55 ‘-+ send_MEM disable enable
*— -
ask_12C_
EPS NOMINAL
res_|2C_
EPS 4 failure
SlleESS {timer = 0;}
ANOMALY
res 12C
_EPS
ask_I2C_EPS
bio [TIMER > MAX]
?success {compos ssaged
failure CRITICAL_ enibsw_
FAILURE .
— disable
| stats | 2s

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

>

read - transition name
[guard]
{external_function;}

trigger

slide courtesy of
Marco Pagnamenta

30 / 63

Example 4

12C bus failure management

12C_NOFAIL
INTERFACE

MEM_WRNF
INTERFACE

res_|2C_PL

ask_12C_PL error res_|12C_TTC
failure res_12C_PL res_mem
read_HK
WAIT
reaJ HK
[PE 'OD] anomaly
START
FAILURE
ask_ l2C PL
{compose essage;}
failure
error
[STATUS ==
sucgcess ERROR]

ask_I2C_TTC I I

L S T S
e e L
— T—

readHK

(ENABLED 2

disable enable

read HK

enable

disable

<DISABLED
| HK switch I

lPacke store swuch] send MEM

(MEMORY)

enable

dlsible

TTC
send_TM

: AL L send_TM
{decodeMessage;) write_request (.+ send_MEM disable enable
* —
SEND_HK_ ask_I2C_
REPORT EPS NOMINAL
res_12C_ ’
aSk |2C TTC Wfl(e fequest EPS success {t'rfnaellru:eo}
{comp {seMessage) {sethte f {
ANOMALY
WRITE_
g SEND_TM > < MEMORY) SUCCess p— resE_IZSC<)
anomaly -_— ask_I12C_EPS
res_I2C_TTC res mem enable [TIMER > MAX]
HK -
SUCCESS)/ - success {composeMessage;}
. bl
| HK process I . failure CRITICAL_ e
disable FAILURE ,
_HK Status disable
) | s

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

32 | 63

failure

success (

ask _12C_TTC
{comp;seMessage;}

ask_12C_PL error res_|I2C_TTC
res_|2C_PL res_mem
read_HK
(WAIT)
reaJ HK
[PE IOD] anomaly
START
FAILURE
ask_ IZC _PL

{compose essage;}

f Iure
error
[STATUS ==
ERROR]

ask_12C_TTC

res_ I2C PL
{decodewessage;}

SEND_HK_
REPORT

write_request

write_request
{seterte

WRITE_
gSEND_TM> < MEMORY > success

res_|2C_TTC

anomaly

res mem
SUCCESS

12C_NOFAIL
INTERFACE

MEM_WRNF
INTERFACE

readHK

\

>—> £ read HK
f >] enable
>—> : disable

g

to

[HK PL

J

disable enable
(DISABLED 5
M
IPacke store switchl send_MEM
yF -\

MEMORY >
/
disable enable
TTC
send_TM
send TM
send_MEM disable enable
F e
ask_I12C_
EPS NOMINAL
res_I12C_
EPS ’ failure
SUCfeSS {timer = 0;}
ANOMALY
res_12C
_EPS
ask_12C_EPS
[TIMER > MAX]
composeMessage;
success { P oe:)
failure CRITICAL _ enﬁbsle"
FAILURE .
p— disable
PS
—*

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

>

read - transition name
[guard]
{external_function;}

trigger

slide courtesy of
Marco Pagnamenta

33 / 63

12C_NOFAIL
INTERFACE

error res_12C_TTC

ask_12C_PL

MEM_WRNF
INTERFACE

W

failure res_12C_PL res_mem
read HK
(WAIT
read HK
START
FAILURE
ask | C PL
{compose essage)
f lure
enor
[STATUS ==
sucgess ERROR]

HK PL

ask_I2C_TTC I Al
write_request et

readHK

(ENABLED
< read HK
enable

disable

r,

disable enable
< DISABLED
HK switch

Packe store swuch sf"d MEQ

‘ MEMORY >

enable

10 1Le
send T™M

send TM

res_ IZC PL
{decodevxessage.)
SEND_HK_
REPORT
ask_12C_TTC write_request
{compoieMessage.} {selee
WRITE_
§SEND TM) (MEMORY)success —
anomaly —
res 12C TTC res mem enable
HK
SUCCESS }/ -
gt
HK

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

send_MEM ‘disable enable

ask 12C

EPS NOMINAL)
res_12C

EPS 1mlure

ANOMALY
res_ I2C

ask_12C_EPS
[TIMER > MAX]
{composeMessage.}

success
CRITICAL_
FAILURE

failure

Status

(STATE)
GCTIVE STATa

transition—

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

34 | 63

Connectors

tickq ticks ticka

]

P+ Pg + pr+ par

— O

Connectors are tree-like structures
ports as leaves and nodes of two types
Triggers (diamonds) — nodes that can “initiate” an interaction

Synchrons (bullets) — nodes that can only “join” an interaction initiated by others

