
Correctness by Construction:
Design of Component-
Based Systems Using BIP

28th of September, 2018

Simon Bliudze 
Inria Lille – Nord Europe

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Concurrency...

 2

American cavalrymen charging up San Juan Hill, Cuba, 1 July 1898
Ruggeri, 2004

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

...is everywhere!
Embedded

Infrastructure

Platform

Services

...you name it!
 3

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Coordination

Control-centric
Synchronisation is primitive

Locks, semaphores etc.

Concurrent execution
Critical systems 

Data-centric
Data exchange is primitive

Messages, split-join etc.

Distributed execution
Data-intensive computation

 4

The two views are complementary

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Coordination based on low-level primitives rapidly
becomes unpractical.

Semaphores, locks, monitors, etc.

 5

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Synchronisation

 6

A simple synchronisation barrier

Process 1:
...  
free(S1);
take(S2);
...

Process 2:
...  
take(S1);
free(S2);
...

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Synchronisation

 7

Three-way synchronisation barrier

Process 2:
...  
take(S1);
free(S2);
free(S2);
take(S3);
...

Process 3:
...  
take(S1);
take(S2);
free(S3);
free(S3);
...

Process 1:
...
free(S1);  
free(S1);
take(S2);
take(S3);
...

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Synchronisation with data transfer

 8

Coordination mechanisms mix up with
computation and do not scale.

Code maintenance is a nightmare!

Process 1:
x = f1(sh1,sh2);  
free(S1);
take(S2);
sh1 = f2(sh1,x);
free(S1);
take(S2);
x = f3(sh1,sh2);

Process 2:
y = g1(sh1,sh2);  
take(S1);
free(S2);
sh2 = g2(y,sh2);
take(S1);
free(S2);
y = g3(sh1,sh2);

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Objectives
Correct-by-construction concurrent systems

Separation of computation from coordination

 9

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Rigorous System Design flow

 10

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

☐Unifying modelling
framework

☐Operational semantics

☐Method(s) to design
correct models

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Satellite software design
A collaboration with the EPFL Space Engineering Center

Component-based design in BIP of the control software for a nano-satellite

Control and Data Management System (CDMS)
Communication with other subsystems through an I2C bus

A collaboration with ThalesAlenia Space (France) and
Aristotle University of Thessaloniki (Greece)

“Catalogue of System and Software Properties”
Funded by ESA

 12

BIP = Behaviour-Interaction-Priority

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

CubETH: CDMS architecture

 13

RIGOROUS SOFTWARE DESIGN FOR NANO AND
MICRO SATELLITES USING BIP FRAMEWORK

Issue: 1 Rev: 1
Date: September 14, 2014
Page: 13 of 88

• The CDMS shall respect the timing requirements from TABLE 1.

Figure 1: Simplified CDMS hardware and connections. CS means "Chip select"

Table 1: CDMS time requirements for task execution

Task Period
Command scheduling 500 ms
Sensor data handling 500 ms

Scientific data handling 1 s
Housekeeping data handling 1-5 s

ADCS algorithm 3 s

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45 14
8

Example 1
[Pagnamenta MSc 2014]

11

Example 1

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

Rigorous System Design flow

 15

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

☐Unifying modelling
framework

☐Operational semantics

☐Method(s) to design
correct models

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

BIP by example: Mutual exclusion

 17

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2

b1

f1

b2

f2

b2 b1

f1

b1b2

f1f2

Interaction model:
{b1, f1, b2, f2, b1f2, b2f1}

Maximal progress:
b1 < b1f2, b2 < b2f1

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2
b1

f1
b2

f2

b2 b1

f1

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2
b1

f1
b2

f2 f1

Design view
Semantic view

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2

[Bliudze, Sifakis, EMSOFT '07]

An interaction specifies what transitions need to happen synchronously

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Semantics:

 18

Interaction model: — a set of allowed interactions � ✓ 2P

qi
a\Pi�! q0i (if a \ Pi 6= ;) qi = q0i (if a \ Pi = ;)

q1 . . . qn
a! q01 . . . q

0
n

for each .a 2 �

�(B1, . . . , Bn) = (Q,P,!) Q =
nY

i=1

Qi

Bi = (Qi, Pi,!i), !i ✓ Qi ⇥ 2Pi ⇥Qi

P = ·
[

i

Pi

 Interactions

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Semantics:

 19

Priority model: — strict partial order � ✓ 2P ⇥ 2P

for each . a 2 2P
q

a�! q0 8a � a0, q
a0

6�!
q

a�!� q0

Interaction model: — a set of allowed interactions � ✓ 2P

qi
a\Pi�! q0i (if a \ Pi 6= ;) qi = q0i (if a \ Pi = ;)

q1 . . . qn
a! q01 . . . q

0
n

for each .a 2 �

Bi = (Qi, Pi,!i), !i ✓ Qi ⇥ 2Pi ⇥Qi P = ·
[

i

Pi

 Priority

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

Rigorous System Design flow

 20

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

☐Unifying modelling
framework

☐Operational semantics

☐Method(s) to design
correct models

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45 22
8

Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Theory of architectures

Design patterns for BIP

How to model?

How to combine?

How to specify?

 23

Architectures enforce characteristic properties. The crucial
question is whether these are preserved by composition?

[Attie et al, SEFM '14]

We need theory for combining basic architectures and their characteristic properties to obtain an architecture meeting a given global property

How to model?

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Example: Lock

 25

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12
sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

An architecture is...

 26

A = (C, PA, �)

b1 f1 b2 f2
free

taken

b12f12

b12 f12

Set of coordinating
behaviours

Interface (ports)

Interaction model

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

...an operator…

…transforming

a set of components

into a composed BIP system

where

 27

A(B) def
=

⇣
� n P

⌘
(B [C)

