
Component-Based Design  
of Concurrent Software  

in BIP
 Lecture @ AUTh 

16th of October, 2019

Simon Bliudze 
https://www.bliudze.me/simon

Inria Lille – Nord Europe

https://www.bliudze.me/simon

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Example: Rescue robot

Safety constraints
Shall not advance and rotate at the same time
Shall stay within the region
Shall stay in the area that is safe or hot (but not burning)
Shall update navigation and sensor data at each move
When objective is found, the robot shall stop

 2

Navigator

finished

border

update

Sensor tº in front

measure

Engine rotate

advance

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Coordination

Control-centric
Synchronisation is primitive
Locks, semaphores etc.
Concurrent execution
Critical systems 

Data-centric
Data exchange is primitive
Messages, split-join etc.
Distributed execution
Data-intensive computation

 3

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Coordination

Control-centric
Synchronisation is primitive
Locks, semaphores etc.
Concurrent execution
Critical systems 

Data-centric
Data exchange is primitive
Messages, split-join etc.
Distributed execution
Data-intensive computation

 3

The two views are complementary

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Coordination based on low-level primitives rapidly
becomes unpractical.

Semaphores, locks, monitors, etc.

 4

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Synchronisation

 5

A simple synchronisation barrier

Process 1:
...  
free(S1);
take(S2);
...

Process 2:
...  
take(S1);
free(S2);
...

S1 S2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Synchronisation

 6

Three-way synchronisation barrier

Process 2:
...  
take(S1);
free(S2);
free(S2);
take(S3);
...

Process 3:
...  
take(S1);
take(S2);
free(S3);
free(S3);
...

Process 1:
...
free(S1);  
free(S1);
take(S2);
take(S3);
...

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Synchronisation with data transfer

 7

Coordination mechanisms mix up with
computation and do not scale.

Code maintenance is a nightmare!

Process 1:
x = f1(sh1,sh2);  
free(S1);
take(S2);
sh1 = f2(sh1,x);
free(S1);
take(S2);
x = f3(sh1,sh2);

Process 2:
y = g1(sh1,sh2);  
take(S1);
free(S2);
sh2 = g2(y,sh2);
take(S1);
free(S2);
y = g3(sh1,sh2);

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Synchronisation with data transfer

 7

Coordination mechanisms mix up with
computation and do not scale.

Code maintenance is a nightmare!

Process 1:
x = f1(sh1,sh2);  
free(S1);
take(S2);
sh1 = f2(sh1,x);
free(S1);
take(S2);
x = f3(sh1,sh2);

Process 2:
y = g1(sh1,sh2);  
take(S1);
free(S2);
sh2 = g2(y,sh2);
take(S1);
free(S2);
y = g3(sh1,sh2);

The BIP framework

Basic model of BIP

Priorities (conflict resolution)

Interactions (collaboration)

B E H A V I O U R

Layered component model

• Behaviour — labelled transition systems with communication ports

• Interaction — set of interactions (interaction = set of ports)

• Priorities — order on interactions

PM1

IM1 ||

PM2

IM2 =

PM1 ⊗ PM2 ⊗ PM12

IM1 ⊕ IM2 ⊕ IM12

CAL’07, 04/10/2007 S. Bliudze, J. Sifakis “The Algebra of Connectors — Structuring Interaction in BIP” 4/30

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Components
0: input(m,n>0);  
1: while(m != n){
2: if (m > n)
3: m = m - n;
4: else //m < n
5: n = n - m;
6: }
7: //m=n=gcd(m,n)

There is a canonical transformation
The choice of abstraction level is important

Taking a transition
1. is allowed if the guard evaluates to true
2. executes the action
3. updates current state

 9

label, [guard], action

0

1

7

3

5

2

in
pu

t
[m

 =
 n

]

[m
 > n]

[m
 <

 n
]

[m != n]

m = m - n

n = n - m

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

BIP by example: Mutual exclusion

 10

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2

b1

f1

b2

f2

b2 b1

f1

b1b2

f1f2

Interaction model:
{b1, f1, b2, f2, b1f2, b2f1}

Maximal progress:
b1 < b1f2, b2 < b2f1

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2
b1

f1
b2

f2

b2 b1

f1

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2
b1

f1
b2

f2 f1

Design view
Semantic view

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Engine-based execution
1. Components notify the

Engine about enabled
transitions.

2. The Engine picks an
interaction and instructs
the components.

 11

Priorities

Interactions

B E H A V I O U R

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Satellite software design
A collaboration with the EPFL Space Engineering Center

Component-based design in BIP of the control software for a nano-satellite
Control and Data Management System (CDMS)
Communication with other subsystems through an I2C bus

A collaboration with ThalesAlenia Space (France) and
Aristotle University of Thessaloniki (Greece)

“Catalogue of System and Software Properties”
Funded by ESA

 13

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Satellite software design
A collaboration with the EPFL Space Engineering Center

Component-based design in BIP of the control software for a nano-satellite
Control and Data Management System (CDMS)
Communication with other subsystems through an I2C bus

A collaboration with ThalesAlenia Space (France) and
Aristotle University of Thessaloniki (Greece)

“Catalogue of System and Software Properties”
Funded by ESA

 13

Example 1
Nominal housekeeping routine

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 15
8

Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 16
8

Example 1slide courtesy of 
Marco Pagnamenta 9

Example 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 17
8

Example 1slide courtesy of 
Marco Pagnamenta 10

Example 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 18
8

Example 1slide courtesy of 
Marco Pagnamenta 11

Example 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 19
8

Example 1slide courtesy of 
Marco Pagnamenta 12

Example 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 20
8

Example 1slide courtesy of 
Marco Pagnamenta 13

Example 1

Example 2
Stopping housekeeping

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 22
8

Example 1slide courtesy of 
Marco Pagnamenta

15

Example 2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 23
8

Example 1slide courtesy of 
Marco Pagnamenta

Example 3
Switching destination of housekeeping data

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 25
8

Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 26
8

Example 1slide courtesy of 
Marco Pagnamenta 9

Example 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 27
8

Example 1slide courtesy of 
Marco Pagnamenta 20

Example 3

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 28
8

Example 1slide courtesy of 
Marco Pagnamenta 21

Example 3

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 29
8

Example 1slide courtesy of 
Marco Pagnamenta 22

Example 3

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 30
8

Example 1slide courtesy of 
Marco Pagnamenta

23

Example 3

Example 4
I2C bus failure management

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 32
8

Example 1slide courtesy of 
Marco Pagnamenta 25

Example 4

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 33
8

Example 1slide courtesy of 
Marco Pagnamenta 26

Example 4

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 34
8

Example 1slide courtesy of 
Marco Pagnamenta

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connectors

Connectors are tree-like structures
 ports as leaves and nodes of two types

Triggers (diamonds) — nodes that can “initiate” an interaction
Synchrons (bullets) — nodes that can only “join” an interaction initiated by others

In practice, maximal progress is implicitly assumed

 35

tick1 tick2 tick3

p + pq + pr + pqr

tick1

p q r

tick2 tick3

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connector examples
The Algebra of Connectors

Strong synchronisation: pqr 
p q r

Broadcast: p + pq + pr + pqr 
p’ q r

Atomic broadcast: p + pqr  
p’ [q r]

Causal chain: p + pq + pqr + pqrs 
p’ [q’ [r’ s]]

 36

p q r

p q r

p
q r

p
q

r s

The Algebra of Connectors—Structuring Interaction in BIP  
S. Bliudze, J. Sifakis [EMSOFT’07]

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Safe control layer of a Rescue robot
https://www.bliudze.me/simon/auth-bip

Hands-on BIP

 37

https://www.bliudze.me/simon/auth-bip

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Hello World

 38

package HelloPackage
 port type HelloPort_t()

 atom type HelloAtom()
 port HelloPort_t p()

 place START,END

 initial to START
 on p from START to END
 end

 compound type HelloCompound()
 component HelloAtom c1()
 end
end

START

END

p

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Hello World
$ bipc.sh -I . -p HelloPackage -d "HelloCompound()" \ 
 --gencpp-output output
$ cd build
$ cmake ../output
$ make
$./build/system

 39

[BIP ENGINE]: BIP Engine (version 2019.10.173941-DEV)
[BIP ENGINE]:
[BIP ENGINE]: initialize components...
[BIP ENGINE]: random scheduling based on seed=1404226060
[BIP ENGINE]: state #0 and global time 0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1.p [0, +INFTY]
[BIP ENGINE]: -> choose [0] ROOT.c1.p at global time 8ns
[BIP ENGINE]: state #1 and global time 8ns: deadlock!

package HelloPackage
 port type HelloPort_t()

 atom type HelloAtom()
 port HelloPort_t p()
 place START,END
 initial to START
 on p from START to END
 end

 compound type HelloCompound()
 component HelloAtom c1()
 end
end

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Example: Rescue robot

Safety constraints
Shall not advance and rotate at the same time
Shall stay within the region
Shall stay in the area that is safe or hot (but not burning)
Shall update navigation and sensor data at each move
When objective is found, the robot shall stop

 40

Navigator

finished

border

update

Sensor tº in front

measure

Engine rotate

advance

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Rough plan

One square

N × N field (with N = 2, 5)