In practice, maximal progress is implicitly assumed

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 35 / 63

Connector examples

The Algebra of Connectors

‘ | | Strong synchronisation: pqgr

P q Par

‘ | | Broadcast: p + pg + pr + pqr
pa o' qgr

1_1—*—1 Atomic broadcast: p + pqr
T, o’ [gr]

l?Pj Causal chain: p + pg + pgr + pqgrs
P g p" [a" [r" s]]

The Algebra of Connectors—Structuring Interaction in BIP

S. Bliudze, J. Sifakis [EMSOFT’'07]
S.Bliudze @ AUTh, Thessaloniki, 16t of October, 2019 36 / 63

Hands-on BIP

ROBOT BRAND

- NN By
4
F N s
§ o :) s
- ‘.. . : - .
A X - - - '
5 v - — ul
.) £ L.
-
: - _— _ 3

MADE IN JAPAN

BEST SAFETYMATCHES

100dd dWtd

=2
(LS
o
=
=
-
(¥
(s <
Q.
-

Safe control layer of a Rescue robot
https://www.bliudze.me/simon/auth-bip

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 37 | 63

https://www.bliudze.me/simon/auth-bip

Hello World

package HelloPackage
port type HelloPort t ()

atom type HelloAtom()
port HelloPort t p() @
place START, END
initial to START
on p from START to END
end
compound type HelloCompound ()
component HelloAtom cl ()
end

end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 38 / 63

Hello World

make

Uy Uy Uy >

./build/system

S bipc.sh -I . -p HelloPackage -d "HelloCompound()"
——gencpp-output output

cd build
cmake ../output

package HelloPackage
port type HelloPort t()

atom type HelloAtom()
port HelloPort t p()
place START,END
initial to START

on p from START to END

end

BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE

]
]
]
] s
] .
]
]
]

BIP Engine (version 2019. compound type HelloCompound ()
component HelloAtom cl ()

initialize components... end

random scheduling based c&td

state #0 and global time 0O: 1 internal port:
(0] ROOT.cl.p [O, +INFTY]

-> choose [0] ROOT.cl.p at global time 8ns

"",”l - .-

state #1 and global time 8ns: deadlock!

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

\

39 / 63

Example: Rescue robot

m

<_measure > -

[Navigator \

;advance>

'Sensor < t°in front 31/

Safety constraints

S
S
S
S

Na

Na

a

Na

not advance and rotate at the same time
stay within the region
stay in the area that is safe or hot (but not burning)

update navigation and sensor data at each move

When objective is found, the robot shall stop

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

[Engine J

40 / 63

Rougn plan

One square

N x N field (with N = 2, 5)

Complete with the robot

Remove the field

Sensor w/ﬁngine J

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 41 |/ 63

Atoms, ports ana places

package RescueRobot
port type Port t()

atom type Square ()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish()

place SAFE, HOT, BURNING

initial to SAFE

on heat from SAFE to HOT

on burn from HOT to BURNING

on spark from BURNING to BURNING

on cool from BURNING to HOT

on extinguish from HOT to SAFE
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

heat spark
\ heat burn spark
(SAFEQ CHOT 3 CBURNY
extinguish cool

connector type Singleton (Port t p)
define p
end

compound type Field()
component Square square ()

connector Singleton
c heat (square.heat)
connector Singleton
c spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

42 | 63

Atoms, ports ana places

package RescueRobot
port type Port t()

atom type Square ()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish()

place SAFE, HOT, BURNING

initial to SAFE

on heat from SAFE to HOT

on burn from HOT to BURNING

on spark from BURNING to BURNING

on cool from BURNING to HOT

on extinguish from HOT to SAFE
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

heat spark
\ heat burn spark
(SAFEQ CHOT 3 CBURNY
extinguish cool

connector type Singleton (Port t p)
define p
end

compound type Field()
component Square square ()

connector Singleton
c heat (square.heat)
connector Singleton
c spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

42 | 63

Atoms, ports ana places

package RescueRobot
port type Port t()

atom type Square ()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish ()

place SAFE, HOT, BURNING

initial to SAFE

on heat from SAFE to HOT

on burn from HOT to BURNING

on spark from BURNING to BURNING

on cool from BURNING to HOT

on extinguish from HOT to SAFE
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

heat spark
\ heat burn spark
(SAFEQ CHOT 3 CBURNY
extinguish cool

connector type Singleton (Port t p)
define p
end

compound type Field()
component Square square ()

connector Singleton
c heat (square.heat)
connector Singleton
Cc spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

42 | 63

Atoms, ports ana places

package RescueRobot
port type Port t()

atom type Square ()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish ()

place SAFE, HOT, BURNING

initial to SAFE

on heat from SAFE to HOT

on burn from HOT to BURNING

on spark from BURNING to BURNING

on cool from BURNING to HOT

on extinguish from HOT to SAFE
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

heat spark
\ heat burn spark
(SAFEQ CHOT 3 CBURNY
extinguish cool

connector type Singleton (Port t p)
define p
end

compound type Field()
component Square square ()

connector Singleton
c heat (square.heat)
connector Singleton
Cc spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