A = (C, PA, �)
<latexit sha1_base64="purWgXHD5GodUHavdBJ6Jbsbgn4=">AAACB3icbVA9SwNBEJ2L3/Hr1FKQJUFQDOHORhshmsYyglEhF8LcZhOX7N4du3tCONLZ+C+sbSwUsfUv2Plv3HwUanww8Hhvhpl5YSK4Np735eRmZufmFxaX8ssrq2vr7sbmlY5TRVmdxiJWNyFqJnjE6oYbwW4SxVCGgl2HverQv75jSvM4ujT9hDUldiPe4RSNlVruzik5IXuBRHNLUWTVQYnUWqclEnRRStxvuUWv7I1Apok/IcVKITh4BIBay/0M2jFNJYsMFah1w/cS08xQGU4FG+SDVLMEaQ+7rGFphJLpZjb6Y0B2rdImnVjZigwZqT8nMpRa92VoO4cH67/eUPzPa6Smc9zMeJSkhkV0vKiTCmJiMgyFtLli1Ii+JUgVt7cSeosKqbHR5W0I/t+Xp8nVYdn3yv6FTeMMxliEbSjAHvhwBBU4hxrUgcI9PMELvDoPzrPz5ryPW3POZGYLfsH5+AaxlpjD</latexit><latexit sha1_base64="C/oO1eKWBQyf1Nx82h4+UR0YwQc=">AAACB3icbVC7SgNBFJ2Nrxhfq5aCDAlCxBB2bbQREtNYRjAPyIZwdzJJhszsLjOzQljS2dj7FTYWitj6C3b5GyePQqMHLhzOuZd77/EjzpR2nImVWlldW99Ib2a2tnd29+z9g7oKY0lojYQ8lE0fFOUsoDXNNKfNSFIQPqcNf1iZ+o17KhULgzs9imhbQD9gPUZAG6ljH5fxFc57AvSAAE8q4wKudsoF7PVBCDjt2Dmn6MyA/xJ3QXKlrHf2NCmNqh37y+uGJBY00ISDUi3XiXQ7AakZ4XSc8WJFIyBD6NOWoQEIqtrJ7I8xPjFKF/dCaSrQeKb+nEhAKDUSvumcHqyWvan4n9eKde+ynbAgijUNyHxRL+ZYh3gaCu4ySYnmI0OASGZuxWQAEog20WVMCO7yy39J/bzoOkX31qRxjeZIoyOURXnkogtUQjeoimqIoAf0jF7Rm/VovVjv1se8NWUtZg7RL1if37sAmkk=</latexit><latexit sha1_base64="C/oO1eKWBQyf1Nx82h4+UR0YwQc=">AAACB3icbVC7SgNBFJ2Nrxhfq5aCDAlCxBB2bbQREtNYRjAPyIZwdzJJhszsLjOzQljS2dj7FTYWitj6C3b5GyePQqMHLhzOuZd77/EjzpR2nImVWlldW99Ib2a2tnd29+z9g7oKY0lojYQ8lE0fFOUsoDXNNKfNSFIQPqcNf1iZ+o17KhULgzs9imhbQD9gPUZAG6ljH5fxFc57AvSAAE8q4wKudsoF7PVBCDjt2Dmn6MyA/xJ3QXKlrHf2NCmNqh37y+uGJBY00ISDUi3XiXQ7AakZ4XSc8WJFIyBD6NOWoQEIqtrJ7I8xPjFKF/dCaSrQeKb+nEhAKDUSvumcHqyWvan4n9eKde+ynbAgijUNyHxRL+ZYh3gaCu4ySYnmI0OASGZuxWQAEog20WVMCO7yy39J/bzoOkX31qRxjeZIoyOURXnkogtUQjeoimqIoAf0jF7Rm/VovVjv1se8NWUtZg7RL1if37sAmkk=</latexit><latexit sha1_base64="rAnx4HnjgOujem9V/DswGOcSmGE=">AAACB3icbVDLSgNBEJz1GeMr6lGQwSBECGHXi16ExFw8RjAPSJaldzJJhszMLjOzQlhy8+KvePGgiFd/wZt/4+Rx0MSChqKqm+6uMOZMG9f9dlZW19Y3NjNb2e2d3b393MFhQ0eJIrROIh6pVgiaciZp3TDDaStWFETIaTMcVid+84EqzSJ5b0Yx9QX0JesxAsZKQe6kgq9xoSPADAjwtDou4lpQKeJOH4SA8yCXd0vuFHiZeHOSR3PUgtxXpxuRRFBpCAet254bGz8FZRjhdJztJJrGQIbQp21LJQiq/XT6xxifWaWLe5GyJQ2eqr8nUhBaj0RoOycH60VvIv7ntRPTu/JTJuPEUElmi3oJxybCk1BwlylKDB9ZAkQxeysmA1BAjI0ua0PwFl9eJo2LkueWvDs3X76Zx5FBx+gUFZCHLlEZ3aIaqiOCHtEzekVvzpPz4rw7H7PWFWc+c4T+wPn8AZ8Xlzo=</latexit>

B
<latexit sha1_base64="w3rkdQyPTT1Ibo+jCZDvX1FqMMk=">AAAB8nicbVA9SwNBEJ3zM55fUUubxSBYhTsbbcQQG8sI5gMuR9jb7CVL9naP3T0hHAH/hI2FIrb+D3s7/417SQpNfDDweG+GeTNRypk2nvftrKyurW9slrbc7Z3dvf3ywWFLy0wR2iSSS9WJsKacCdo0zHDaSRXFScRpOxrdFH77gSrNpLg345SGCR4IFjOCjZWCboLNkGCe1ye9csWrelOgZeLPSeX60716BIBGr/zV7UuSJVQYwrHWge+lJsyxMoxwOnG7maYpJiM8oIGlAidUh/k08gSdWqWPYqlsCYOm6u+JHCdaj5PIdhYR9aJXiP95QWbiyzBnIs0MFWS2KM44MhIV96M+U5QYPrYEE8VsVkSGWGFi7Jdc+wR/8eRl0jqv+l7Vv/MqtTrMUIJjOIEz8OECanALDWgCAQlP8AKvjnGenTfnfda64sxnjuAPnI8f38uTIQ==</latexit><latexit sha1_base64="MeZMHBcYJk1e/5fVJrwx3ufc8XI=">AAAB8nicbVA9SwNBEN2LX/H8ilraLAbBKtzZaCOG2FhGMB+QHGFvs5cs2ds9dueEcORn2Fgoktb/YW8j/hv3khSa+GDg8d4M82bCRHADnvftFNbWNza3itvuzu7e/kHp8KhpVKopa1AllG6HxDDBJWsAB8HaiWYkDgVrhaPb3G89Mm24kg8wTlgQk4HkEacErNTpxgSGlIisNumVyl7FmwGvEn9Byjcf7nUy/XLrvdJnt69oGjMJVBBjOr6XQJARDZwKNnG7qWEJoSMyYB1LJYmZCbJZ5Ak+s0ofR0rbkoBn6u+JjMTGjOPQduYRzbKXi/95nRSiqyDjMkmBSTpfFKUCg8L5/bjPNaMgxpYQqrnNiumQaELBfsm1T/CXT14lzYuK71X8e69craE5iugEnaJz5KNLVEV3qI4aiCKFntALenXAeXbenOm8teAsZo7RHzjvP9FalJU=</latexit><latexit sha1_base64="MeZMHBcYJk1e/5fVJrwx3ufc8XI=">AAAB8nicbVA9SwNBEN2LX/H8ilraLAbBKtzZaCOG2FhGMB+QHGFvs5cs2ds9dueEcORn2Fgoktb/YW8j/hv3khSa+GDg8d4M82bCRHADnvftFNbWNza3itvuzu7e/kHp8KhpVKopa1AllG6HxDDBJWsAB8HaiWYkDgVrhaPb3G89Mm24kg8wTlgQk4HkEacErNTpxgSGlIisNumVyl7FmwGvEn9Byjcf7nUy/XLrvdJnt69oGjMJVBBjOr6XQJARDZwKNnG7qWEJoSMyYB1LJYmZCbJZ5Ak+s0ofR0rbkoBn6u+JjMTGjOPQduYRzbKXi/95nRSiqyDjMkmBSTpfFKUCg8L5/bjPNaMgxpYQqrnNiumQaELBfsm1T/CXT14lzYuK71X8e69craE5iugEnaJz5KNLVEV3qI4aiCKFntALenXAeXbenOm8teAsZo7RHzjvP9FalJU=</latexit><latexit sha1_base64="sfvX6slT8uJJZbgB89GsC5KcfYs=">AAAB8nicbVDLSsNAFL3xWeur6tJNsAiuSuJGl6VuXFawD0hDmUwn7dDJTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfdEqeAGPe/b2djc2t7ZrexV9w8Oj45rJ6ddozJNWYcqoXQ/IoYJLlkHOQrWTzUjSSRYL5reFX7viWnDlXzEWcrChIwljzklaKVgkBCcUCLy1nxYq3sNbwF3nfglqUOJ9rD2NRgpmiVMIhXEmMD3UgxzopFTwebVQWZYSuiUjFlgqSQJM2G+iDx3L60ycmOl7ZPoLtTfGzlJjJklkZ0sIppVrxD/84IM49sw5zLNkEm6/CjOhIvKLe53R1wzimJmCaGa26wunRBNKNqWqrYEf/XkddK9bvhew3/w6s1WWUcFzuECrsCHG2jCPbShAxQUPMMrvDnovDjvzsdydMMpd87gD5zPH3CTkVQ=</latexit>