Complete with the robot

Remove the field

 41

Navigator

finished

border

update

Sensor tº in front

measure

Engine rotate

advance

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Atoms, ports and places

 42

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 on heat from SAFE to HOT
 on burn from HOT to BURNING
 on spark from BURNING to BURNING
 on cool from BURNING to HOT
 on extinguish from HOT to SAFE
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)

 connector Singleton
 c_spark(square.spark)

 end

 compound type RescueCompound()
 component Field field()
 end
end

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Atoms, ports and places

 42

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 on heat from SAFE to HOT
 on burn from HOT to BURNING
 on spark from BURNING to BURNING
 on cool from BURNING to HOT
 on extinguish from HOT to SAFE
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)

 connector Singleton
 c_spark(square.spark)

 end

 compound type RescueCompound()
 component Field field()
 end
end

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Atoms, ports and places

 42

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 on heat from SAFE to HOT
 on burn from HOT to BURNING
 on spark from BURNING to BURNING
 on cool from BURNING to HOT
 on extinguish from HOT to SAFE
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)

 connector Singleton
 c_spark(square.spark)

 end

 compound type RescueCompound()
 component Field field()
 end
end

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Atoms, ports and places

 42

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 on heat from SAFE to HOT
 on burn from HOT to BURNING
 on spark from BURNING to BURNING
 on cool from BURNING to HOT
 on extinguish from HOT to SAFE
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)

 connector Singleton
 c_spark(square.spark)

 end

 compound type RescueCompound()
 component Field field()
 end
end

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data, guards and actions

 43

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)  
 
 on cool from BURNING to HOT  
 do {timer = 0;}  
 <...>  

 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data, guards and actions

 43

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)  
 
 on cool from BURNING to HOT  
 do {timer = 0;}  
 <...>  

 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data, guards and actions

 43

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)  
 
 on cool from BURNING to HOT  
 do {timer = 0;}  
 <...>  

 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data, guards and actions

 43

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)  
 
 on cool from BURNING to HOT  
 do {timer = 0;}  
 <...>  

 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data, guards and actions

 43

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)  
 
 on cool from BURNING to HOT  
 do {timer = 0;}  
 <...>  

 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data, guards and actions

 43

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)  
 
 on cool from BURNING to HOT  
 do {timer = 0;}  
 <...>  

 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data, guards and actions

 43

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)  
 
 on cool from BURNING to HOT  
 do {timer = 0;}  
 <...>  

 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

1. Add volatility
2. Add initial temperature

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Internal transitions

 44

internal from INIT to ...

SAFE HOT

heat
timer = 0

BURN

burn
[timer ≥ delay]

extinguish

cool spark

ticktick
timer++

tick

INIT

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connectors

 45

connector type Synchron2 ( 
 Port_t p, Port_t  
)
 export port Port_t sync_port()
 define p q
end

connector type Trigger2 ( 
 Port_t p, Port_t q, Port_t r  
)
 define p' q r
end

<...>

connector Synchron2 c_tick1 (
 square11.tick, square12.tick
)
connector Synchron2 c_tick2 (
 square21.tick, square22.tick
)

connector Synchron2 c_tick (
c_tick1.sync_port, c_tick2.sync_port

)

S21

S11

S22

S12tick tick

tick tick

spark

spark

spark

spark

heat

heat heat

heat

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w

4 7 5

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w
w = max (p.x, q.y)7

5

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w
w = max (p.x, q.y)

v = max (exp.w, r.z)

7

5

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w
w = max (p.x, q.y)

v = max (exp.w, r.z)7

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w

777

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w

exp.w, r.z = v

77

7

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w
p.x, q.y = exp.w

exp.w, r.z = v

7 7 7

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

 46

p.x q.y
r.z

exp.w
p.x, q.y = exp.w

exp.w, r.z = v

7 7 7
1. Add connectors to gather and print information  

about the temperature in all squares of the field.
2. Add an atom to enforce this after each tick of  

the clock.

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Components of the robot
Safety constraints

Shall not advance and rotate at the same time
Shall stay within the region
Shall stay in the area that is safe or hot (but
not burning)
Shall update navigation and sensor data at
each move
When objective is found, the robot shall stop

 47

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Components of the robot
Safety constraints

Shall not advance and rotate at the same time
Shall stay within the region
Shall stay in the area that is safe or hot (but
not burning)
Shall update navigation and sensor data at
each move
When objective is found, the robot shall stop

 47

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Components of the robot
Safety constraints

Shall not advance and rotate at the same time
Shall stay within the region
Shall stay in the area that is safe or hot (but
not burning)
Shall update navigation and sensor data at
each move
When objective is found, the robot shall stop

 47

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

tick

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connecting the robot

 48

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

Shall update
navigation and
sensor data at
each move

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connecting the robot

 48

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

Shall update
navigation and
sensor data at
each move

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connecting the robot

 49

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

Shall stay within the region
Shall stay in the area that is safe or
hot (but not burning)
When objective is found, the robot
shall stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connecting the robot

 49

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

Shall stay within the region
Shall stay in the area that is safe or
hot (but not burning)
When objective is found, the robot
shall stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connecting the robot

 49

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

Shall stay within the region
Shall stay in the area that is safe or
hot (but not burning)
When objective is found, the robot
shall stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connecting the robot

 49

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

Shall stay within the region
Shall stay in the area that is safe or
hot (but not burning)
When objective is found, the robot
shall stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connecting the robot

 49

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

Shall stay within the region
Shall stay in the area that is safe or
hot (but not burning)
When objective is found, the robot
shall stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

The final step

Remove the model of the
environment

Replace “interface”
elements with
corresponding primitives

Generate executable code
from the remaining model

 50

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Connecting the robot

 51

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

Shall update
navigation and
sensor data at
each move

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 53
8

Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63 53
8

Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Theory of architectures

Design patterns for BIP

How to model?

How to combine?

How to specify?

 X

Architectures enforce characteristic properties. The crucial
question is whether these are preserved by composition?

[Attie et al, SEFM '14]

How to model?

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Example: Lock

 54

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Example: Lock

 54

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Example: Lock

 54

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Example: Lock

 54

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

An architecture is...

 X

A = (C, PA, �)

b1 f1 b2 f2
free

taken

b12f12

b12 f12

Set of coordinating
behaviours

Interface (ports)

Interaction model

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

...an operator…

…transforming

a set of components

into a composed BIP system

where

 X

A(B) def
=

⇣
� n P

⌘
(B [C)

A = (C, PA, �)
<latexit sha1_base64="purWgXHD5GodUHavdBJ6Jbsbgn4=">AAACB3icbVA9SwNBEJ2L3/Hr1FKQJUFQDOHORhshmsYyglEhF8LcZhOX7N4du3tCONLZ+C+sbSwUsfUv2Plv3HwUanww8Hhvhpl5YSK4Np735eRmZufmFxaX8ssrq2vr7sbmlY5TRVmdxiJWNyFqJnjE6oYbwW4SxVCGgl2HverQv75jSvM4ujT9hDUldiPe4RSNlVruzik5IXuBRHNLUWTVQYnUWqclEnRRStxvuUWv7I1Apok/IcVKITh4BIBay/0M2jFNJYsMFah1w/cS08xQGU4FG+SDVLMEaQ+7rGFphJLpZjb6Y0B2rdImnVjZigwZqT8nMpRa92VoO4cH67/eUPzPa6Smc9zMeJSkhkV0vKiTCmJiMgyFtLli1Ii+JUgVt7cSeosKqbHR5W0I/t+Xp8nVYdn3yv6FTeMMxliEbSjAHvhwBBU4hxrUgcI9PMELvDoPzrPz5ryPW3POZGYLfsH5+AaxlpjD</latexit><latexit sha1_base64="C/oO1eKWBQyf1Nx82h4+UR0YwQc=">AAACB3icbVC7SgNBFJ2Nrxhfq5aCDAlCxBB2bbQREtNYRjAPyIZwdzJJhszsLjOzQljS2dj7FTYWitj6C3b5GyePQqMHLhzOuZd77/EjzpR2nImVWlldW99Ib2a2tnd29+z9g7oKY0lojYQ8lE0fFOUsoDXNNKfNSFIQPqcNf1iZ+o17KhULgzs9imhbQD9gPUZAG6ljH5fxFc57AvSAAE8q4wKudsoF7PVBCDjt2Dmn6MyA/xJ3QXKlrHf2NCmNqh37y+uGJBY00ISDUi3XiXQ7AakZ4XSc8WJFIyBD6NOWoQEIqtrJ7I8xPjFKF/dCaSrQeKb+nEhAKDUSvumcHqyWvan4n9eKde+ynbAgijUNyHxRL+ZYh3gaCu4ySYnmI0OASGZuxWQAEog20WVMCO7yy39J/bzoOkX31qRxjeZIoyOURXnkogtUQjeoimqIoAf0jF7Rm/VovVjv1se8NWUtZg7RL1if37sAmkk=</latexit><latexit sha1_base64="C/oO1eKWBQyf1Nx82h4+UR0YwQc=">AAACB3icbVC7SgNBFJ2Nrxhfq5aCDAlCxBB2bbQREtNYRjAPyIZwdzJJhszsLjOzQljS2dj7FTYWitj6C3b5GyePQqMHLhzOuZd77/EjzpR2nImVWlldW99Ib2a2tnd29+z9g7oKY0lojYQ8lE0fFOUsoDXNNKfNSFIQPqcNf1iZ+o17KhULgzs9imhbQD9gPUZAG6ljH5fxFc57AvSAAE8q4wKudsoF7PVBCDjt2Dmn6MyA/xJ3QXKlrHf2NCmNqh37y+uGJBY00ISDUi3XiXQ7AakZ4XSc8WJFIyBD6NOWoQEIqtrJ7I8xPjFKF/dCaSrQeKb+nEhAKDUSvumcHqyWvan4n9eKde+ynbAgijUNyHxRL+ZYh3gaCu4ySYnmI0OASGZuxWQAEog20WVMCO7yy39J/bzoOkX31qRxjeZIoyOURXnkogtUQjeoimqIoAf0jF7Rm/VovVjv1se8NWUtZg7RL1if37sAmkk=</latexit><latexit sha1_base64="rAnx4HnjgOujem9V/DswGOcSmGE=">AAACB3icbVDLSgNBEJz1GeMr6lGQwSBECGHXi16ExFw8RjAPSJaldzJJhszMLjOzQlhy8+KvePGgiFd/wZt/4+Rx0MSChqKqm+6uMOZMG9f9dlZW19Y3NjNb2e2d3b393MFhQ0eJIrROIh6pVgiaciZp3TDDaStWFETIaTMcVid+84EqzSJ5b0Yx9QX0JesxAsZKQe6kgq9xoSPADAjwtDou4lpQKeJOH4SA8yCXd0vuFHiZeHOSR3PUgtxXpxuRRFBpCAet254bGz8FZRjhdJztJJrGQIbQp21LJQiq/XT6xxifWaWLe5GyJQ2eqr8nUhBaj0RoOycH60VvIv7ntRPTu/JTJuPEUElmi3oJxybCk1BwlylKDB9ZAkQxeysmA1BAjI0ua0PwFl9eJo2LkueWvDs3X76Zx5FBx+gUFZCHLlEZ3aIaqiOCHtEzekVvzpPz4rw7H7PWFWc+c4T+wPn8AZ8Xlzo=</latexit>