42 | 63

Data, guards and actions

heat

timer++

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

atom type Square (int delay)

data int timer
export port Port t tick()

<. 00>
on heat from SAFE to HOT
do {timer = 0;}

on burn from HOT to BURNING
provided (timer >= delay)

on cool from BURNING to HOT
do {timer = 0;}
<. 00>

on tick from SAFE to SAFE
on tick from HOT to HOT
do {timer = timer + 1;}

on tick from BURNING to RURNING

end

43 | 63

Data, guards and actions

heat

timer++

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

atom type Square (int delay)

data int timer
export port Port t tick()

<. 00>
on heat from SAFE to HOT
do {timer = 0;}

on burn from HOT to BURNING
provided (timer >= delay)

on cool from BURNING to HOT
do {timer = 0;}
<. 00>

on tick from SAFE to SAFE
on tick from HOT to HOT
do {timer = timer + 1;}

on tick from BURNING to RURNING

end

43 | 63

Data, guards and actions

heat

timer++

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

atom type Square (int delay)

data int timer
export port Port t tick()

<. 00>
on heat from SAFE to HOT
do {timer = 0;}

on burn from HOT to BURNING
provided (timer >= delay)

on cool from BURNING to HOT
do {timer = 0;}
<. 00>

on tick from SAFE to SAFE
on tick from HOT to HOT
do {timer = timer + 1;}

on tick from BURNING to RURNING

end

43 | 63

Data, guards and actions

heat

timer++

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

atom type Square (int delay)

data int timer
export port Port t tick()

<. 00>
on heat from SAFE to HOT
do {timer = 0;}

on burn from HOT to BURNING
provided (timer >= delay)

on cool from BURNING to HOT
do {timer = 0;}
<. 00>

on tick from SAFE to SAFE
on tick from HOT to HOT
do {timer = timer + 1;}

on tick from BURNING to RURNING

end

43 | 63

Data, guards and actions

heat

timer++

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

atom type Square (int delay)

data int timer
export port Port t tick()

<. 00>
on heat from SAFE to HOT
do {timer = 0;}

on burn from HOT to BURNING
provided (timer >= delay)

on cool from BURNING to HOT
do {timer = 0;}
<. 00>

on tick from SAFE to SAFE
on tick from HOT to HOT
do {timer = timer + 1;}

on tick from BURNING to RURNING

end

43 | 63

Data, guards and actions

heat

timer++

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

atom type Square (int delay)

data int timer
export port Port t tick()

<. 00>
on heat from SAFE to HOT
do {timer = 0;}

on burn from HOT to BURNING
provided (timer >= delay)

on cool from BURNING to HOT
do {timer = 0;}
<. 00>

on tick from SAFE to SAFE
on tick from HOT to HOT
do {timer = timer + 1;}

on tick from BURNING to RURNING

end

43 | 63

Data, guards and actions

heat

timer++

tick

1. Add volatility

2. Add initial temperature

, . T

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

atom type Square (int delay)

data int timer
export port Port t tick()

<. 00>
on heat from SAFE to HOT
do {timer = 0;}

on burn from HOT to BURNING
provided (timer >= delay)

on cool from BURNING to HOT
do {timer = 0;}
<. 00>

on tick from SAFE to SAFE
on tick from HOT to HOT
do {timer = timer + 1;}

on tick from BURNING to RURNING

end

43 | 63

INternal transitions

tick tick
timer++

internal from INIT to ...

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 44 | 63

Connectors

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

connector type Synchron2 (
Port t p, Port t
)
export port Port t sync port()
define p g
end

connector type TriggerZ (
pPort t p, Port t g, Port t r

)

define p' g r

end

<o oo02

connector Synchron2 c tickl (
squarell.tick, squarel2.tick

)

connector SynchronZ c tick2 (
squareZ2l.tick, square22.tick

)

connector Synchron2 c tick (
c tickl.sync port, c tickZ.sync port
)

45 | 63

Data transter

exp.w
i
P.X g.y

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);}
down {p.v = w; g.v = w;}
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 46 | 63

Data transter

1

P-X-A 7 qY

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);}
down {p.v = w; g.v = w;}
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 46 / 63

Data transter

4

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);}
down {p.v = w; g.v = w;}
end

/ & W=max (p.x, g.y)

.2
D.X a.y O

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 46 / 63

Data transter

4

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);}
down {p.v = w; g.v = w;}
end

V = max (exp.w, r.z)

/ & W=max (p.x, g.y)

.2
D.X a.y O

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 46 / 63

Data transter

4

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);}
down {p.v = w; g.v = w;}
end

/ v =max (exp.w, r.z)

w = max (p.X, 9.y)

P-X q.y

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 46 / 63

Data transter

/
. 4 rl: 1
I.Z
p.X q.y

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);}
down {p.v = w; g.v = w;}
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 46 | 63

Data transter

exp.w, .z =v

PR w—
h e r.z 7

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);}
down {p.v = w; g.v = w;}
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 46 / 63

Data transter

\ 4
pX 7 7 ay

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);}
down {p.v = w; g.v = w;}
end

exp.w, .z =v

D.X, .Y = eXp.w

.2 -77

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 46 / 63

Data transter

exp.w, .z =v

@ P-X,q.y=exp.w
1. Add connectors to gather and print information

about the temperature in all squares of the field.