P
def
=

[

B2B[C
PB ,

<latexit sha1_base64="lLKh2xceEGzDHgdao83UtMlHOHo=">AAACLnicbVDLSsNAFL3xWeur6tLNoAgupCRudCOUFsFlBavFpoTJ9KYOTiZhZiKUkL3/4sZf0YWgIm79DKet4KMeGDiccy9z7glTwbVx3Wdnanpmdm6+tFBeXFpeWa2srZ/rJFMMWywRiWqHVKPgEluGG4HtVCGNQ4EX4XVj6F/coNI8kWdmkGI3pn3JI86osVJQOW4SXxvKrhWKvIdRkR8VZT/kfZalQV4nPpfEj6m5YlTk9YL4Vv8WGkVBmkF9L6hsu1V3BDJJvC+yXTu5vCUA0Awqj34vYVmM0jBBte54bmq6OVWGM4E2QaYxtaloHzuWShqj7uajcwuyY5UeiRJlnzRkpP7cyGms9SAO7eQwqP7rDcX/vE5mosNuzmWaGZRs/FGUCWISMuyO9LhCZsTAEsoUt1kJu6KKMmMbLtsSvL8nT5Lz/arnVr1T20YdxijBJmzBLnhwADU4gSa0gMEdPMALvDr3zpPz5ryPR6ecr50N+AXn4xOe8qpS</latexit><latexit sha1_base64="BhJcsvT6cIrefzsG7MhX6A4dBes=">AAACLnicbVDLSsNAFJ34rPVV61KQQRFcSEnc6EaQiNhlBduKTQiT6U0dnEzCzEQoIXv/xY2/ogtBRdy48DOcPsDngYHDOfcy554w5Uxp236yJianpmdmS3Pl+YXFpeXKSrWlkkxSaNKEJ/I8JAo4E9DUTHM4TyWQOOTQDq+OBn77GqRiiTjT/RT8mPQEixgl2khB5biBPaUJvZLA8y5ERX5QlL2Q9WiWBrmLPSawFxN9SQnP3QJ7Rv8SjooCNwJ3J6hs2jV7CPyXOGOyeVi/uFk/qb43gsqD101oFoPQlBOlOo6daj8nUjPKwSTIFKQmFelBx1BBYlB+Pjy3wFtG6eIokeYJjYfq942cxEr149BMDoKq395A/M/rZDra93Mm0kyDoKOPooxjneBBd7jLJFDN+4YQKpnJiuklkYRq03DZlOD8Pvkvae3WHLvmnJo2XDRCCa2hDbSNHLSHDlEdNVATUXSL7tEzerHurEfr1XobjU5Y451V9APWxydDQauN</latexit><latexit sha1_base64="BhJcsvT6cIrefzsG7MhX6A4dBes=">AAACLnicbVDLSsNAFJ34rPVV61KQQRFcSEnc6EaQiNhlBduKTQiT6U0dnEzCzEQoIXv/xY2/ogtBRdy48DOcPsDngYHDOfcy554w5Uxp236yJianpmdmS3Pl+YXFpeXKSrWlkkxSaNKEJ/I8JAo4E9DUTHM4TyWQOOTQDq+OBn77GqRiiTjT/RT8mPQEixgl2khB5biBPaUJvZLA8y5ERX5QlL2Q9WiWBrmLPSawFxN9SQnP3QJ7Rv8SjooCNwJ3J6hs2jV7CPyXOGOyeVi/uFk/qb43gsqD101oFoPQlBOlOo6daj8nUjPKwSTIFKQmFelBx1BBYlB+Pjy3wFtG6eIokeYJjYfq942cxEr149BMDoKq395A/M/rZDra93Mm0kyDoKOPooxjneBBd7jLJFDN+4YQKpnJiuklkYRq03DZlOD8Pvkvae3WHLvmnJo2XDRCCa2hDbSNHLSHDlEdNVATUXSL7tEzerHurEfr1XobjU5Y451V9APWxydDQauN</latexit><latexit sha1_base64="JonxYOzyxdgW++vtjNCMOZf+nKA=">AAACLnicbVDLSsNAFJ3UV62vqks3g0VwISVxoxuhtAguK9gHNCVMpjft0MkkzEyEEvJFbvwVXQgq4tbPcNIW1NYDA4dz7mXOPX7MmdK2/WoVVlbX1jeKm6Wt7Z3dvfL+QVtFiaTQohGPZNcnCjgT0NJMc+jGEkjoc+j440bud+5BKhaJOz2JoR+SoWABo0QbyStfN7GrNKFjCTwdQJClV1nJ9dmQJrGX1rHLBHZDokeU8LSeYdfoP0Ijy3DTq5955YpdtafAy8SZkwqao+mVn91BRJMQhKacKNVz7Fj3UyI1oxxMgkRBbFKRIfQMFSQE1U+n52b4xCgDHETSPKHxVP29kZJQqUnom8k8qFr0cvE/r5fo4LKfMhEnGgSdfRQkHOsI593hAZNANZ8YQqhkJiumIyIJ1abhkinBWTx5mbTPq45ddW7tSq0+r6OIjtAxOkUOukA1dIOaqIUoekBP6A29W4/Wi/Vhfc5GC9Z85xD9gfX1DYpQqMg=</latexit>

� n P
def
=
�
a ✓ 2P

�� a \ PA 2 �

<latexit sha1_base64="RWOqXNu0BEaaIwiPHtmI4fwx1gc=">AAACZ3icbVFNb9QwEHVSPkr46NIihMTFUCGBVK2SXuilUoELxyCxbaX1sky8k61V2wn2pNI2hL/Af+PGnQv/Am92D9Aykq2n92Y8M89FrZWnNP0ZxRs3bt66vXknuXvv/oOtwcPtY181TuJIVrpypwV41MriiBRpPK0dgik0nhTn75b6yQU6ryr7kRY1TgzMrSqVBArUdPBNzMEY4EKTMuh5zoUnkOcOdSu8dKqm9U0LjVwYoDNF7QzLrmsPu0QUaq5FGx7wTeGR8Avf/5QnYq8Xvoq9JEgSap5P33ChLF/16+uc6KaD3XSY9sGvg2wNdo9efb/8zBjLp4MfYlbJxqAlqcH7cZbWNGnBkZIawzyNxzrMD3McB2ghLDVpe586/iIwM15WLhxLvGf/rmjBeL8wRchc7umvakvyf9q4ofJg0ipbN4RWrhqVjeZU8aXpfKYcStKLACC4GWbl8gwcSApfkwQTsqsrXwfH+8MsHWYfghtv2So22VP2nL1kGXvNjth7lrMRk+xXlEQ70aPod7wVP46frFLjaF2zw/6J+NkfZ2K6vA==</latexit><latexit sha1_base64="LDBiOjuNs7G5JxB30G+b0uyRDV4=">AAACZ3icbVFNb9QwEHVCoUv46JaiqhIXQ4UEUrVKeoELUoELx1TqtpXWy8rxTrZWbcfYk0pLCH+BK7+AH8SNOxf+Rb3ZPfSDkWw9vTfjmXkurJIe0/RPFN9Zu3tvvXc/efDw0eON/uaTY1/VTsBQVKpypwX3oKSBIUpUcGodcF0oOCnOPy70kwtwXlbmCOcWxprPjCyl4BioSf87m3GtOWUKpQZPc8o8cnHuQDXMCyctrm6cK6BMczyT2EyhbNvmXZuwQs4Ua8IDvi48IHyh+5/zhO11wje2lwRJcEvzyXvKpKHLfl2dY+2kv5sO0i7obZCtwO7B6x9fbe/Xz3zS/82mlag1GBSKez/KUovjhjuUQkGYp/Zgw/x8BqMADQ9LjZvOp5a+DMyUlpULxyDt2KsVDdfez3URMhd7+pvagvyfNqqxfDtupLE1ghHLRmWtKFZ0YTqdSgcC1TwAHtwMs1Jxxh0XGL4mCSZkN1e+DY73B1k6yA6DGx/IMnrkGXlBXpGMvCEH5BPJyZAI8jdKoq3oafQv3oi3451lahytarbItYifXwIv9LwS</latexit><latexit sha1_base64="LDBiOjuNs7G5JxB30G+b0uyRDV4=">AAACZ3icbVFNb9QwEHVCoUv46JaiqhIXQ4UEUrVKeoELUoELx1TqtpXWy8rxTrZWbcfYk0pLCH+BK7+AH8SNOxf+Rb3ZPfSDkWw9vTfjmXkurJIe0/RPFN9Zu3tvvXc/efDw0eON/uaTY1/VTsBQVKpypwX3oKSBIUpUcGodcF0oOCnOPy70kwtwXlbmCOcWxprPjCyl4BioSf87m3GtOWUKpQZPc8o8cnHuQDXMCyctrm6cK6BMczyT2EyhbNvmXZuwQs4Ua8IDvi48IHyh+5/zhO11wje2lwRJcEvzyXvKpKHLfl2dY+2kv5sO0i7obZCtwO7B6x9fbe/Xz3zS/82mlag1GBSKez/KUovjhjuUQkGYp/Zgw/x8BqMADQ9LjZvOp5a+DMyUlpULxyDt2KsVDdfez3URMhd7+pvagvyfNqqxfDtupLE1ghHLRmWtKFZ0YTqdSgcC1TwAHtwMs1Jxxh0XGL4mCSZkN1e+DY73B1k6yA6DGx/IMnrkGXlBXpGMvCEH5BPJyZAI8jdKoq3oafQv3oi3451lahytarbItYifXwIv9LwS</latexit><latexit sha1_base64="ww1Vyi4pPWPjjqGbJl8zT3Qkuxs=">AAACZ3icbVFNb9QwEHXCVwkfXShCSFwMKyQO1SrpBS6VWrhwDBLbVlovq4l3srVqO8GeIK3S9Edy486Ff4E3mwO0jGTr6b0Zz8xzUWvlKU1/RvGt23fu3tu5nzx4+Ojx7ujJ0xNfNU7iVFa6cmcFeNTK4pQUaTyrHYIpNJ4WFx83+ul3dF5V9guta5wbWFlVKgkUqMXoSqzAGOBCkzLoec6FJ5AXDnUrvHSqpuGmtUYuDNC5onaJZde1h10iCrXSog0P+KbwSPiNH3zNE7HfC5diPwmShJrni2MulOXbfn2dE91iNE4naR/8JsgGMGZD5IvRD7GsZGPQktTg/SxLa5q34EhJjWGexmMd5ocVzgK0EJaat71PHX8TmCUvKxeOJd6zf1e0YLxfmyJkbvb017UN+T9t1lD5ft4qWzeEVm4blY3mVPGN6XypHErS6wAguBlm5fIcHEgKX5MEE7LrK98EJweTLJ1kn9Px0YfBjh32kr1mb1nG3rEj9onlbMok+xUl0V70LPod78bP4xfb1DgaavbYPxG/+gPx8rjq</latexit>