B
<latexit sha1_base64="w3rkdQyPTT1Ibo+jCZDvX1FqMMk=">AAAB8nicbVA9SwNBEJ3zM55fUUubxSBYhTsbbcQQG8sI5gMuR9jb7CVL9naP3T0hHAH/hI2FIrb+D3s7/417SQpNfDDweG+GeTNRypk2nvftrKyurW9slrbc7Z3dvf3ywWFLy0wR2iSSS9WJsKacCdo0zHDaSRXFScRpOxrdFH77gSrNpLg345SGCR4IFjOCjZWCboLNkGCe1ye9csWrelOgZeLPSeX60716BIBGr/zV7UuSJVQYwrHWge+lJsyxMoxwOnG7maYpJiM8oIGlAidUh/k08gSdWqWPYqlsCYOm6u+JHCdaj5PIdhYR9aJXiP95QWbiyzBnIs0MFWS2KM44MhIV96M+U5QYPrYEE8VsVkSGWGFi7Jdc+wR/8eRl0jqv+l7Vv/MqtTrMUIJjOIEz8OECanALDWgCAQlP8AKvjnGenTfnfda64sxnjuAPnI8f38uTIQ==</latexit><latexit sha1_base64="MeZMHBcYJk1e/5fVJrwx3ufc8XI=">AAAB8nicbVA9SwNBEN2LX/H8ilraLAbBKtzZaCOG2FhGMB+QHGFvs5cs2ds9dueEcORn2Fgoktb/YW8j/hv3khSa+GDg8d4M82bCRHADnvftFNbWNza3itvuzu7e/kHp8KhpVKopa1AllG6HxDDBJWsAB8HaiWYkDgVrhaPb3G89Mm24kg8wTlgQk4HkEacErNTpxgSGlIisNumVyl7FmwGvEn9Byjcf7nUy/XLrvdJnt69oGjMJVBBjOr6XQJARDZwKNnG7qWEJoSMyYB1LJYmZCbJZ5Ak+s0ofR0rbkoBn6u+JjMTGjOPQduYRzbKXi/95nRSiqyDjMkmBSTpfFKUCg8L5/bjPNaMgxpYQqrnNiumQaELBfsm1T/CXT14lzYuK71X8e69craE5iugEnaJz5KNLVEV3qI4aiCKFntALenXAeXbenOm8teAsZo7RHzjvP9FalJU=</latexit><latexit sha1_base64="MeZMHBcYJk1e/5fVJrwx3ufc8XI=">AAAB8nicbVA9SwNBEN2LX/H8ilraLAbBKtzZaCOG2FhGMB+QHGFvs5cs2ds9dueEcORn2Fgoktb/YW8j/hv3khSa+GDg8d4M82bCRHADnvftFNbWNza3itvuzu7e/kHp8KhpVKopa1AllG6HxDDBJWsAB8HaiWYkDgVrhaPb3G89Mm24kg8wTlgQk4HkEacErNTpxgSGlIisNumVyl7FmwGvEn9Byjcf7nUy/XLrvdJnt69oGjMJVBBjOr6XQJARDZwKNnG7qWEJoSMyYB1LJYmZCbJZ5Ak+s0ofR0rbkoBn6u+JjMTGjOPQduYRzbKXi/95nRSiqyDjMkmBSTpfFKUCg8L5/bjPNaMgxpYQqrnNiumQaELBfsm1T/CXT14lzYuK71X8e69craE5iugEnaJz5KNLVEV3qI4aiCKFntALenXAeXbenOm8teAsZo7RHzjvP9FalJU=</latexit><latexit sha1_base64="sfvX6slT8uJJZbgB89GsC5KcfYs=">AAAB8nicbVDLSsNAFL3xWeur6tJNsAiuSuJGl6VuXFawD0hDmUwn7dDJTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfdEqeAGPe/b2djc2t7ZrexV9w8Oj45rJ6ddozJNWYcqoXQ/IoYJLlkHOQrWTzUjSSRYL5reFX7viWnDlXzEWcrChIwljzklaKVgkBCcUCLy1nxYq3sNbwF3nfglqUOJ9rD2NRgpmiVMIhXEmMD3UgxzopFTwebVQWZYSuiUjFlgqSQJM2G+iDx3L60ycmOl7ZPoLtTfGzlJjJklkZ0sIppVrxD/84IM49sw5zLNkEm6/CjOhIvKLe53R1wzimJmCaGa26wunRBNKNqWqrYEf/XkddK9bvhew3/w6s1WWUcFzuECrsCHG2jCPbShAxQUPMMrvDnovDjvzsdydMMpd87gD5zPH3CTkVQ=</latexit>

P
def
=

[

B2B[C
PB ,

<latexit sha1_base64="lLKh2xceEGzDHgdao83UtMlHOHo=">AAACLnicbVDLSsNAFL3xWeur6tLNoAgupCRudCOUFsFlBavFpoTJ9KYOTiZhZiKUkL3/4sZf0YWgIm79DKet4KMeGDiccy9z7glTwbVx3Wdnanpmdm6+tFBeXFpeWa2srZ/rJFMMWywRiWqHVKPgEluGG4HtVCGNQ4EX4XVj6F/coNI8kWdmkGI3pn3JI86osVJQOW4SXxvKrhWKvIdRkR8VZT/kfZalQV4nPpfEj6m5YlTk9YL4Vv8WGkVBmkF9L6hsu1V3BDJJvC+yXTu5vCUA0Awqj34vYVmM0jBBte54bmq6OVWGM4E2QaYxtaloHzuWShqj7uajcwuyY5UeiRJlnzRkpP7cyGms9SAO7eQwqP7rDcX/vE5mosNuzmWaGZRs/FGUCWISMuyO9LhCZsTAEsoUt1kJu6KKMmMbLtsSvL8nT5Lz/arnVr1T20YdxijBJmzBLnhwADU4gSa0gMEdPMALvDr3zpPz5ryPR6ecr50N+AXn4xOe8qpS</latexit><latexit sha1_base64="BhJcsvT6cIrefzsG7MhX6A4dBes=">AAACLnicbVDLSsNAFJ34rPVV61KQQRFcSEnc6EaQiNhlBduKTQiT6U0dnEzCzEQoIXv/xY2/ogtBRdy48DOcPsDngYHDOfcy554w5Uxp236yJianpmdmS3Pl+YXFpeXKSrWlkkxSaNKEJ/I8JAo4E9DUTHM4TyWQOOTQDq+OBn77GqRiiTjT/RT8mPQEixgl2khB5biBPaUJvZLA8y5ERX5QlL2Q9WiWBrmLPSawFxN9SQnP3QJ7Rv8SjooCNwJ3J6hs2jV7CPyXOGOyeVi/uFk/qb43gsqD101oFoPQlBOlOo6daj8nUjPKwSTIFKQmFelBx1BBYlB+Pjy3wFtG6eIokeYJjYfq942cxEr149BMDoKq395A/M/rZDra93Mm0kyDoKOPooxjneBBd7jLJFDN+4YQKpnJiuklkYRq03DZlOD8Pvkvae3WHLvmnJo2XDRCCa2hDbSNHLSHDlEdNVATUXSL7tEzerHurEfr1XobjU5Y451V9APWxydDQauN</latexit><latexit sha1_base64="BhJcsvT6cIrefzsG7MhX6A4dBes=">AAACLnicbVDLSsNAFJ34rPVV61KQQRFcSEnc6EaQiNhlBduKTQiT6U0dnEzCzEQoIXv/xY2/ogtBRdy48DOcPsDngYHDOfcy554w5Uxp236yJianpmdmS3Pl+YXFpeXKSrWlkkxSaNKEJ/I8JAo4E9DUTHM4TyWQOOTQDq+OBn77GqRiiTjT/RT8mPQEixgl2khB5biBPaUJvZLA8y5ERX5QlL2Q9WiWBrmLPSawFxN9SQnP3QJ7Rv8SjooCNwJ3J6hs2jV7CPyXOGOyeVi/uFk/qb43gsqD101oFoPQlBOlOo6daj8nUjPKwSTIFKQmFelBx1BBYlB+Pjy3wFtG6eIokeYJjYfq942cxEr149BMDoKq395A/M/rZDra93Mm0kyDoKOPooxjneBBd7jLJFDN+4YQKpnJiuklkYRq03DZlOD8Pvkvae3WHLvmnJo2XDRCCa2hDbSNHLSHDlEdNVATUXSL7tEzerHurEfr1XobjU5Y451V9APWxydDQauN</latexit><latexit sha1_base64="JonxYOzyxdgW++vtjNCMOZf+nKA=">AAACLnicbVDLSsNAFJ3UV62vqks3g0VwISVxoxuhtAguK9gHNCVMpjft0MkkzEyEEvJFbvwVXQgq4tbPcNIW1NYDA4dz7mXOPX7MmdK2/WoVVlbX1jeKm6Wt7Z3dvfL+QVtFiaTQohGPZNcnCjgT0NJMc+jGEkjoc+j440bud+5BKhaJOz2JoR+SoWABo0QbyStfN7GrNKFjCTwdQJClV1nJ9dmQJrGX1rHLBHZDokeU8LSeYdfoP0Ijy3DTq5955YpdtafAy8SZkwqao+mVn91BRJMQhKacKNVz7Fj3UyI1oxxMgkRBbFKRIfQMFSQE1U+n52b4xCgDHETSPKHxVP29kZJQqUnom8k8qFr0cvE/r5fo4LKfMhEnGgSdfRQkHOsI593hAZNANZ8YQqhkJiumIyIJ1abhkinBWTx5mbTPq45ddW7tSq0+r6OIjtAxOkUOukA1dIOaqIUoekBP6A29W4/Wi/Vhfc5GC9Z85xD9gfX1DYpQqMg=</latexit>