2. Add an atom to enforce this after each tick of
the clock.

connector type™Max=(PortC 1INt p, POrC Imer-ay=
data int w

export port Port int exp (w)

define p g

up {w = max(p.v, g.v);}

down {p.v = w; g.v = w;}
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

46 |/ 63

Components of the robot

Safety constraints

not burning)

Shall update navigation and sensor data at

each move

When objective is found, the robot shall stop

Shall stay within the region

Shall not advance and rotate at the same time

Shall stay in the area that is safe or hot (but

rotate |

| ugdate |

border
[at_border]

N
(™
T

— Navigator
tick

finished
[on_target]

advance
| rotate | |advance|

update rotate
| border | |finished |
Sensor

, internal
[t° < burning]

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

| measure | |danqer |
47 | 63

Components of the robot

Safety constraints

not burning)

Shall update navigation and sensor data at

each move

When objective is found, the robot shall stop

Shall stay within the region

Shall not advance and rotate at the same time

Shall stay in the area that is safe or hot (but

rotate |

| ugdate |

border
[at_border]

N
(™
T

— Navigator
tick

finished
[on_target]

advance
| rotate | |advance|

update rotate
| border | |finished |
Sensor

, internal
[t° < burning]

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

| measure | |danqer |
47 | 63

Components of the robot

Safety constraints

/ Shall not advance and rotate at the same time

not burning)

Shall update navigation and sensor data at

each move

When objective is found, the robot shall stop

Shall stay within the region

Shall stay in the area that is safe or hot (but

rotate |

| ugdate |

border
[at_border]

N
(™
T

— Navigator
tick

finished
[on_target]

advance

I rotate I

| advance |

update rotate
| border | |finished |
Sensor

, internal
[t° < burning]

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

| measure | |danqer |
47 | 63

Connecting the robot

rotate

advance

| rot'ate | |adv%nce|

Sensor

, Internal
[t° < burning]

—_— rotate

@ tick
danger —_— =
|u9date| @ N . Sha” Update
tick avigator navigation and

border
[at_border]

update

I

\| finished

[on_target]

rotate
| border | |finished |

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

sensor data at
each move

48 | 63

Connecting the robot

rotate

advance

| rot'ate | |adv%nce|

Sensor

, Internal
[t° < burning]

| measure | | danger |

—_— rotate

®
wece] L Navigator
tick

border
[at_border]

update

I

\| finished

[on_target]

rotate
| border | |finished |

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

/ Shall update
navigation and
sensor data at
each move

48 | 63

Connecting the robot

advance

tick j@—

Sensor

, internal
» [t° < burning]

Idangerl

[rotate] [advance]
T
update ic -
Navigator
—ae mnmel tick

border (% l finished

[at_border] | ‘ [on_target]
update rotate

[border | [finished |

priority p rotate

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

c rotate:* <
priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

Shall stay within the region

Shall stay in the area that is safe or
hot (but not burning)

When objective is found, the robot
shall stop

c finished:*

< ¢ finished:*

< ¢ danger:*

< Cc border:~*

49 | 63

Connecting the robot

advance

tick j@—

Sensor

, internal
» [t° < burning]

Idangerl

[rotate] [advance |
[pdate] ok]
update ic c
Navigator
—ae mnmel tick

border (% l finished

[at_border] | ‘ [on_target]
update rotate

[border] [finished]

priority p rotate

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

c rotate:* <
priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

Shall stay within the region

Shall stay in the area that is safe or
hot (but not burning)

When objective is found, the robot
shall stop

c finished:*

< ¢ finished:*

< ¢ danger:*

< Cc border:~*

49 | 63

Connecting the robot

advance

tick j@—

Sensor

, internal
» [t° < burning]

Idangerl

[rotate] [advance |
[pdate] ok]
update ic c
Navigator
—ae mnmel tick

border (% l finished

[at_border] | ‘ [on_target]
update rotate

[border] [finished]

priority p rotate

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

c rotate:* <
priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

\/Shall stay within the region

Shall stay in the area that is safe or
hot (but not burning)

When objective is found, the robot
shall stop

c finished:*

< ¢ finished:*

< ¢ danger:*

< Cc border:~*

49 | 63

Connecting the robot

advance

tick j@—

Sensor

, internal
» [t° < burning]

Idangerl

[rotate] [advance |
[pdate] ok]
update ic c
Navigator
—ae mnmel tick

border (% l finished

[at_border] | ‘ [on_target]
update rotate

[border] [finished]

priority p rotate

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

c rotate:* <
priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

\/Shall stay within the region

\/Shall stay in the area that is safe or
hot (but not burning)