Partial application is not in the paper, but it is in the Tech Report

How to combine?

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Constraints intuition

 29

Bad 1

Bad 2

Good

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Limits of white magic

 30

Bad 1
Bad 2

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Formally

 31

A1 �A2
def
= (C1 [C2, P1 [P2, �)

<latexit sha1_base64="Phs6OedU/YP2ZpHRHeZdhHXAef0=">AAACYHicbZFNa9wwEIZlpx9bN2k2za29iC4tKZTFXgrJpZA0lxy30E0C68WMteONiGQLaZywGP/J3nropb+k8saFNOmAxKtnRtLoVW6UdBTHP4Nw68nTZ88HL6KX2zuvdod7r89dVVuBM1Gpyl7m4FDJEmckSeGlsQg6V3iRX592+YsbtE5W5XdaG1xoWJWykALIo2x4e5IlPK2Mqh0/ySb8Q+oIxLVF1aROWGmon2mtkKca6EpSs8SibZsvbXSwIQJUc9p2B4na8Pto8ima/uXTbpWuQGv4GGXDUTyON8Efi6QXI9bHNBv+SJeVqDWWJBQ4N09iQ4sGLEmhsI3S2qHxncMK516WoNEtmo1BLX/vyZIXlfWjJL6h93c0oJ1b69xXds27h7kO/i83r6k4WjSyNDVhKe4uKmrFqeKd23wpLQpSay/A++h75eIKLAjyf9KZkDx88mNxPhkn8Tj59nl0/LW3Y8DesnfsgCXskB2zMzZlMybYr2Ar2A52gt/hINwN9+5Kw6Dfs8/+ifDNHxhitI8=</latexit><latexit sha1_base64="Phs6OedU/YP2ZpHRHeZdhHXAef0=">AAACYHicbZFNa9wwEIZlpx9bN2k2za29iC4tKZTFXgrJpZA0lxy30E0C68WMteONiGQLaZywGP/J3nropb+k8saFNOmAxKtnRtLoVW6UdBTHP4Nw68nTZ88HL6KX2zuvdod7r89dVVuBM1Gpyl7m4FDJEmckSeGlsQg6V3iRX592+YsbtE5W5XdaG1xoWJWykALIo2x4e5IlPK2Mqh0/ySb8Q+oIxLVF1aROWGmon2mtkKca6EpSs8SibZsvbXSwIQJUc9p2B4na8Pto8ima/uXTbpWuQGv4GGXDUTyON8Efi6QXI9bHNBv+SJeVqDWWJBQ4N09iQ4sGLEmhsI3S2qHxncMK516WoNEtmo1BLX/vyZIXlfWjJL6h93c0oJ1b69xXds27h7kO/i83r6k4WjSyNDVhKe4uKmrFqeKd23wpLQpSay/A++h75eIKLAjyf9KZkDx88mNxPhkn8Tj59nl0/LW3Y8DesnfsgCXskB2zMzZlMybYr2Ar2A52gt/hINwN9+5Kw6Dfs8/+ifDNHxhitI8=</latexit><latexit sha1_base64="Phs6OedU/YP2ZpHRHeZdhHXAef0=">AAACYHicbZFNa9wwEIZlpx9bN2k2za29iC4tKZTFXgrJpZA0lxy30E0C68WMteONiGQLaZywGP/J3nropb+k8saFNOmAxKtnRtLoVW6UdBTHP4Nw68nTZ88HL6KX2zuvdod7r89dVVuBM1Gpyl7m4FDJEmckSeGlsQg6V3iRX592+YsbtE5W5XdaG1xoWJWykALIo2x4e5IlPK2Mqh0/ySb8Q+oIxLVF1aROWGmon2mtkKca6EpSs8SibZsvbXSwIQJUc9p2B4na8Pto8ima/uXTbpWuQGv4GGXDUTyON8Efi6QXI9bHNBv+SJeVqDWWJBQ4N09iQ4sGLEmhsI3S2qHxncMK516WoNEtmo1BLX/vyZIXlfWjJL6h93c0oJ1b69xXds27h7kO/i83r6k4WjSyNDVhKe4uKmrFqeKd23wpLQpSay/A++h75eIKLAjyf9KZkDx88mNxPhkn8Tj59nl0/LW3Y8DesnfsgCXskB2zMzZlMybYr2Ar2A52gt/hINwN9+5Kw6Dfs8/+ifDNHxhitI8=</latexit><latexit sha1_base64="Phs6OedU/YP2ZpHRHeZdhHXAef0=">AAACYHicbZFNa9wwEIZlpx9bN2k2za29iC4tKZTFXgrJpZA0lxy30E0C68WMteONiGQLaZywGP/J3nropb+k8saFNOmAxKtnRtLoVW6UdBTHP4Nw68nTZ88HL6KX2zuvdod7r89dVVuBM1Gpyl7m4FDJEmckSeGlsQg6V3iRX592+YsbtE5W5XdaG1xoWJWykALIo2x4e5IlPK2Mqh0/ySb8Q+oIxLVF1aROWGmon2mtkKca6EpSs8SibZsvbXSwIQJUc9p2B4na8Pto8ima/uXTbpWuQGv4GGXDUTyON8Efi6QXI9bHNBv+SJeVqDWWJBQ4N09iQ4sGLEmhsI3S2qHxncMK516WoNEtmo1BLX/vyZIXlfWjJL6h93c0oJ1b69xXds27h7kO/i83r6k4WjSyNDVhKe4uKmrFqeKd23wpLQpSay/A++h75eIKLAjyf9KZkDx88mNxPhkn8Tj59nl0/LW3Y8DesnfsgCXskB2zMzZlMybYr2Ar2A52gt/hINwN9+5Kw6Dfs8/+ifDNHxhitI8=</latexit>