� n P
def
=
�
a ✓ 2P

�� a \ PA 2 �

<latexit sha1_base64="RWOqXNu0BEaaIwiPHtmI4fwx1gc=">AAACZ3icbVFNb9QwEHVSPkr46NIihMTFUCGBVK2SXuilUoELxyCxbaX1sky8k61V2wn2pNI2hL/Af+PGnQv/Am92D9Aykq2n92Y8M89FrZWnNP0ZxRs3bt66vXknuXvv/oOtwcPtY181TuJIVrpypwV41MriiBRpPK0dgik0nhTn75b6yQU6ryr7kRY1TgzMrSqVBArUdPBNzMEY4EKTMuh5zoUnkOcOdSu8dKqm9U0LjVwYoDNF7QzLrmsPu0QUaq5FGx7wTeGR8Avf/5QnYq8Xvoq9JEgSap5P33ChLF/16+uc6KaD3XSY9sGvg2wNdo9efb/8zBjLp4MfYlbJxqAlqcH7cZbWNGnBkZIawzyNxzrMD3McB2ghLDVpe586/iIwM15WLhxLvGf/rmjBeL8wRchc7umvakvyf9q4ofJg0ipbN4RWrhqVjeZU8aXpfKYcStKLACC4GWbl8gwcSApfkwQTsqsrXwfH+8MsHWYfghtv2So22VP2nL1kGXvNjth7lrMRk+xXlEQ70aPod7wVP46frFLjaF2zw/6J+NkfZ2K6vA==</latexit><latexit sha1_base64="LDBiOjuNs7G5JxB30G+b0uyRDV4=">AAACZ3icbVFNb9QwEHVCoUv46JaiqhIXQ4UEUrVKeoELUoELx1TqtpXWy8rxTrZWbcfYk0pLCH+BK7+AH8SNOxf+Rb3ZPfSDkWw9vTfjmXkurJIe0/RPFN9Zu3tvvXc/efDw0eON/uaTY1/VTsBQVKpypwX3oKSBIUpUcGodcF0oOCnOPy70kwtwXlbmCOcWxprPjCyl4BioSf87m3GtOWUKpQZPc8o8cnHuQDXMCyctrm6cK6BMczyT2EyhbNvmXZuwQs4Ua8IDvi48IHyh+5/zhO11wje2lwRJcEvzyXvKpKHLfl2dY+2kv5sO0i7obZCtwO7B6x9fbe/Xz3zS/82mlag1GBSKez/KUovjhjuUQkGYp/Zgw/x8BqMADQ9LjZvOp5a+DMyUlpULxyDt2KsVDdfez3URMhd7+pvagvyfNqqxfDtupLE1ghHLRmWtKFZ0YTqdSgcC1TwAHtwMs1Jxxh0XGL4mCSZkN1e+DY73B1k6yA6DGx/IMnrkGXlBXpGMvCEH5BPJyZAI8jdKoq3oafQv3oi3451lahytarbItYifXwIv9LwS</latexit><latexit sha1_base64="LDBiOjuNs7G5JxB30G+b0uyRDV4=">AAACZ3icbVFNb9QwEHVCoUv46JaiqhIXQ4UEUrVKeoELUoELx1TqtpXWy8rxTrZWbcfYk0pLCH+BK7+AH8SNOxf+Rb3ZPfSDkWw9vTfjmXkurJIe0/RPFN9Zu3tvvXc/efDw0eON/uaTY1/VTsBQVKpypwX3oKSBIUpUcGodcF0oOCnOPy70kwtwXlbmCOcWxprPjCyl4BioSf87m3GtOWUKpQZPc8o8cnHuQDXMCyctrm6cK6BMczyT2EyhbNvmXZuwQs4Ua8IDvi48IHyh+5/zhO11wje2lwRJcEvzyXvKpKHLfl2dY+2kv5sO0i7obZCtwO7B6x9fbe/Xz3zS/82mlag1GBSKez/KUovjhjuUQkGYp/Zgw/x8BqMADQ9LjZvOp5a+DMyUlpULxyDt2KsVDdfez3URMhd7+pvagvyfNqqxfDtupLE1ghHLRmWtKFZ0YTqdSgcC1TwAHtwMs1Jxxh0XGL4mCSZkN1e+DY73B1k6yA6DGx/IMnrkGXlBXpGMvCEH5BPJyZAI8jdKoq3oafQv3oi3451lahytarbItYifXwIv9LwS</latexit><latexit sha1_base64="ww1Vyi4pPWPjjqGbJl8zT3Qkuxs=">AAACZ3icbVFNb9QwEHXCVwkfXShCSFwMKyQO1SrpBS6VWrhwDBLbVlovq4l3srVqO8GeIK3S9Edy486Ff4E3mwO0jGTr6b0Zz8xzUWvlKU1/RvGt23fu3tu5nzx4+Ojx7ujJ0xNfNU7iVFa6cmcFeNTK4pQUaTyrHYIpNJ4WFx83+ul3dF5V9guta5wbWFlVKgkUqMXoSqzAGOBCkzLoec6FJ5AXDnUrvHSqpuGmtUYuDNC5onaJZde1h10iCrXSog0P+KbwSPiNH3zNE7HfC5diPwmShJrni2MulOXbfn2dE91iNE4naR/8JsgGMGZD5IvRD7GsZGPQktTg/SxLa5q34EhJjWGexmMd5ocVzgK0EJaat71PHX8TmCUvKxeOJd6zf1e0YLxfmyJkbvb017UN+T9t1lD5ft4qWzeEVm4blY3mVPGN6XypHErS6wAguBlm5fIcHEgKX5MEE7LrK98EJweTLJ1kn9Px0YfBjh32kr1mb1nG3rEj9onlbMok+xUl0V70LPod78bP4xfb1DgaavbYPxG/+gPx8rjq</latexit>

How to combine?

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Constraints intuition

 X

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Constraints intuition

 X

Bad 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Constraints intuition

 X

Bad 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Constraints intuition

 X

Bad 1

Bad 2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Constraints intuition

 X

Bad 1

Bad 2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Constraints intuition

 X

Bad 1

Bad 2

Good

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Limits of white magic

 X

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Limits of white magic

 X

Bad 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Limits of white magic

 X

Bad 1

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Limits of white magic

 X

Bad 1
Bad 2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Limits of white magic

 X

Bad 1
Bad 2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Limits of white magic

 X

Bad 1
Bad 2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Formally

 X

A1 �A2
def
= (C1 [C2, P1 [P2, �)

<latexit sha1_base64="Phs6OedU/YP2ZpHRHeZdhHXAef0=">AAACYHicbZFNa9wwEIZlpx9bN2k2za29iC4tKZTFXgrJpZA0lxy30E0C68WMteONiGQLaZywGP/J3nropb+k8saFNOmAxKtnRtLoVW6UdBTHP4Nw68nTZ88HL6KX2zuvdod7r89dVVuBM1Gpyl7m4FDJEmckSeGlsQg6V3iRX592+YsbtE5W5XdaG1xoWJWykALIo2x4e5IlPK2Mqh0/ySb8Q+oIxLVF1aROWGmon2mtkKca6EpSs8SibZsvbXSwIQJUc9p2B4na8Pto8ima/uXTbpWuQGv4GGXDUTyON8Efi6QXI9bHNBv+SJeVqDWWJBQ4N09iQ4sGLEmhsI3S2qHxncMK516WoNEtmo1BLX/vyZIXlfWjJL6h93c0oJ1b69xXds27h7kO/i83r6k4WjSyNDVhKe4uKmrFqeKd23wpLQpSay/A++h75eIKLAjyf9KZkDx88mNxPhkn8Tj59nl0/LW3Y8DesnfsgCXskB2zMzZlMybYr2Ar2A52gt/hINwN9+5Kw6Dfs8/+ifDNHxhitI8=</latexit><latexit sha1_base64="Phs6OedU/YP2ZpHRHeZdhHXAef0=">AAACYHicbZFNa9wwEIZlpx9bN2k2za29iC4tKZTFXgrJpZA0lxy30E0C68WMteONiGQLaZywGP/J3nropb+k8saFNOmAxKtnRtLoVW6UdBTHP4Nw68nTZ88HL6KX2zuvdod7r89dVVuBM1Gpyl7m4FDJEmckSeGlsQg6V3iRX592+YsbtE5W5XdaG1xoWJWykALIo2x4e5IlPK2Mqh0/ySb8Q+oIxLVF1aROWGmon2mtkKca6EpSs8SibZsvbXSwIQJUc9p2B4na8Pto8ima/uXTbpWuQGv4GGXDUTyON8Efi6QXI9bHNBv+SJeVqDWWJBQ4N09iQ4sGLEmhsI3S2qHxncMK516WoNEtmo1BLX/vyZIXlfWjJL6h93c0oJ1b69xXds27h7kO/i83r6k4WjSyNDVhKe4uKmrFqeKd23wpLQpSay/A++h75eIKLAjyf9KZkDx88mNxPhkn8Tj59nl0/LW3Y8DesnfsgCXskB2zMzZlMybYr2Ar2A52gt/hINwN9+5Kw6Dfs8/+ifDNHxhitI8=</latexit><latexit sha1_base64="Phs6OedU/YP2ZpHRHeZdhHXAef0=">AAACYHicbZFNa9wwEIZlpx9bN2k2za29iC4tKZTFXgrJpZA0lxy30E0C68WMteONiGQLaZywGP/J3nropb+k8saFNOmAxKtnRtLoVW6UdBTHP4Nw68nTZ88HL6KX2zuvdod7r89dVVuBM1Gpyl7m4FDJEmckSeGlsQg6V3iRX592+YsbtE5W5XdaG1xoWJWykALIo2x4e5IlPK2Mqh0/ySb8Q+oIxLVF1aROWGmon2mtkKca6EpSs8SibZsvbXSwIQJUc9p2B4na8Pto8ima/uXTbpWuQGv4GGXDUTyON8Efi6QXI9bHNBv+SJeVqDWWJBQ4N09iQ4sGLEmhsI3S2qHxncMK516WoNEtmo1BLX/vyZIXlfWjJL6h93c0oJ1b69xXds27h7kO/i83r6k4WjSyNDVhKe4uKmrFqeKd23wpLQpSay/A++h75eIKLAjyf9KZkDx88mNxPhkn8Tj59nl0/LW3Y8DesnfsgCXskB2zMzZlMybYr2Ar2A52gt/hINwN9+5Kw6Dfs8/+ifDNHxhitI8=</latexit><latexit sha1_base64="Phs6OedU/YP2ZpHRHeZdhHXAef0=">AAACYHicbZFNa9wwEIZlpx9bN2k2za29iC4tKZTFXgrJpZA0lxy30E0C68WMteONiGQLaZywGP/J3nropb+k8saFNOmAxKtnRtLoVW6UdBTHP4Nw68nTZ88HL6KX2zuvdod7r89dVVuBM1Gpyl7m4FDJEmckSeGlsQg6V3iRX592+YsbtE5W5XdaG1xoWJWykALIo2x4e5IlPK2Mqh0/ySb8Q+oIxLVF1aROWGmon2mtkKca6EpSs8SibZsvbXSwIQJUc9p2B4na8Pto8ima/uXTbpWuQGv4GGXDUTyON8Efi6QXI9bHNBv+SJeVqDWWJBQ4N09iQ4sGLEmhsI3S2qHxncMK516WoNEtmo1BLX/vyZIXlfWjJL6h93c0oJ1b69xXds27h7kO/i83r6k4WjSyNDVhKe4uKmrFqeKd23wpLQpSay/A++h75eIKLAjyf9KZkDx88mNxPhkn8Tj59nl0/LW3Y8DesnfsgCXskB2zMzZlMybYr2Ar2A52gt/hINwN9+5Kw6Dfs8/+ifDNHxhitI8=</latexit>