When objective is found, the robot
shall stop

c finished:*

< ¢ finished:*

< ¢ danger:*

< Cc border:~*

49 | 63

Connecting the robot

advance

tick j@—

Sensor

, internal
» [t° < burning]

Idangerl

[rotate] [advance]
T
update ic -
Navigator
—ae mnmel tick

border (% l finished

[at_border] | ‘ [on_target]
update rotate

[border | [finished |

priority p rotate

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

c rotate:* <
priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

\/Shall stay within the region

\/Shall stay in the area that is safe or
hot (but not burning)

\/When objective is found, the robot
shall stop

c finished:*

< ¢ finished:*

< ¢ danger:*

< Cc border:~*

49 | 63

The final step

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

Remove the model of the
environment

Replace “interface”
elements with
corresponding primitives

Generate executable code
from the remaining model

50 / 63

Connecting the robot

rotate

advance

| rot'ate | |adv%nce|

Sensor

, Internal
[t° < burning]

| measure | | danger |

—_— rotate

®
wece] L Navigator
tick

border
[at_border]

update

I

\| finished

[on_target]

rotate
| border | |finished |

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

/ Shall update
navigation and
sensor data at
each move

51 / 63

Korinthigche Ordnung

D)
o

Z

)) Ui

sche ()rdnung

UV AT U E

Kapital vom Tempel der Athene

zu Priene,

Kapital vom Tempel am [lissos
zu 1en

C

Kapital u Basis vom Monument des [ymkr ates

zu Athen.

Zu12.3.
a Mutuli. (Dielenkopfe) d Riemchen
b Triflyphen (Dreischlitze) e Kannelirungen
c Metopen f Sima (Runleiste)

1

P —

Geison

Fries C
|

Architray

igebalk;

Echinus

Saul _:_r!'h als

(
Saulenschaft L L |

i
]
l._JL

VYom Temipel m Pastum

2 f

tr

|
3693

il

Vom Parthenon m Athen

703339 Mer.

o

i
4
|

| I—

J

Vom Tempel des
Neméischen Zeus

Dorische Sdaulenordnun g.

Ak

7682 Mtr

Korinthisch Rémisch-Korinthisch.

® Kranz-

3

2816

\\\\Hlllllll
a Rinnleiste
b Krenzleiste
¢ Konsole

d ¥ymation

e Abaous

£ Vohute

g Blatikelche
h Saudenhals

3757 Mer.
13 810

Saulenschaft

Vow Tempel am [hsvos Vo Tempel d Athene Folias Vom Tempel d. Athene Pohas Vom Monument des Lysikrates Vom Tempel d Jupiter-

m Athen

Jonische

in Priene m Athe

Saulenordnung

n

in Athen Stator m Rom

KorinthischuRKomisch-Korinthisch

a.' e e —.

(*p!

gesims o

¥ 7 e q

I2C NOFAIL

MEM_WRNF
INTERFACE INTERFACE
ask 12C PL error res_I2C_TTC (ENABLED
failure res_I2C_PL

™

I\ 7

disable

DISABLED

7\

read_HK l HK switch]
[PERIOD]

anomaly
IPacke store swilchl send MEM
START
FAILURE

E res_mem 27" 2 STATE
read_HK J >0 read HK gisable enable
< WAIT £ [~ f + enable §b
GCTIVE STATa

transition—#
MEMORY
ask_ l2C PL enabled tr.
{compose essage}' ' disable enable
i ure error connector
[STATUS ==
success (e ROR] (e
o e 1T ~’4_>_>_4_? send_TM enabled cnctr.
res_ IZC PL , - L L L ._ send MEM &send_TM)
{decodewessage;) write_request ' l - disable enable . synchron
+
SEND_HK_ ask_I2C_
REPORT EPS

NOMINAL

N

res_12C_

ask_12c_fTc EPS 1

{comp?eMessage;)

write_request
{selWrute

ANOMALY [guard]
g SEND_TM > (w\?g:/:g)iv)success - resE_IZSC {external_function;}
anomaly A ask_IZIC_EPS
res_12C_TTC res mem enable [TIMER > MAX]
HK .
SUCCESS)/ - success {composer essage:}

P trigger

failure
sucress {timer = 0}

read - transition name

=
_/

failure

CRITICAL enadle_ slide courtesy of
disabl -
WK FALURE | | o e Marco Pagnamenta
HK PL - Status PS
0—‘ *—o0—
S.Bliudze @ AUTh, Thessaloniki, 16t of October, 2019