�
def
=
�
a ✓ 2P

�� a \ P1 2 �1 ^ a \ P2 2 �2

= (�1 n P) \ (�2 n P)
<latexit sha1_base64="1q+xpUfNqzy4zx6vzshMkaa3huI=">AAACt3icbVFNb9QwEHXCVwkfXeDIxWJFVaRqlUSVgEOlCi4cg8S2FeslcpzJrlXbSe0J0irsX+TAjX+DN5uKpWUkW0/z5nnGb4pGSYdx/DsI79y9d//B3sPo0eMnT/dHz56fubq1AqaiVrW9KLgDJQ1MUaKCi8YC14WC8+Ly44Y//w7Wydp8wVUDc80XRlZScPSpfPSTLbjWnB4wh1xcWlAdc8LKBocbVwoo0xyXErsSqvW6O1lHrJALxTpOmWsLBwhXNP2WReyoJ36wo8hTgjc0yxPKpKHbNnkSMcoUNyX7W5DuFqT905b5Fiw6OKHR4bXS61BqcDR7s1VeM+kOk4/G8STug94GyQDGZIgsH/1iZS1aDQaF4s7NkrjBecctSqHAT9E6aLwxfAEzDw33feZd7/uavvaZkla19ccg7bO7io5r51a68JUbA91NbpP8HzdrsXo376RpWgQjto2qVlGs6WaJtJQWBKqVB9yvyc9KxZJbLtCvOvImJDe/fBucpZMkniSfj8enHwY79shL8oockoS8JafkE8nIlIjgOPgaiKAM34d5WIXLbWkYDJoX5J8Ir/4AGdHSNg==</latexit><latexit sha1_base64="1q+xpUfNqzy4zx6vzshMkaa3huI=">AAACt3icbVFNb9QwEHXCVwkfXeDIxWJFVaRqlUSVgEOlCi4cg8S2FeslcpzJrlXbSe0J0irsX+TAjX+DN5uKpWUkW0/z5nnGb4pGSYdx/DsI79y9d//B3sPo0eMnT/dHz56fubq1AqaiVrW9KLgDJQ1MUaKCi8YC14WC8+Ly44Y//w7Wydp8wVUDc80XRlZScPSpfPSTLbjWnB4wh1xcWlAdc8LKBocbVwoo0xyXErsSqvW6O1lHrJALxTpOmWsLBwhXNP2WReyoJ36wo8hTgjc0yxPKpKHbNnkSMcoUNyX7W5DuFqT905b5Fiw6OKHR4bXS61BqcDR7s1VeM+kOk4/G8STug94GyQDGZIgsH/1iZS1aDQaF4s7NkrjBecctSqHAT9E6aLwxfAEzDw33feZd7/uavvaZkla19ccg7bO7io5r51a68JUbA91NbpP8HzdrsXo376RpWgQjto2qVlGs6WaJtJQWBKqVB9yvyc9KxZJbLtCvOvImJDe/fBucpZMkniSfj8enHwY79shL8oockoS8JafkE8nIlIjgOPgaiKAM34d5WIXLbWkYDJoX5J8Ir/4AGdHSNg==</latexit><latexit sha1_base64="1q+xpUfNqzy4zx6vzshMkaa3huI=">AAACt3icbVFNb9QwEHXCVwkfXeDIxWJFVaRqlUSVgEOlCi4cg8S2FeslcpzJrlXbSe0J0irsX+TAjX+DN5uKpWUkW0/z5nnGb4pGSYdx/DsI79y9d//B3sPo0eMnT/dHz56fubq1AqaiVrW9KLgDJQ1MUaKCi8YC14WC8+Ly44Y//w7Wydp8wVUDc80XRlZScPSpfPSTLbjWnB4wh1xcWlAdc8LKBocbVwoo0xyXErsSqvW6O1lHrJALxTpOmWsLBwhXNP2WReyoJ36wo8hTgjc0yxPKpKHbNnkSMcoUNyX7W5DuFqT905b5Fiw6OKHR4bXS61BqcDR7s1VeM+kOk4/G8STug94GyQDGZIgsH/1iZS1aDQaF4s7NkrjBecctSqHAT9E6aLwxfAEzDw33feZd7/uavvaZkla19ccg7bO7io5r51a68JUbA91NbpP8HzdrsXo376RpWgQjto2qVlGs6WaJtJQWBKqVB9yvyc9KxZJbLtCvOvImJDe/fBucpZMkniSfj8enHwY79shL8oockoS8JafkE8nIlIjgOPgaiKAM34d5WIXLbWkYDJoX5J8Ir/4AGdHSNg==</latexit>

Architecture composition is commutative and associative. 
If coordinators are deterministic, it is also idempotent.

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Main results: Safety

Safety = "Bad states never occur"

 32

A1(B) |= �1

A2(B) |= �2

)
=)

�
A1 �A2

�
(B) |= �1 ^ �2

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Main results: Liveness

Liveness = "Good states occur infinitely often"

 33

A
live

pairwise non-interfering

)
=)

M
A live

| {z }
w.r.t. B

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

Rigorous System Design flow

 34

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

☐Unifying modelling
framework

☐Operational semantics

☐Method(s) to design
correct models

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Requirements and design process

 36

system construction that maintains the traceability of requirements up
to the final design solution that discharges the derived properties. In
this incremental process, designers can (re-)use “ready-made” solutions
formally encoded in BIP architectures, which have been proven correct.
In essence, the architectures represent design patterns (e.g. for mutual
exclusion, clock synchronization, scheduling, resource management,
security) that are defined independently of the components which make
up the system. We can thus ensure correctness-by-construction with
respect to properties, while avoiding computationally expensive tech-
niques that imply state explosion.

The importance of software architecture has been greatly ac-
knowledged by the industry and academia. As a result, there has been
an increasing interest in defining languages that support the archi-
tecture-based approach, e.g. UML and architecture description lan-
guages (ADLs) (Medvidovic and Taylor, 2000; Woods and Hilliard,
2005). All these works rely on the distinction between behaviors of
individual components and their coordination in the overall system
organization. These languages, however, often lack formal semantics
(UML, Oussalah et al., 2004; Van Ommering et al., 2000). As a result,
analysis is carried out on models that cannot be rigorously related to
system development formalisms. This introduces gaps in the design
process which reduce productivity and limit the ability for ensuring
correctness. In fact, in a survey conducted in the industrial sector re-
garding architecture description languages, it is stated that practicing
architects nowadays emphasize the need to reconcile informal notations
with more formal and analysable ones (Malavolta et al., 2013).

Similarly to the aforementioned approaches, BIP architectures also
provide a clear separation of concerns between functional and co-
ordination aspects. BIP architectures have rigorous semantics; the un-
derlying theory of components and their interactions is inspired from
the BIP framework (Basu et al., 2011b). In essence, BIP architectures
are operators restricting component behavior for enforcing a char-
acteristic property. Their composition has some similarities with ar-
chitecture composition in architecture languages with CSP-like se-
mantics, e.g., Wright ADL (Allen and Garlan, 1997). Nevertheless, in
contrast to these approaches application of BIP architectures does not
require any modification of the components it is applied on. Ad-
ditionally, as explained above, BIP architectures are tightly related with
characteristic properties, which are preserved through composition.

4. The model-based process

Any system under design is intended to accomplish a set of functions
with each of them defining a stateful processing of input. The system’s
functional architecture is a top-down decomposition of its functions

(using e.g. function trees (Group, 2009a)). The functions must fulfill
certain requirement specifications, i.e. statements that delimit the
problem of system design. In effect, this is only a partial specification
which assumes some common and often tacit knowledge for the pro-
blem domain (domain knowledge (Mannion et al., 1998)), such as
physical laws for the system’s external stimuli (Jackson, 2000), stan-
dardized protocols, services and libraries.