�
def
=
�
a ✓ 2P

�� a \ P1 2 �1 ^ a \ P2 2 �2

= (�1 n P) \ (�2 n P)
<latexit sha1_base64="1q+xpUfNqzy4zx6vzshMkaa3huI=">AAACt3icbVFNb9QwEHXCVwkfXeDIxWJFVaRqlUSVgEOlCi4cg8S2FeslcpzJrlXbSe0J0irsX+TAjX+DN5uKpWUkW0/z5nnGb4pGSYdx/DsI79y9d//B3sPo0eMnT/dHz56fubq1AqaiVrW9KLgDJQ1MUaKCi8YC14WC8+Ly44Y//w7Wydp8wVUDc80XRlZScPSpfPSTLbjWnB4wh1xcWlAdc8LKBocbVwoo0xyXErsSqvW6O1lHrJALxTpOmWsLBwhXNP2WReyoJ36wo8hTgjc0yxPKpKHbNnkSMcoUNyX7W5DuFqT905b5Fiw6OKHR4bXS61BqcDR7s1VeM+kOk4/G8STug94GyQDGZIgsH/1iZS1aDQaF4s7NkrjBecctSqHAT9E6aLwxfAEzDw33feZd7/uavvaZkla19ccg7bO7io5r51a68JUbA91NbpP8HzdrsXo376RpWgQjto2qVlGs6WaJtJQWBKqVB9yvyc9KxZJbLtCvOvImJDe/fBucpZMkniSfj8enHwY79shL8oockoS8JafkE8nIlIjgOPgaiKAM34d5WIXLbWkYDJoX5J8Ir/4AGdHSNg==</latexit><latexit sha1_base64="1q+xpUfNqzy4zx6vzshMkaa3huI=">AAACt3icbVFNb9QwEHXCVwkfXeDIxWJFVaRqlUSVgEOlCi4cg8S2FeslcpzJrlXbSe0J0irsX+TAjX+DN5uKpWUkW0/z5nnGb4pGSYdx/DsI79y9d//B3sPo0eMnT/dHz56fubq1AqaiVrW9KLgDJQ1MUaKCi8YC14WC8+Ly44Y//w7Wydp8wVUDc80XRlZScPSpfPSTLbjWnB4wh1xcWlAdc8LKBocbVwoo0xyXErsSqvW6O1lHrJALxTpOmWsLBwhXNP2WReyoJ36wo8hTgjc0yxPKpKHbNnkSMcoUNyX7W5DuFqT905b5Fiw6OKHR4bXS61BqcDR7s1VeM+kOk4/G8STug94GyQDGZIgsH/1iZS1aDQaF4s7NkrjBecctSqHAT9E6aLwxfAEzDw33feZd7/uavvaZkla19ccg7bO7io5r51a68JUbA91NbpP8HzdrsXo376RpWgQjto2qVlGs6WaJtJQWBKqVB9yvyc9KxZJbLtCvOvImJDe/fBucpZMkniSfj8enHwY79shL8oockoS8JafkE8nIlIjgOPgaiKAM34d5WIXLbWkYDJoX5J8Ir/4AGdHSNg==</latexit><latexit sha1_base64="1q+xpUfNqzy4zx6vzshMkaa3huI=">AAACt3icbVFNb9QwEHXCVwkfXeDIxWJFVaRqlUSVgEOlCi4cg8S2FeslcpzJrlXbSe0J0irsX+TAjX+DN5uKpWUkW0/z5nnGb4pGSYdx/DsI79y9d//B3sPo0eMnT/dHz56fubq1AqaiVrW9KLgDJQ1MUaKCi8YC14WC8+Ly44Y//w7Wydp8wVUDc80XRlZScPSpfPSTLbjWnB4wh1xcWlAdc8LKBocbVwoo0xyXErsSqvW6O1lHrJALxTpOmWsLBwhXNP2WReyoJ36wo8hTgjc0yxPKpKHbNnkSMcoUNyX7W5DuFqT905b5Fiw6OKHR4bXS61BqcDR7s1VeM+kOk4/G8STug94GyQDGZIgsH/1iZS1aDQaF4s7NkrjBecctSqHAT9E6aLwxfAEzDw33feZd7/uavvaZkla19ccg7bO7io5r51a68JUbA91NbpP8HzdrsXo376RpWgQjto2qVlGs6WaJtJQWBKqVB9yvyc9KxZJbLtCvOvImJDe/fBucpZMkniSfj8enHwY79shL8oockoS8JafkE8nIlIjgOPgaiKAM34d5WIXLbWkYDJoX5J8Ir/4AGdHSNg==</latexit>

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Main results: Safety

Safety = "Bad states never occur"

 55

A1(B) |= �1

A2(B) |= �2

)
=)

�
A1 �A2

�
(B) |= �1 ^ �2

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Main results: Liveness

Liveness = "Good states occur infinitely often"

 X

A
live

pairwise non-interfering

)
=)

M
A live

| {z }
w.r.t. B

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Requirements and design process

 57

system construction that maintains the traceability of requirements up
to the final design solution that discharges the derived properties. In
this incremental process, designers can (re-)use “ready-made” solutions
formally encoded in BIP architectures, which have been proven correct.
In essence, the architectures represent design patterns (e.g. for mutual
exclusion, clock synchronization, scheduling, resource management,
security) that are defined independently of the components which make
up the system. We can thus ensure correctness-by-construction with
respect to properties, while avoiding computationally expensive tech-
niques that imply state explosion.

The importance of software architecture has been greatly ac-
knowledged by the industry and academia. As a result, there has been
an increasing interest in defining languages that support the archi-
tecture-based approach, e.g. UML and architecture description lan-
guages (ADLs) (Medvidovic and Taylor, 2000; Woods and Hilliard,
2005). All these works rely on the distinction between behaviors of
individual components and their coordination in the overall system
organization. These languages, however, often lack formal semantics
(UML, Oussalah et al., 2004; Van Ommering et al., 2000). As a result,
analysis is carried out on models that cannot be rigorously related to
system development formalisms. This introduces gaps in the design
process which reduce productivity and limit the ability for ensuring
correctness. In fact, in a survey conducted in the industrial sector re-
garding architecture description languages, it is stated that practicing
architects nowadays emphasize the need to reconcile informal notations
with more formal and analysable ones (Malavolta et al., 2013).

Similarly to the aforementioned approaches, BIP architectures also
provide a clear separation of concerns between functional and co-
ordination aspects. BIP architectures have rigorous semantics; the un-
derlying theory of components and their interactions is inspired from
the BIP framework (Basu et al., 2011b). In essence, BIP architectures
are operators restricting component behavior for enforcing a char-
acteristic property. Their composition has some similarities with ar-
chitecture composition in architecture languages with CSP-like se-
mantics, e.g., Wright ADL (Allen and Garlan, 1997). Nevertheless, in
contrast to these approaches application of BIP architectures does not
require any modification of the components it is applied on. Ad-
ditionally, as explained above, BIP architectures are tightly related with
characteristic properties, which are preserved through composition.

4. The model-based process

Any system under design is intended to accomplish a set of functions
with each of them defining a stateful processing of input. The system’s
functional architecture is a top-down decomposition of its functions

(using e.g. function trees (Group, 2009a)). The functions must fulfill
certain requirement specifications, i.e. statements that delimit the
problem of system design. In effect, this is only a partial specification
which assumes some common and often tacit knowledge for the pro-
blem domain (domain knowledge (Mannion et al., 1998)), such as
physical laws for the system’s external stimuli (Jackson, 2000), stan-
dardized protocols, services and libraries.

On the side of the design solution space, a design is defined based on
a hierarchical description (using e.g. product trees (Group, 2009b)) of
the system’s hardware and software components, known as physical ar-
chitecture. The functions and their associated requirements are then
allocated to the components of the physical architecture.