53 / 63

ask_|12C_PL error

res_I2C_PL

res_I2C_TTC
failure

{compose essage;}

f lure
[STATUS
sucgess ERROR]

ask_I12C_TTC
res_ IZC PL _
{decodexessage;} write_request
SEND_HK_
REPORT
ask_l2c_fTc

write_request

{compOfeMessage;} {selee

WRITE_
g SEND_TM > (MEMORY)success

anomaly
res_12C_TTC res mem
SUCCESS
| HK PL I

12C_NOFAIL
INTERFACE

res_mem
read_HK
(WAIT
read_HK
lPER|OD] anomaly
START
FAILURE
ask_ I2C PL

MEM_WRNF
INTERFACE

readHK

(ENABLED

read HK

™

disable
enable

y - N

disable

enable
<DISABLED
HK switch]

Packe store switch

send_MEM

< MEMORY

disable

TTC
send_T™M

\

disable
HK

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

oo

L | send TM
—2 .‘l send_MEM “disable enable
ask_|2C_
EPS NOMINAL
res_12C_
EPS 4 fallure
ANOMALY
- res_12C
_EPS
ask_12C_EPS
enable [TIMER > MAX]
HK omposeMessage,
success {comp sr ssage)
failure CRITICAL _ eng:éle_
FAILURE disabl
Status |spse

(STATE)
GCTIVE STAT9

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

>

read - transition name
[guard]
{external_function;}

trigger

slide courtesy of
Marco Pagnamenta

53 / 63

Theory of architectures

Design patterns for BIP
How to model?
How to combine?”

How to specify?

Architectures enforce characteristic properties. The crucial
guestion is whether these are preserved by composition?

[Attie et al, SEFM '14]
S.Bliudze @ AUTh, Thessaloniki, 16t of October, 2019 X / 63

How to model?

Example: Lock

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 54 | 63

Example: Lock

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 54 | 63

Example: Lock

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 54 | 63

Example: Lock

N

f12 . b12

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 54 | 63

An architecture iIs...

A= (C,PA,’)/)
/ I N

Set of coordinating Interaction model

behaviours P— ——
T TEe——— B
Interface (ports)
e et
—
(o0 3
D

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 X | 63

...an operator...

14::(C7P%JW)

...transforming

a set of components B

into a composed BIP system A(B) = (fy X P) (BUC)

where P= |) Ps, yxPE{acC2P|anPsen)

BeBUC

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 X [63

How to combine”

Constraints intuition

Constraints intuition

Constraints intuition

Constraints intuition

Constraints intuition

Constraints intuition

Limits of white magic

L imits of white magic

L imits of white magic

L imits of white magic

L imits of white magic

L imits of white magic

~ormally

AL @Ay Z (CLUCy, PLU Py,)

fyog{aQZP aNPr ey A aﬂPQE”yQ}
= (m X P)N(y2 x P)

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 X [63

Main results: Safety

} — (A1 ® A2)(B) E &1 A D

Safety = "'Bad states never occur”

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 55 |/ 63

Vlain results: Liveness

A “‘”e} — DA live

pairwise non-interfering

w.r.t. B

Liveness = "Good states occur infinitely often”

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 X [63

Requirements and design process

Y y LA B

No

Requirement Initial
BEGIN specification ™ design

l’

Model
checking

Property
enforcement

Architecture
instantiation

Property

' RERD

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

properties
satisfied

DesignBIP

i A RERD
! /BIP '
|

DFinder
/ nuxXmv

ARISTOTLE
UNIVERSITY OF
THESSALONIKI

[Stachtiari et al, JSS '18]

57 | 63

CubETH case study

Table 1: Representative requirements for CDMS status and HK_PL

ID Description

CDMS-007 The CDMS shall periodically reset both the internal and external watchdogs and contact
the EPS subsystem with a “heartbeat”.

HK-001 The CDMS shall have a Housekeeping activity dedicated to each subsystem.

HK-003 When line-of-sight communication is possible, housekeeping information shall be trans-
mitted through the COM subsystem.

HK-004 When line-of-sight communication is not possible, housekeeping information shall be writ-
ten to the non-volatile flash memory.

HK-005 A Housekeeping subsystem shall have the following states: NOMINAL, ANOMALY and
CRITICAL_FAILURE.

[Mavridou et al, FACS '16]
S.Bliudze @ AUTh, Thessaloniki, 16t of October, 2019 58 / 63

RERD tool

Requirement Editing | Property Formalization | Dictionary | Models

Abstraction Level : RB Category : ContextSavingRequirement -

ID Prefix ¥ ID a Main ID & Suffix

P2 While State: [...] M1 Function : [...] shall Action: [...] S1 before Event: [...]
P3 IfEvent:[...] and State: [... M2 Function : [...] shall Action:[...] and Action:[...] =i S2 sequentially

P1 IfEvent:[...] M3 Function : [...] shall State : [...] S3 atomically

Back to Categories

Console | 7 T : N
i Event: :
: HK-05
{ a failure of the PL subsystem persists for [TBD] sec !
| 2 “/ | Generate Req ID
" Function: shall Action:
RB -
HK PL contact the EPS for a restart of PL
ContextSavingRequirement ~
Invalid v
Refines Refined By
Save = Validate = | Clear = New Concretizes = | Concretized By

Ontology Validation

Req. ID Status Text Category AbsLevel Edit Delete
HK-02 If [TBD] seconds pass and HK for PL is enabled HK PL shall handle HK data from PL ContextSavingRequirement RB Edit Delete
HK-03 . If HK has been read from PL and PS for PL is not enabled HK PL shall transmit HK data tI ContextSavingRequirement RB Edit Delete
HK-04 . While PS for PL is enabled HK PL shall write HK data to the flash memory ContextSavingRequirement RB Edit Delete
HK-05 . If a failure of the PL subsystem persists for [TBD] sec HK PL shall contact the EPS for a re ContextSavingRequirement RB Edit Delete

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 59 / 63

CubETH case study

Requirements for the HK PL function.