On the side of the design solution space, a design is defined based on
a hierarchical description (using e.g. product trees (Group, 2009b)) of
the system’s hardware and software components, known as physical ar-
chitecture. The functions and their associated requirements are then
allocated to the components of the physical architecture.

For the specification of requirements and properties, we employ two
natural-like languages with precisely defined semantics. Requirements
are specified using composable boilerplates (Hull et al., 2010), i.e., semi-
complete specifications, with placeholders to be filled with concepts
that adhere to a conceptual model of the system under design. The
conceptual model encodes the relationships among the concepts used in
the placeholders. With proper tool-support, the engineer avoids in-
determinate references and maintains links between concepts that exist
in requirements. In order to derive the properties that capture each
requirement, we have mapped each boilerplate to one or more property
patterns, that are also natural-like language templates with place-
holders. These patterns associate the properties with a formal re-
presentation in a logic language.

If requirements (and derived properties) are simultaneously sa-
tisfied by the design model, then early assurance of consistency and
correctness is provided (we do not cope though with inconsistencies
between requirements at the specification level, which are treated e.g.
in Mahmud et al. (2017) and other works). The design model is in-
crementally built using correct-by-construction model transformations,
which integrate reusable BIP architectures (Attie et al., 2016). The in-
tegrated architectures provably discharge the specified properties
through coordinating the model components. This is an automated step
aiming to preserve the previously established properties. Only the
properties that cannot be enforced by design need to be verified by
model checking.

Fig. 6 introduces the overall process by showing the steps along with
their input and output data:

Input: (i) the functional architecture (ii) the physical architecture
Output: a design model satisfying the derived properties OR re-
quirements that are not satisfied
Step 1. Requirement specification: Requirements for each function of
the functional architecture are specified based on predefined

Fig. 6. The model-based process for the formalization of requirements and design.

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

[Stachtiari et al, JSS '18]

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

CubETH case study

 37

Fig. 10: Mode management style (component behaviour is shown for k=3)

Table 1: Representative requirements for CDMS status and HK PL
ID Description

CDMS-007 The CDMS shall periodically reset both the internal and external watchdogs and contact
the EPS subsystem with a “heartbeat”.

HK-001 The CDMS shall have a Housekeeping activity dedicated to each subsystem.

HK-003 When line-of-sight communication is possible, housekeeping information shall be trans-
mitted through the COM subsystem.

HK-004 When line-of-sight communication is not possible, housekeeping information shall be writ-
ten to the non-volatile flash memory.

HK-005 A Housekeeping subsystem shall have the following states: NOMINAL, ANOMALY and
CRITICAL FAILURE.

type with cardinality k. mib stands for “mode i begin” and indicates that an
action that is enabled in mode i has begun its execution. mie stands for “mode
i end” and indicates that an action that is enabled in mode i has finished its
execution. Each inMode port instance of the Mode Manager must be connected
with the corresponding modeBegin port instances of all B1 components through
an n-ary connector. An architecture of this style is shown in Fig. 14.

The characteristic property of this style is ‘an action is only performed in a
mode where it is allowed ’, formalised by the following CTL formula:

8i 6 k, AG
�
B1.m[i]b ! ModeManager .inMode[i]

�
.

3.2 BIP model design by architecture application

We illustrate the architecture-based approach on the CDMS status, MESSAGE
LIBRARY and HK PL components. In particular, we present the application of
Action flow, Mode management, Client-Server and Failure monitoring architec-
tures to discharge a subset of CubETH functional requirements (Tab. 1). We
additionally present the result of the composition of Client-Server and Mode
management architectures. The full list of requirements is provided in [24].

Application of Action flow architecture Requirement CDMS-007, pre-
sented in Tab. 1, describes the functionality of CDMS status. The corresponding
BIP model is shown in Fig. 11. Watchdog reset is an operand component, which
is responsible for resetting the internal and external watchdogs. CDMS status
ACTION FLOW is the coordinator of the architecture applied on Watchdog reset
that imposes the following order of actions: 1) internal watchdog reset; 2) exter-
nal watchdog reset; 3) send heartbeat and 4) receive result.

[Mavridou et al, FACS '16]

39 requirements in all — see the CubETH tech report for the (almost) complete list

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

specifying requirements).
Fig. 18 shows the Requirement Editing screen of the RERD tool. The

upper part of the screen allows selecting among the available boiler-
plate clauses, which are displayed in separate tables. In the middle part,
requirements are shown in an editable form, that is, their placeholders
and additional information for the requirement (e.g. id, category) can
be filled in this panel. The lower part of the screen is used for browsing
and searching requirements that match string(s) given in a search box.
The table displays the requirements returned by each search (all re-
quirements match an empty string), with buttons attached to each row
for editing/deleting them.

The RERD tool also stores the user-defined values for the symbols
used in patterns. Specifically, the System Software Engineer assigns
ports to the symbols that are necessary for the properties of the speci-
fied requirements. These symbols may be reused in more than one
property. Hence, when the Verification Engineer uses the tool during
the property derivation (step 3), the necessary properties are auto-
matically created by retrieving the values of symbols.

For architecture instantiation and property enforcement (steps 4
and 5), the System Software Engineer can choose among the available
architecture styles and parameterize them for creating architectures
that enforce a set of properties. The architectures are then auto-
matically applied to their operand components and the design model is
updated as appropriate.

DesignBIP (Mavridou et al., 2018) is a web-based graphical
editing tool, which can be used for the specification of BIP models and
BIP architectures. The tool can assist the creation of the initial design
model in step 1. Moreover, it allows for the creation of new architecture
styles to be integrated in the RERD tool, whenever RERD is extended
with new boilerplates (and enforcement opportunities).

The D-Finder tool (Bensalem et al., 2011) is used by the Ver-
ification Engineer for verifying the deadlock-freedom of the design

Algorithm 1. Decision-making process for the P1.1
pattern.

Algorithm 2. Decision-making process for the P1.2 pattern.

Fig. 18. RERD’s screen for requirements editing.

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

RERD tool

 38

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

CubETH case study

 39

A suffix is used to constrain the main specification. The suffix
clauses shown in Table 4 specify that each time the main specification
(action, sequence of actions or state observation) is activated, it shall:
(i) have ended before an event occurs (S1), or (ii) occur sequentially
(i.e., consecutive activations do not overlap in time) (S2)

Let us consider the boilerplate consisting of the P1, M1 and S2
templates, specifying that “if event, function shall action sequentially”.
Such a boilerplate expresses that: (i) event is a necessary and sufficient
precondition for one action occurrence and (ii) consecutive action oc-
currences are constrained to be executed sequentially. The remaining
prefix-suffix combinations are interpreted accordingly.

During the specification of each requirement, the conceptual model
is enriched with new concepts, if the existing concepts are not suffi-
cient. At the end of the specification step, the conceptual model will
contain the concepts used in the requirements and additional concepts
that are related to them. For example, events used in the requirements
will be related to their generating actions, even if these actions are not
explicitly mentioned in requirements. The conceptual model’s quality is
a responsibility of the Requirement Engineer. This matter has been
examined in related works (Lindland et al., 1994; Leung and Bolloju,
2005) that are further discussed in Section 6.3.

Example 2. Let us consider the requirements in Table 5, which have
been defined for the function that handles the housekeeping of the
payload (PL) subsystem (abbreviated as HK PL). The concepts in
requirements and other concepts related to them are depicted in the
conceptual model of Fig. 8, which shows that:

• states s001 and s002 belong to the state-set st001, thus, only one of
them can be observed at a given instant. Each of these states is set by

the events e001 and e002, respectively (states s003 and s004 are
similarly related).

• the used action a004 represents an action container that consists of
a001, a002 and a005.

• events e003 and e004 are neither generated by an action nor do they
set any states.