For the specification of requirements and properties, we employ two
natural-like languages with precisely defined semantics. Requirements
are specified using composable boilerplates (Hull et al., 2010), i.e., semi-
complete specifications, with placeholders to be filled with concepts
that adhere to a conceptual model of the system under design. The
conceptual model encodes the relationships among the concepts used in
the placeholders. With proper tool-support, the engineer avoids in-
determinate references and maintains links between concepts that exist
in requirements. In order to derive the properties that capture each
requirement, we have mapped each boilerplate to one or more property
patterns, that are also natural-like language templates with place-
holders. These patterns associate the properties with a formal re-
presentation in a logic language.

If requirements (and derived properties) are simultaneously sa-
tisfied by the design model, then early assurance of consistency and
correctness is provided (we do not cope though with inconsistencies
between requirements at the specification level, which are treated e.g.
in Mahmud et al. (2017) and other works). The design model is in-
crementally built using correct-by-construction model transformations,
which integrate reusable BIP architectures (Attie et al., 2016). The in-
tegrated architectures provably discharge the specified properties
through coordinating the model components. This is an automated step
aiming to preserve the previously established properties. Only the
properties that cannot be enforced by design need to be verified by
model checking.

Fig. 6 introduces the overall process by showing the steps along with
their input and output data:

Input: (i) the functional architecture (ii) the physical architecture
Output: a design model satisfying the derived properties OR re-
quirements that are not satisfied
Step 1. Requirement specification: Requirements for each function of
the functional architecture are specified based on predefined

Fig. 6. The model-based process for the formalization of requirements and design.

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

[Stachtiari et al, JSS '18]

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

CubETH case study

 58

Fig. 10: Mode management style (component behaviour is shown for k=3)

Table 1: Representative requirements for CDMS status and HK PL
ID Description

CDMS-007 The CDMS shall periodically reset both the internal and external watchdogs and contact
the EPS subsystem with a “heartbeat”.

HK-001 The CDMS shall have a Housekeeping activity dedicated to each subsystem.

HK-003 When line-of-sight communication is possible, housekeeping information shall be trans-
mitted through the COM subsystem.

HK-004 When line-of-sight communication is not possible, housekeeping information shall be writ-
ten to the non-volatile flash memory.

HK-005 A Housekeeping subsystem shall have the following states: NOMINAL, ANOMALY and
CRITICAL FAILURE.

type with cardinality k. mib stands for “mode i begin” and indicates that an
action that is enabled in mode i has begun its execution. mie stands for “mode
i end” and indicates that an action that is enabled in mode i has finished its
execution. Each inMode port instance of the Mode Manager must be connected
with the corresponding modeBegin port instances of all B1 components through
an n-ary connector. An architecture of this style is shown in Fig. 14.

The characteristic property of this style is ‘an action is only performed in a
mode where it is allowed ’, formalised by the following CTL formula:

8i 6 k, AG
�
B1.m[i]b ! ModeManager .inMode[i]

�
.

3.2 BIP model design by architecture application

We illustrate the architecture-based approach on the CDMS status, MESSAGE
LIBRARY and HK PL components. In particular, we present the application of
Action flow, Mode management, Client-Server and Failure monitoring architec-
tures to discharge a subset of CubETH functional requirements (Tab. 1). We
additionally present the result of the composition of Client-Server and Mode
management architectures. The full list of requirements is provided in [24].

Application of Action flow architecture Requirement CDMS-007, pre-
sented in Tab. 1, describes the functionality of CDMS status. The corresponding
BIP model is shown in Fig. 11. Watchdog reset is an operand component, which
is responsible for resetting the internal and external watchdogs. CDMS status
ACTION FLOW is the coordinator of the architecture applied on Watchdog reset
that imposes the following order of actions: 1) internal watchdog reset; 2) exter-
nal watchdog reset; 3) send heartbeat and 4) receive result.

[Mavridou et al, FACS '16]

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

specifying requirements).
Fig. 18 shows the Requirement Editing screen of the RERD tool. The

upper part of the screen allows selecting among the available boiler-
plate clauses, which are displayed in separate tables. In the middle part,
requirements are shown in an editable form, that is, their placeholders
and additional information for the requirement (e.g. id, category) can
be filled in this panel. The lower part of the screen is used for browsing
and searching requirements that match string(s) given in a search box.
The table displays the requirements returned by each search (all re-
quirements match an empty string), with buttons attached to each row
for editing/deleting them.

The RERD tool also stores the user-defined values for the symbols
used in patterns. Specifically, the System Software Engineer assigns
ports to the symbols that are necessary for the properties of the speci-
fied requirements. These symbols may be reused in more than one
property. Hence, when the Verification Engineer uses the tool during
the property derivation (step 3), the necessary properties are auto-
matically created by retrieving the values of symbols.

For architecture instantiation and property enforcement (steps 4
and 5), the System Software Engineer can choose among the available
architecture styles and parameterize them for creating architectures
that enforce a set of properties. The architectures are then auto-
matically applied to their operand components and the design model is
updated as appropriate.

DesignBIP (Mavridou et al., 2018) is a web-based graphical
editing tool, which can be used for the specification of BIP models and
BIP architectures. The tool can assist the creation of the initial design
model in step 1. Moreover, it allows for the creation of new architecture
styles to be integrated in the RERD tool, whenever RERD is extended
with new boilerplates (and enforcement opportunities).

The D-Finder tool (Bensalem et al., 2011) is used by the Ver-
ification Engineer for verifying the deadlock-freedom of the design

Algorithm 1. Decision-making process for the P1.1
pattern.

Algorithm 2. Decision-making process for the P1.2 pattern.

Fig. 18. RERD’s screen for requirements editing.

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

RERD tool

 59

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

CubETH case study

 60

A suffix is used to constrain the main specification. The suffix
clauses shown in Table 4 specify that each time the main specification
(action, sequence of actions or state observation) is activated, it shall:
(i) have ended before an event occurs (S1), or (ii) occur sequentially
(i.e., consecutive activations do not overlap in time) (S2)

Let us consider the boilerplate consisting of the P1, M1 and S2
templates, specifying that “if event, function shall action sequentially”.
Such a boilerplate expresses that: (i) event is a necessary and sufficient
precondition for one action occurrence and (ii) consecutive action oc-
currences are constrained to be executed sequentially. The remaining
prefix-suffix combinations are interpreted accordingly.

During the specification of each requirement, the conceptual model
is enriched with new concepts, if the existing concepts are not suffi-
cient. At the end of the specification step, the conceptual model will
contain the concepts used in the requirements and additional concepts
that are related to them. For example, events used in the requirements
will be related to their generating actions, even if these actions are not
explicitly mentioned in requirements. The conceptual model’s quality is
a responsibility of the Requirement Engineer. This matter has been
examined in related works (Lindland et al., 1994; Leung and Bolloju,
2005) that are further discussed in Section 6.3.

Example 2. Let us consider the requirements in Table 5, which have
been defined for the function that handles the housekeeping of the
payload (PL) subsystem (abbreviated as HK PL). The concepts in
requirements and other concepts related to them are depicted in the
conceptual model of Fig. 8, which shows that:

• states s001 and s002 belong to the state-set st001, thus, only one of
them can be observed at a given instant. Each of these states is set by

the events e001 and e002, respectively (states s003 and s004 are
similarly related).

• the used action a004 represents an action container that consists of
a001, a002 and a005.

• events e003 and e004 are neither generated by an action nor do they
set any states.

For brevity, Fig. 8omits the invokes relationships that relate these
actions to actions of other functions. These relationships are shown at
later steps of the running example.

The templates in Tables 2–4 in no way form a complete set of boi-
lerplates adequate for all kinds of system requirements, since the boi-
lerplate language is not the primary goal of this article. Thus, our
prefixes can only express necessary and sufficient conditions based on
one state or event, even though requirements are often subjected to
more complex conditions (e.g. based on two events) or to conditions
that are either necessary or sufficient. However, we opted to keep the
boilerplate language simple enough for illustrating the main principles
behind its design, while covering the specification needs for the two
case studies in Section 6. Our considerations for the evolution of the
current language are discussed in Section 6.3.

4.2. Initial design

The initial design step generates the design model in its initial form,
which is a manually built blueprint of the system’s functional behavior.
All the concepts of actions and events mentioned in the requirements
should be traceable in ports of the initial design model.

The model consists of BIP components that implement functions of
the functional architecture. Each action of the conceptual model, which
is an identifiable block of functionality within a function, is represented
by a list of ports of a component. Events that are generated by actions
are also represented by the action’s ports, whereas environmental
events are non-deterministic inputs which are not explicitly modeled.
Components may enclose one or more atomic subcomponents in order
to enable ports within separate threads of control. The number of
atomic components to be used and the placement of actions is a design
choice that depends on possible order dependencies among the actions.
For instance, actions which are executed alternatively should be en-
abled at the same control location of a component, whereas actions that
are independent with each other should be placed in different compo-
nents.

The invocation of actions, which is reflected by the “invokes” re-
lationship in the conceptual model, is represented by component in-
teractions. Separate interactions are included for issuing an invocation
and receiving the output. Rendezvous connectors (all ports assigned to
synchrons) can model synchronous invocations, where the caller has to
wait for the output. For asynchronous invocations, an additional atomic

Fig. 7. Conceptual diagram of classes.

Table 2
Prefix clauses.

ID Template

P1 if 〈event〉
P2 if 〈event〉 and ⟨state⟩
P3 while ⟨state⟩

Table 3
Main clauses.

ID Template

M1 ⟨function⟩ shall ⟨action⟩
M2 ⟨function⟩ shall ⟨action⟩ (and ⟨action⟩)+
M3 ⟨function⟩ shall ⟨state⟩

Table 4
Suffix clauses.

ID Template

S1 before 〈event〉
S2 sequentially

Table 5
Requirements for the HK PL function.