ID Requirement

HK-02 P2: if <event-e003: [TBD] sec pass > and <{state-s003: HK collection is
enabled for PL >
M1: <function: HK PL) shall <action-a004: handle HK data from the PL >
HK-03 P3: if <state-s002: PS® for PL is not enabled >
M1: <function: HK PL) shall <action-a002: transmit HK data through the
TC/TM service >
HK-04 P3: while <state-s001: PS for PL is enabled >
M1: <function: HK PL > shall <action-a001: write HK data to the flash
memory »
HK-05 P1: if <event-e004: a PL failure persists for [TBD] sec >
M1: <function: HK PL > shall <action-a003: contact the EPS for a restart
of the PL >

¢ PS stands for a packet store structure.

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 60 / 63

CubETH case study

" HK_to_I2C
Rk I beginHK \ / Tmem_write_req

HK PL read I12C_fail_PL
12C_ask_P

beginHK. START 12C_ask_PL
12C_res_PL
|2C_fa||_PL finished mem_write_req |ZC_|'ES_PL
mem_res
finished
BONE 12C_ask_TTC SEND
beginHK 12C_res_TTC TTC

HK PL MUTEX |

take
IDLE BUSY
take
release

release MISIES
12C_res_TTC 12C_ask_TTC mem_write_req
P-1—@ success HK PL FAILURE T T B
MONITORING mem_res
¥
5 HK PL MODE P——@ failure @ &
3 I MANAGER read_HK NOMINAL Packetstore Y. >c TTC mem_write_req
i N MODE MANAGER| "™~ -
o
disable g disable
disable .
failure
success
§ DISABLED MEMORY
Q' ANOMALY
< I2C_res_EPS - '
S mem_write_req enable ask_I2C_TTC
I2C_ask_EPS .
enable disable
12C_res_EP CRITICAL_
I2C_ask_EPS FRILURE

/ HK_to_I2C_ enable_PS disable_PS
NOFAIL
\—/

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

X [63

CubETH case study

Durations and input sizes of the process steps.

Step Duration Input size
Requirement specification 8 h 38 requirements
Initial design 5h 12 components
Architecture instantiation 3h 47 enforced properties
Verification of deadlock freedom 12's 46 components

Statistics of requirement formulation and property enforcement.

Model Flow Mode Event Mutex Failure Requir. Deriv. Prop. Assum. Prop. Enforced
Payload 0 2 0 4 0 12 16 0 16

HK PL 0 2 1 1 1 4 6 0 6

HK EPS 0 2 1 1 1 4 6 0 6

HK COM 0 2 1 1 1 4 6 0 6

HK CDMS 0 2 1 1 0 3 4 0 4

Flash memory 0 1 0 1 0 8 13 4 3

CDMS status 1 0 0 0 0 1 3 0 3

Error logging 0 0 1 1 0 2 3 0 3

Total 1 11 5 10 3 38 57 4 47

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

61 / 63

summary

Mastering system complexity
requires

Manipulating models to raise the
abstraction level

Expressive enough to avoid ad-hoc
solutions

Simple enough to be acceptable for
engineers

Rigorous design workflow
Validate first, then generate the code

A seqguence of semantics-preserving
transformations

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 62 / 63

FTWARE COMPONENTS: BEYOND P

Rigorous

Component-Based
System Design
Using the BIP
Framework

Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz,
Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis,

Verimag Laboratory

An autonomous robot case study illustrates the use
of the behavior, interaction, priority (BIP) component
framework as a unifying semantic model to ensure
correctness of essential system design properties.

SYSTEM DESIGN DIFFERS radically
from pure software design in that it
must account not only for functional
requirements but also for extrafunc-
tional requirements regarding the use
of execution platform resources, such

as time, memory, and energy. Meet-
ing extrafunctional requirements is
essential in embedded system design
and requires evaluation of how design
choices affect overall system behavior.
It also implies a deep understanding of

how the application software interacts
with the underlying execution plat-
form. Yet system designers currently
lack rigorous techniques for deriving
global models of a given system from
models of its application software and
execution platform.