For brevity, Fig. 8omits the invokes relationships that relate these
actions to actions of other functions. These relationships are shown at
later steps of the running example.

The templates in Tables 2–4 in no way form a complete set of boi-
lerplates adequate for all kinds of system requirements, since the boi-
lerplate language is not the primary goal of this article. Thus, our
prefixes can only express necessary and sufficient conditions based on
one state or event, even though requirements are often subjected to
more complex conditions (e.g. based on two events) or to conditions
that are either necessary or sufficient. However, we opted to keep the
boilerplate language simple enough for illustrating the main principles
behind its design, while covering the specification needs for the two
case studies in Section 6. Our considerations for the evolution of the
current language are discussed in Section 6.3.

4.2. Initial design

The initial design step generates the design model in its initial form,
which is a manually built blueprint of the system’s functional behavior.
All the concepts of actions and events mentioned in the requirements
should be traceable in ports of the initial design model.

The model consists of BIP components that implement functions of
the functional architecture. Each action of the conceptual model, which
is an identifiable block of functionality within a function, is represented
by a list of ports of a component. Events that are generated by actions
are also represented by the action’s ports, whereas environmental
events are non-deterministic inputs which are not explicitly modeled.
Components may enclose one or more atomic subcomponents in order
to enable ports within separate threads of control. The number of
atomic components to be used and the placement of actions is a design
choice that depends on possible order dependencies among the actions.
For instance, actions which are executed alternatively should be en-
abled at the same control location of a component, whereas actions that
are independent with each other should be placed in different compo-
nents.

The invocation of actions, which is reflected by the “invokes” re-
lationship in the conceptual model, is represented by component in-
teractions. Separate interactions are included for issuing an invocation
and receiving the output. Rendezvous connectors (all ports assigned to
synchrons) can model synchronous invocations, where the caller has to
wait for the output. For asynchronous invocations, an additional atomic

Fig. 7. Conceptual diagram of classes.

Table 2
Prefix clauses.

ID Template

P1 if 〈event〉
P2 if 〈event〉 and ⟨state⟩
P3 while ⟨state⟩

Table 3
Main clauses.

ID Template

M1 ⟨function⟩ shall ⟨action⟩
M2 ⟨function⟩ shall ⟨action⟩ (and ⟨action⟩)+
M3 ⟨function⟩ shall ⟨state⟩

Table 4
Suffix clauses.

ID Template

S1 before 〈event〉
S2 sequentially

Table 5
Requirements for the HK PL function.

ID Requirement

HK-02 P2: if ⟨event-e003: [TBD] sec pass ⟩ and ⟨state-s003: HK collection is
enabled for PL ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a004: handle HK data from the PL ⟩

HK-03 P3: if ⟨state-s002: PSa for PL is not enabled ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a002: transmit HK data through the
TC/TM service ⟩

HK-04 P3: while ⟨state-s001: PS for PL is enabled ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a001: write HK data to the flash
memory ⟩

HK-05 P1: if ⟨event-e004: a PL failure persists for [TBD] sec ⟩
M1: ⟨function: HK PL ⟩ shall ⟨action-a003: contact the EPS for a restart
of the PL ⟩

a PS stands for a packet store structure.

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

CubETH case study

 40

B5.3. CDMS status
CDMS-02: ‘ The CDMS_status shall periodically reset the internal and external watchdogs and contact the EPS subsystem with a “heartbeat”. ’

P1: e1: if [TBD] seconds pass
M2: f1: CDMS_status shall a1: reset the internal and external watchdogs and a2: contact the EPS subsystem with a “heartbeat”

B5.4. Error logging
Log-02: ‘ Error_logging shall log each hardware error to the RAM.’
P1: if e1: a hardware error is produced
M1: f1: Error_logging shall a1: log the error to the RAM
Log-03: ‘ Error_logging shall not log two errors simultaneously. ’
M1: f1: Error_logging shall a1: log the error to the RAM
S3: sequentially

B5.5. Payload
PL-01: ‘ When in IDLE mode, PL shall load a scenario to the board. ’
P3: while s1: in IDLE mode
M1: f1: PL shall a1: load a scenario to the board
PL-02: ‘ In SCENARIO_READY, PL has loaded a scenario to the board. ’
P1: if e1: PL has finished loading a scenario to the board
M3: f1: PL shall s2: be in SCENARIO_READY mode
PL-03: ‘ In SCENARIO_READY, PL shall execute a scenario to the board. ’
P3: while s2: in SCENARIO_READY mode
M1: f1: PL shall a12: execute a scenario to the board
PL-04: ‘ In STARTED mode, a PL scenario has been executed. ’
P1: if e2: PL has finished executing a scenario
M3: f1: PL shall s3: be in STARTED mode

Fig. B21. The HK PL component (The HK COM and HK EPS are also like HK PL).

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

CubETH case study

 41

of requirement types found in the design of, say, space systems. This of
course depends on the expressiveness of the property patterns, and on
the analyzability of BIP models with extended semantics for the various
property types, because correctness-by-construction does not vanish the
need for a posteriori verification. The structure of the boilerplate lan-
guage in Section 4.1 resembles that of RSL in the CESAR reference
technology platform (Ajitha Rajan and Thomas Wahl, 2013). We cur-
rently support fewer templates than RSL for the prefix, main and suffix
clauses, but this set of templates was sufficient for expressing the re-
quirements of the case studies. Moreover, the RERD tool was designed
such that new templates may be added; the only prerequisite is that the
additional templates must be associated with property patterns, as in
Table 7. The adopted framework of patterns from Dwyer et al. (1999) is
well-established and stems from industrially-relevant studies, but it
only covers functional property specifications. We certainly foresee the
need for boilerplates with templates for non-functional aspects, which
call for support by e.g. timing patterns (Reinkemeier et al., 2011) and
probabilistic patterns (Grunske, 2008). Here, it is worth to note:

• the extension of BIP (Nouri et al., 2015) that allows specifying
probabilistic aspects of BIP components, while providing a sto-
chastic semantics for the parallel composition of components
through interactions and priorities;

• the RT-BIP extension for modeling timing constraints as a timed
automaton, and a real-time engine for computing the schedules
meeting the timing constraints, given the underlying platform’s real-
time clock (Abdellatif et al., 2013).

These extensions are accompanied by advanced verification tools,
some of which implement scalable compositional verification techni-
ques (Rayana et al., 2016).

However, a matter of vital importance is how expressive can be a
boilerplate language with a controlled vocabulary for the attributes
with respect to today’s industrial practice of natural language specifi-
cations. The loss of expressiveness is inevitable though necessary to
avoid ambiguity. However, the true question is whether it is still pos-
sible and whether we really need to cover the same system aspects with
those in today’s specifications. This question also matters for languages
like EARS (Mavin and Wilkinson, 2010; Mavin et al., 2009), which
insist on natural language specifications using a fixed set of structural
rules (though the EARS-CTRL analysis works with a user-defined glos-
sary of terms). From our experience with the case studies, which were
based on natural language requirements, we believe that only a subset

of them needs to be validated. This set includes requirements that are
suspected for consistency issues and have to be established or checked
with respect to the system’s structure and behavior. The Requirement
Engineers tend to classify the requirements in project documentation
into categories (e.g. at the software level of space systems there are
various classes of interface requirements, performance requirements,
functional requirements and design/construction requirements). Any
boilerplate language is considered adequate only if it can express all
representative forms of natural language requirements that need to be
validated, for all categories of requirements in project documentation
(e.g. the design/construction requirements is not necessary to be ex-
pressed using boilerplates). This may imply changes to the scope of
individual requirements (e.g. a natural language requirement may be
broken into multiple boilerplate requirements). To this end, the RERD
tool displays the set of applicable boilerplates, for each category of
requirements found in a user-defined catalogue of categories (Fig. 18).