ID Requirement

HK-02 P2: if ⟨event-e003: [TBD] sec pass ⟩ and ⟨state-s003: HK collection is
enabled for PL ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a004: handle HK data from the PL ⟩

HK-03 P3: if ⟨state-s002: PSa for PL is not enabled ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a002: transmit HK data through the
TC/TM service ⟩

HK-04 P3: while ⟨state-s001: PS for PL is enabled ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a001: write HK data to the flash
memory ⟩

HK-05 P1: if ⟨event-e004: a PL failure persists for [TBD] sec ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a003: contact the EPS for a restart
of the PL ⟩

a PS stands for a packet store structure.

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

CubETH case study

 X

B5.3. CDMS status
CDMS-02: ‘ The CDMS_status shall periodically reset the internal and external watchdogs and contact the EPS subsystem with a “heartbeat”. ’

P1: e1: if [TBD] seconds pass
M2: f1: CDMS_status shall a1: reset the internal and external watchdogs and a2: contact the EPS subsystem with a “heartbeat”

B5.4. Error logging
Log-02: ‘ Error_logging shall log each hardware error to the RAM.’
P1: if e1: a hardware error is produced
M1: f1: Error_logging shall a1: log the error to the RAM
Log-03: ‘ Error_logging shall not log two errors simultaneously. ’
M1: f1: Error_logging shall a1: log the error to the RAM
S3: sequentially

B5.5. Payload
PL-01: ‘ When in IDLE mode, PL shall load a scenario to the board. ’
P3: while s1: in IDLE mode
M1: f1: PL shall a1: load a scenario to the board
PL-02: ‘ In SCENARIO_READY, PL has loaded a scenario to the board. ’
P1: if e1: PL has finished loading a scenario to the board
M3: f1: PL shall s2: be in SCENARIO_READY mode
PL-03: ‘ In SCENARIO_READY, PL shall execute a scenario to the board. ’
P3: while s2: in SCENARIO_READY mode
M1: f1: PL shall a12: execute a scenario to the board
PL-04: ‘ In STARTED mode, a PL scenario has been executed. ’
P1: if e2: PL has finished executing a scenario
M3: f1: PL shall s3: be in STARTED mode

Fig. B21. The HK PL component (The HK COM and HK EPS are also like HK PL).

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

CubETH case study

 61

of requirement types found in the design of, say, space systems. This of
course depends on the expressiveness of the property patterns, and on
the analyzability of BIP models with extended semantics for the various
property types, because correctness-by-construction does not vanish the
need for a posteriori verification. The structure of the boilerplate lan-
guage in Section 4.1 resembles that of RSL in the CESAR reference
technology platform (Ajitha Rajan and Thomas Wahl, 2013). We cur-
rently support fewer templates than RSL for the prefix, main and suffix
clauses, but this set of templates was sufficient for expressing the re-
quirements of the case studies. Moreover, the RERD tool was designed
such that new templates may be added; the only prerequisite is that the
additional templates must be associated with property patterns, as in
Table 7. The adopted framework of patterns from Dwyer et al. (1999) is
well-established and stems from industrially-relevant studies, but it
only covers functional property specifications. We certainly foresee the
need for boilerplates with templates for non-functional aspects, which
call for support by e.g. timing patterns (Reinkemeier et al., 2011) and
probabilistic patterns (Grunske, 2008). Here, it is worth to note:

• the extension of BIP (Nouri et al., 2015) that allows specifying
probabilistic aspects of BIP components, while providing a sto-
chastic semantics for the parallel composition of components
through interactions and priorities;

• the RT-BIP extension for modeling timing constraints as a timed
automaton, and a real-time engine for computing the schedules
meeting the timing constraints, given the underlying platform’s real-
time clock (Abdellatif et al., 2013).

These extensions are accompanied by advanced verification tools,
some of which implement scalable compositional verification techni-
ques (Rayana et al., 2016).

However, a matter of vital importance is how expressive can be a
boilerplate language with a controlled vocabulary for the attributes
with respect to today’s industrial practice of natural language specifi-
cations. The loss of expressiveness is inevitable though necessary to
avoid ambiguity. However, the true question is whether it is still pos-
sible and whether we really need to cover the same system aspects with
those in today’s specifications. This question also matters for languages
like EARS (Mavin and Wilkinson, 2010; Mavin et al., 2009), which
insist on natural language specifications using a fixed set of structural
rules (though the EARS-CTRL analysis works with a user-defined glos-
sary of terms). From our experience with the case studies, which were
based on natural language requirements, we believe that only a subset

of them needs to be validated. This set includes requirements that are
suspected for consistency issues and have to be established or checked
with respect to the system’s structure and behavior. The Requirement
Engineers tend to classify the requirements in project documentation
into categories (e.g. at the software level of space systems there are
various classes of interface requirements, performance requirements,
functional requirements and design/construction requirements). Any
boilerplate language is considered adequate only if it can express all
representative forms of natural language requirements that need to be
validated, for all categories of requirements in project documentation
(e.g. the design/construction requirements is not necessary to be ex-
pressed using boilerplates). This may imply changes to the scope of
individual requirements (e.g. a natural language requirement may be
broken into multiple boilerplate requirements). To this end, the RERD
tool displays the set of applicable boilerplates, for each category of
requirements found in a user-defined catalogue of categories (Fig. 18).

Our emphasis lies on precisely capturing the requirements by
properties which— ideally— can be enforced through BIP architectures
or— if not enforced— could be verified. As we aim to a semi-automated
formalization of requirements, we are intentionally limited to specific
types of requirements and templates. Our approach can accommodate
additional templates for requirement boilerplates, provided that they
are associated with property patterns, for which it is known how they
can be enforced or verified.

The applicability of the correctness-by-construction approach
throughout our model-based process depends on a library of BIP ar-
chitecture styles for enforcing a worthwhile set of properties in the
different categories of requirements. We have implicitly adopted the
commonly accepted perception that the requirement specification and
the system’s architectural design are in some sense intertwined
(Swartout and Balzer, 1982; Nuseibeh, 2001). While specifying system
requirements, the Requirement Engineers have in mind the overall
structure of the system under design (functional and physical archi-
tecture inputs shown in Fig. 6), whereas a significant part of their
specifications comes from adapting requirements found in previous
projects. Our notion of architecture styles provides the means to for-
mally capture common solutions to recurring design problems in an
abstract and reusable form. This certainly incurs a non-negligible in-
vestment cost towards developing adequate and organized libraries of
architecture styles, especially since the set of property patterns that
they can enforce has to be precisely defined. The set of styles in this
article was derived by identifying commonalities in the base of natural
language requirements of the case studies. Additional effort is required
to this respect, whereas a recent research work opens prospects for
defining styles which enforce quantitative properties (Paraponiari and
Rahonis, 2017).

Another important issue is the scalability and the effort needed for
applying our model-based process. Indicative figures for problems of
the size of our case studies have been previously mentioned. We ac-
knowledge that in industrial problems of moderate size additional
challenges may arise. More specifically, it may be trickier to identify
and uniquely determine— on a team basis— the concepts for specifying

Table 12
Statistics of requirement formulation and property enforcement.

Model Flow Mode Event Mutex Failure Requir. Deriv. Prop. Assum. Prop. Enforced By inspect.

Payload 0 2 0 4 0 12 16 0 16 0
HK PL 0 2 1 1 1 4 6 0 6 0
HK EPS 0 2 1 1 1 4 6 0 6 0
HK COM 0 2 1 1 1 4 6 0 6 0
HK CDMS 0 2 1 1 0 3 4 0 4 0
Flash memory 0 1 0 1 0 8 13 4 3 10
CDMS status 1 0 0 0 0 1 3 0 3 0
Error logging 0 0 1 1 0 2 3 0 3 0
Total 1 11 5 10 3 38 57 4 47 10

Table 13
Durations and input sizes of the process steps.

Step Duration Input size

Requirement specification 8 h 38 requirements
Initial design 5 h 12 components
Architecture instantiation 3 h 47 enforced properties
Verification of deadlock freedom 12 s 46 components

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

of requirement types found in the design of, say, space systems. This of
course depends on the expressiveness of the property patterns, and on
the analyzability of BIP models with extended semantics for the various
property types, because correctness-by-construction does not vanish the
need for a posteriori verification. The structure of the boilerplate lan-
guage in Section 4.1 resembles that of RSL in the CESAR reference
technology platform (Ajitha Rajan and Thomas Wahl, 2013). We cur-
rently support fewer templates than RSL for the prefix, main and suffix
clauses, but this set of templates was sufficient for expressing the re-
quirements of the case studies. Moreover, the RERD tool was designed
such that new templates may be added; the only prerequisite is that the
additional templates must be associated with property patterns, as in
Table 7. The adopted framework of patterns from Dwyer et al. (1999) is
well-established and stems from industrially-relevant studies, but it
only covers functional property specifications. We certainly foresee the
need for boilerplates with templates for non-functional aspects, which
call for support by e.g. timing patterns (Reinkemeier et al., 2011) and
probabilistic patterns (Grunske, 2008). Here, it is worth to note:

• the extension of BIP (Nouri et al., 2015) that allows specifying
probabilistic aspects of BIP components, while providing a sto-
chastic semantics for the parallel composition of components
through interactions and priorities;

• the RT-BIP extension for modeling timing constraints as a timed
automaton, and a real-time engine for computing the schedules
meeting the timing constraints, given the underlying platform’s real-
time clock (Abdellatif et al., 2013).

These extensions are accompanied by advanced verification tools,
some of which implement scalable compositional verification techni-
ques (Rayana et al., 2016).