We define a rigorous design flow
as one that guarantees essential sys-
tem properties. Most existing design
flows that aspire to this goal privilege a
unique programming model and asso-
ciate it with a compilation chain that’s
adapted for a given execution model.
For example, synchronous system de-
sign relies on synchronous program-
ming models and usually targets hard-
ware or sequential implementations on
single processors.! Alternatively, real-
time programming, based on sched-
uling theory for periodic tasks, tar-
gets dedicated real-time multitasking
platforms.?

At the Verimag Laboratory, we’ve
been developing the behavior, interac-
tion, priority (BIP) component frame-
work to support a rigorous system de-
sign flow. The BIP framework is

e model-based, describing all soft-
ware and systems according to a
single semantic model. This main-
tains the flow’s overall coherency
by guaranteeing that a description
at step n+1 meets essential proper-
ties of a description at step 7.

e component-based, providing a
family of operators for building
composite components from sim-
pler components. This overcomes
the poor expressiveness of theoreti-
cal frameworks based on a single
operator, such as the product of au-
tomata or a function call.

e tractable, guaranteeing correctness

MAY/JUNE 2011 | IEEE SOFTWARE 41

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019

Further information

The Journal of Systems & Software 145 (2018) 52-78

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems & Software

SOFTWARE

-

Early validation of system requirements and design through correctness-by- = M)

Check for

construction updates
s swa . . b o s a s . c
Emmanouela Stachtiari™?, Anastasia Mavridou”, Panagiotis Katsaros”, Simon Bliudze®,
Joseph Sifakis®
2 Department of Informatics, Aristotle University of Thessaloniki, Greece
® Robust Software Engineering Group SGT Inc., NASA Ames Research Center Moffett Field, CA, USA
©INRIA Lille ~Europe, Nord , France
d Verimag, Université Grenoble Alpes, France
ARTICLE INFO ABSTRACT
Keywords: Early validation of requirements aims to reduce the need for the high-cost validation testing and corrective

Rigorous system design
Requirements formalization
Model-based design
Correctness-by-construction

measures at late development stages. This work introduces a systematic process for the unambiguous specifi-
cation of system requirements and the guided derivation of formal properties, which should be implied by the
system ’s structure and behavior in conjunction with its external stimuli. This rigorous design takes place
through the incremental construction of a model using the BIP (Behavior-Interaction-Priorities) component

framework. It allows building complex designs by composing simpler reusable designs enforcing given prop-
erties. If some properties are neither enforced nor verified, the model is refined or certain requirements are
revised. A validated model provides evidence of requirements’ consistency and design correctness. The process is
semi-automated through a new tool and existing verification tools. Its effectiveness was evaluated on a set of
requirements for the control software of the CubETH nanosatellite and an extract of software requirements for a
Low Earth Orbit observation satellite. Our experience and obtained results helped in identifying open challenges
for applying the method in industrial context. These challenges concern with the domain knowledge re-
presentation, the expressiveness of used specification languages, the library of reusable designs and scalability.

1. Introduction
1.1. Problem statement

The design problem in systems engineering concerns with defining
the architecture, modules, interfaces and data for a system, in order to
meet given requirements (Buede and Miller, 2016). Initially, require-
ments are high-level statements (conditions or capabilities that are also
called stakeholder requirements) (Fuxman et al., 2004), from which the
system requirements are derived that define what the system must do to
satisfy stakeholder requirements (Hull et al., 2010). In this article, we
focus specifically on system requirements; when we refer to stakeholder
requirements we do so explicitly.

In Sifakis (2013) and Benveniste et al. (2015), two perspectives of
rigorous system design are introduced. The term “rigorous” refers to a
formal model-based process that leads from requirements to correct
implementations. In particular, the focus is on the design problem for

* Corresponding author.

systems that continuously interact with an external environment; such
systems usually involve concurrent execution and emergent behaviors.
The design process can be decomposed into two phases. During the first
phase, which is called proceduralization in Sifakis (2013), the declara-
tive system requirements are transformed into a procedure, i.e., a model
prescribing how the anticipated functionality can be realized by ex-
ecuting sequences of elementary functions. During the second phase,
which is called materialization, the procedure is implemented in a
system that meets all extra-functional requirements by using available
resources cost-effectively.

In this article, we introduce a model-based approach for the proce-
duralization phase, which aims to the systematic development of a
design solution for a set of system requirements. The design problem is
well-defined, only if the requirements fulfill essential properties, i.e., if
they are complete, consistent, correct (valid for an acceptable solution),
and attainable. However, requirements provide in principle only a
partial specification, which according to the current industrial practice

E-mail addresses: emmastac@csd.auth.gr (E. Stachtiari), anastasia.mavridou@nasa.gov (A. Mavridou), katsaros@csd.auth.gr (P. Katsaros),
simon.bliudze@inria.fr (S. Bliudze), Joseph.Sifakis@univ-grenoble-alpes.fr (J. Sifakis).

https://doi.org/10.1016/j.jss.2018.07.053

Received 26 September 2017; Received in revised form 14 March 2018; Accepted 17 July 2018

Available online 20 July 2018
0164-1212/ © 2018 Published by Elsevier Inc.

63 / 63