However, a matter of vital importance is how expressive can be a
boilerplate language with a controlled vocabulary for the attributes
with respect to today’s industrial practice of natural language specifi-
cations. The loss of expressiveness is inevitable though necessary to
avoid ambiguity. However, the true question is whether it is still pos-
sible and whether we really need to cover the same system aspects with
those in today’s specifications. This question also matters for languages
like EARS (Mavin and Wilkinson, 2010; Mavin et al., 2009), which
insist on natural language specifications using a fixed set of structural
rules (though the EARS-CTRL analysis works with a user-defined glos-
sary of terms). From our experience with the case studies, which were
based on natural language requirements, we believe that only a subset

of them needs to be validated. This set includes requirements that are
suspected for consistency issues and have to be established or checked
with respect to the system’s structure and behavior. The Requirement
Engineers tend to classify the requirements in project documentation
into categories (e.g. at the software level of space systems there are
various classes of interface requirements, performance requirements,
functional requirements and design/construction requirements). Any
boilerplate language is considered adequate only if it can express all
representative forms of natural language requirements that need to be
validated, for all categories of requirements in project documentation
(e.g. the design/construction requirements is not necessary to be ex-
pressed using boilerplates). This may imply changes to the scope of
individual requirements (e.g. a natural language requirement may be
broken into multiple boilerplate requirements). To this end, the RERD
tool displays the set of applicable boilerplates, for each category of
requirements found in a user-defined catalogue of categories (Fig. 18).

Our emphasis lies on precisely capturing the requirements by
properties which— ideally— can be enforced through BIP architectures
or— if not enforced— could be verified. As we aim to a semi-automated
formalization of requirements, we are intentionally limited to specific
types of requirements and templates. Our approach can accommodate
additional templates for requirement boilerplates, provided that they
are associated with property patterns, for which it is known how they
can be enforced or verified.

The applicability of the correctness-by-construction approach
throughout our model-based process depends on a library of BIP ar-
chitecture styles for enforcing a worthwhile set of properties in the
different categories of requirements. We have implicitly adopted the
commonly accepted perception that the requirement specification and
the system’s architectural design are in some sense intertwined
(Swartout and Balzer, 1982; Nuseibeh, 2001). While specifying system
requirements, the Requirement Engineers have in mind the overall
structure of the system under design (functional and physical archi-
tecture inputs shown in Fig. 6), whereas a significant part of their
specifications comes from adapting requirements found in previous
projects. Our notion of architecture styles provides the means to for-
mally capture common solutions to recurring design problems in an
abstract and reusable form. This certainly incurs a non-negligible in-
vestment cost towards developing adequate and organized libraries of
architecture styles, especially since the set of property patterns that
they can enforce has to be precisely defined. The set of styles in this
article was derived by identifying commonalities in the base of natural
language requirements of the case studies. Additional effort is required
to this respect, whereas a recent research work opens prospects for
defining styles which enforce quantitative properties (Paraponiari and
Rahonis, 2017).

Another important issue is the scalability and the effort needed for
applying our model-based process. Indicative figures for problems of
the size of our case studies have been previously mentioned. We ac-
knowledge that in industrial problems of moderate size additional
challenges may arise. More specifically, it may be trickier to identify
and uniquely determine— on a team basis— the concepts for specifying

Table 12
Statistics of requirement formulation and property enforcement.

Model Flow Mode Event Mutex Failure Requir. Deriv. Prop. Assum. Prop. Enforced By inspect.

Payload 0 2 0 4 0 12 16 0 16 0
HK PL 0 2 1 1 1 4 6 0 6 0
HK EPS 0 2 1 1 1 4 6 0 6 0
HK COM 0 2 1 1 1 4 6 0 6 0
HK CDMS 0 2 1 1 0 3 4 0 4 0
Flash memory 0 1 0 1 0 8 13 4 3 10
CDMS status 1 0 0 0 0 1 3 0 3 0
Error logging 0 0 1 1 0 2 3 0 3 0
Total 1 11 5 10 3 38 57 4 47 10

Table 13
Durations and input sizes of the process steps.

Step Duration Input size

Requirement specification 8 h 38 requirements
Initial design 5 h 12 components
Architecture instantiation 3 h 47 enforced properties
Verification of deadlock freedom 12 s 46 components

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Summary
Mastering system complexity
requires

Manipulating models to raise the
abstraction level
Expressive enough to avoid ad-hoc
solutions
Simple enough to be acceptable for
engineers

Rigorous design workflow
Validate first, then generate the code
A sequence of semantics-preserving
transformations

 62

S.Bliudze @ AUTh, Thessaloniki, 16th of October, 2019 / 63

Further information

 63

074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E MAY/JUNE 2011 | IEEE SOFTWARE 41

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

SYSTEM DESIGN DIFFERS radically
from pure software design in that it
must account not only for functional
requirements but also for extrafunc-
tional requirements regarding the use
of execution platform resources, such

as time, memory, and energy. Meet-
ing extrafunctional requirements is
essential in embedded system design
and requires evaluation of how design
choices affect overall system behavior.
It also implies a deep understanding of

how the application software interacts
with the underlying execution plat-
form. Yet system designers currently
lack rigorous techniques for deriving
global models of a given system from
models of its application software and
execution platform.

We define a rigorous design flow
as one that guarantees essential sys-
tem properties. Most existing design
flows that aspire to this goal privilege a
unique programming model and asso-
ciate it with a compilation chain that’s
adapted for a given execution model.
For example, synchronous system de-
sign relies on synchronous program-
ming models and usually targets hard-
ware or sequential implementations on
single processors.1 Alternatively, real-
time programming, based on sched-
uling theory for periodic tasks, tar-
gets dedicated real-time multitasking
platforms.2

At the Verimag Laboratory, we’ve
been developing the behavior, interac-
tion, priority (BIP) component frame-
work to support a rigorous system de-
sign flow. The BIP framework is

r� model-based, describing all soft-
ware and systems according to a
single semantic model. This main-
tains the flow’s overall coherency
by guaranteeing that a description
at step n+1 meets essential proper-
ties of a description at step n.

r� component-based, providing a
family of operators for building
composite components from sim-
pler components. This overcomes
the poor expressiveness of theoreti-
cal frameworks based on a single
operator, such as the product of au-
tomata or a function call.

r� tractable, guaranteeing correctness

Rigorous
Component-Based
System Design
Using the BIP
Framework
Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz,
Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis,
Verimag Laboratory

// An autonomous robot case study illustrates the use
of the behavior, interaction, priority (BIP) component
framework as a unifying semantic model to ensure
correctness of essential system design properties. //

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING
Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Early validation of system requirements and design through correctness-by-
construction

Emmanouela Stachtiari⁎,a, Anastasia Mavridoub, Panagiotis Katsarosa, Simon Bliudzec,
Joseph Sifakisd
a Department of Informatics, Aristotle University of Thessaloniki, Greece
b Robust Software Engineering Group SGT Inc., NASA Ames Research Center Moffett Field, CA, USA
c INRIA Lille –Europe, Nord , France
d Verimag, Université Grenoble Alpes, France

A R T I C L E I N F O

Keywords:
Rigorous system design
Requirements formalization
Model-based design
Correctness-by-construction

A B S T R A C T

Early validation of requirements aims to reduce the need for the high-cost validation testing and corrective
measures at late development stages. This work introduces a systematic process for the unambiguous specifi-
cation of system requirements and the guided derivation of formal properties, which should be implied by the
system ’s structure and behavior in conjunction with its external stimuli. This rigorous design takes place
through the incremental construction of a model using the BIP (Behavior-Interaction-Priorities) component
framework. It allows building complex designs by composing simpler reusable designs enforcing given prop-
erties. If some properties are neither enforced nor verified, the model is refined or certain requirements are
revised. A validated model provides evidence of requirements’ consistency and design correctness. The process is
semi-automated through a new tool and existing verification tools. Its effectiveness was evaluated on a set of
requirements for the control software of the CubETH nanosatellite and an extract of software requirements for a
Low Earth Orbit observation satellite. Our experience and obtained results helped in identifying open challenges
for applying the method in industrial context. These challenges concern with the domain knowledge re-
presentation, the expressiveness of used specification languages, the library of reusable designs and scalability.

1. Introduction

1.1. Problem statement

The design problem in systems engineering concerns with defining
the architecture, modules, interfaces and data for a system, in order to
meet given requirements (Buede and Miller, 2016). Initially, require-
ments are high-level statements (conditions or capabilities that are also
called stakeholder requirements) (Fuxman et al., 2004), from which the
system requirements are derived that define what the system must do to
satisfy stakeholder requirements (Hull et al., 2010). In this article, we
focus specifically on system requirements; when we refer to stakeholder
requirements we do so explicitly.

In Sifakis (2013) and Benveniste et al. (2015), two perspectives of
rigorous system design are introduced. The term “rigorous” refers to a
formal model-based process that leads from requirements to correct
implementations. In particular, the focus is on the design problem for

systems that continuously interact with an external environment; such
systems usually involve concurrent execution and emergent behaviors.
The design process can be decomposed into two phases. During the first
phase, which is called proceduralization in Sifakis (2013), the declara-
tive system requirements are transformed into a procedure, i.e., a model
prescribing how the anticipated functionality can be realized by ex-
ecuting sequences of elementary functions. During the second phase,
which is called materialization, the procedure is implemented in a
system that meets all extra-functional requirements by using available
resources cost-effectively.

In this article, we introduce a model-based approach for the proce-
duralization phase, which aims to the systematic development of a
design solution for a set of system requirements. The design problem is
well-defined, only if the requirements fulfill essential properties, i.e., if
they are complete, consistent, correct (valid for an acceptable solution),
and attainable. However, requirements provide in principle only a
partial specification, which according to the current industrial practice

https://doi.org/10.1016/j.jss.2018.07.053
Received 26 September 2017; Received in revised form 14 March 2018; Accepted 17 July 2018

⁎ Corresponding author.
E-mail addresses: emmastac@csd.auth.gr (E. Stachtiari), anastasia.mavridou@nasa.gov (A. Mavridou), katsaros@csd.auth.gr (P. Katsaros),

simon.bliudze@inria.fr (S. Bliudze), Joseph.Sifakis@univ-grenoble-alpes.fr (J. Sifakis).

7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

$YDLODEOH�RQOLQH����-XO\�����
������������������3XEOLVKHG�E\�(OVHYLHU�,QF�

7