Our emphasis lies on precisely capturing the requirements by
properties which— ideally— can be enforced through BIP architectures
or— if not enforced— could be verified. As we aim to a semi-automated
formalization of requirements, we are intentionally limited to specific
types of requirements and templates. Our approach can accommodate
additional templates for requirement boilerplates, provided that they
are associated with property patterns, for which it is known how they
can be enforced or verified.

The applicability of the correctness-by-construction approach
throughout our model-based process depends on a library of BIP ar-
chitecture styles for enforcing a worthwhile set of properties in the
different categories of requirements. We have implicitly adopted the
commonly accepted perception that the requirement specification and
the system’s architectural design are in some sense intertwined
(Swartout and Balzer, 1982; Nuseibeh, 2001). While specifying system
requirements, the Requirement Engineers have in mind the overall
structure of the system under design (functional and physical archi-
tecture inputs shown in Fig. 6), whereas a significant part of their
specifications comes from adapting requirements found in previous
projects. Our notion of architecture styles provides the means to for-
mally capture common solutions to recurring design problems in an
abstract and reusable form. This certainly incurs a non-negligible in-
vestment cost towards developing adequate and organized libraries of
architecture styles, especially since the set of property patterns that
they can enforce has to be precisely defined. The set of styles in this
article was derived by identifying commonalities in the base of natural
language requirements of the case studies. Additional effort is required
to this respect, whereas a recent research work opens prospects for
defining styles which enforce quantitative properties (Paraponiari and
Rahonis, 2017).

Another important issue is the scalability and the effort needed for
applying our model-based process. Indicative figures for problems of
the size of our case studies have been previously mentioned. We ac-
knowledge that in industrial problems of moderate size additional
challenges may arise. More specifically, it may be trickier to identify
and uniquely determine— on a team basis— the concepts for specifying

Table 12
Statistics of requirement formulation and property enforcement.

Model Flow Mode Event Mutex Failure Requir. Deriv. Prop. Assum. Prop. Enforced By inspect.

Payload 0 2 0 4 0 12 16 0 16 0
HK PL 0 2 1 1 1 4 6 0 6 0
HK EPS 0 2 1 1 1 4 6 0 6 0
HK COM 0 2 1 1 1 4 6 0 6 0
HK CDMS 0 2 1 1 0 3 4 0 4 0
Flash memory 0 1 0 1 0 8 13 4 3 10
CDMS status 1 0 0 0 0 1 3 0 3 0
Error logging 0 0 1 1 0 2 3 0 3 0
Total 1 11 5 10 3 38 57 4 47 10

Table 13
Durations and input sizes of the process steps.

Step Duration Input size

Requirement specification 8 h 38 requirements
Initial design 5 h 12 components
Architecture instantiation 3 h 47 enforced properties
Verification of deadlock freedom 12 s 46 components

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

of requirement types found in the design of, say, space systems. This of
course depends on the expressiveness of the property patterns, and on
the analyzability of BIP models with extended semantics for the various
property types, because correctness-by-construction does not vanish the
need for a posteriori verification. The structure of the boilerplate lan-
guage in Section 4.1 resembles that of RSL in the CESAR reference
technology platform (Ajitha Rajan and Thomas Wahl, 2013). We cur-
rently support fewer templates than RSL for the prefix, main and suffix
clauses, but this set of templates was sufficient for expressing the re-
quirements of the case studies. Moreover, the RERD tool was designed
such that new templates may be added; the only prerequisite is that the
additional templates must be associated with property patterns, as in
Table 7. The adopted framework of patterns from Dwyer et al. (1999) is
well-established and stems from industrially-relevant studies, but it
only covers functional property specifications. We certainly foresee the
need for boilerplates with templates for non-functional aspects, which
call for support by e.g. timing patterns (Reinkemeier et al., 2011) and
probabilistic patterns (Grunske, 2008). Here, it is worth to note:

• the extension of BIP (Nouri et al., 2015) that allows specifying
probabilistic aspects of BIP components, while providing a sto-
chastic semantics for the parallel composition of components
through interactions and priorities;

• the RT-BIP extension for modeling timing constraints as a timed
automaton, and a real-time engine for computing the schedules
meeting the timing constraints, given the underlying platform’s real-
time clock (Abdellatif et al., 2013).

These extensions are accompanied by advanced verification tools,
some of which implement scalable compositional verification techni-
ques (Rayana et al., 2016).

However, a matter of vital importance is how expressive can be a
boilerplate language with a controlled vocabulary for the attributes
with respect to today’s industrial practice of natural language specifi-
cations. The loss of expressiveness is inevitable though necessary to
avoid ambiguity. However, the true question is whether it is still pos-
sible and whether we really need to cover the same system aspects with
those in today’s specifications. This question also matters for languages
like EARS (Mavin and Wilkinson, 2010; Mavin et al., 2009), which
insist on natural language specifications using a fixed set of structural
rules (though the EARS-CTRL analysis works with a user-defined glos-
sary of terms). From our experience with the case studies, which were
based on natural language requirements, we believe that only a subset

of them needs to be validated. This set includes requirements that are
suspected for consistency issues and have to be established or checked
with respect to the system’s structure and behavior. The Requirement
Engineers tend to classify the requirements in project documentation
into categories (e.g. at the software level of space systems there are
various classes of interface requirements, performance requirements,
functional requirements and design/construction requirements). Any
boilerplate language is considered adequate only if it can express all
representative forms of natural language requirements that need to be
validated, for all categories of requirements in project documentation
(e.g. the design/construction requirements is not necessary to be ex-
pressed using boilerplates). This may imply changes to the scope of
individual requirements (e.g. a natural language requirement may be
broken into multiple boilerplate requirements). To this end, the RERD
tool displays the set of applicable boilerplates, for each category of
requirements found in a user-defined catalogue of categories (Fig. 18).

Our emphasis lies on precisely capturing the requirements by
properties which— ideally— can be enforced through BIP architectures
or— if not enforced— could be verified. As we aim to a semi-automated
formalization of requirements, we are intentionally limited to specific
types of requirements and templates. Our approach can accommodate
additional templates for requirement boilerplates, provided that they
are associated with property patterns, for which it is known how they
can be enforced or verified.

The applicability of the correctness-by-construction approach
throughout our model-based process depends on a library of BIP ar-
chitecture styles for enforcing a worthwhile set of properties in the
different categories of requirements. We have implicitly adopted the
commonly accepted perception that the requirement specification and
the system’s architectural design are in some sense intertwined
(Swartout and Balzer, 1982; Nuseibeh, 2001). While specifying system
requirements, the Requirement Engineers have in mind the overall
structure of the system under design (functional and physical archi-
tecture inputs shown in Fig. 6), whereas a significant part of their
specifications comes from adapting requirements found in previous
projects. Our notion of architecture styles provides the means to for-
mally capture common solutions to recurring design problems in an
abstract and reusable form. This certainly incurs a non-negligible in-
vestment cost towards developing adequate and organized libraries of
architecture styles, especially since the set of property patterns that
they can enforce has to be precisely defined. The set of styles in this
article was derived by identifying commonalities in the base of natural
language requirements of the case studies. Additional effort is required
to this respect, whereas a recent research work opens prospects for
defining styles which enforce quantitative properties (Paraponiari and
Rahonis, 2017).

Another important issue is the scalability and the effort needed for
applying our model-based process. Indicative figures for problems of
the size of our case studies have been previously mentioned. We ac-
knowledge that in industrial problems of moderate size additional
challenges may arise. More specifically, it may be trickier to identify
and uniquely determine— on a team basis— the concepts for specifying

Table 12
Statistics of requirement formulation and property enforcement.

Model Flow Mode Event Mutex Failure Requir. Deriv. Prop. Assum. Prop. Enforced By inspect.

Payload 0 2 0 4 0 12 16 0 16 0
HK PL 0 2 1 1 1 4 6 0 6 0
HK EPS 0 2 1 1 1 4 6 0 6 0
HK COM 0 2 1 1 1 4 6 0 6 0
HK CDMS 0 2 1 1 0 3 4 0 4 0
Flash memory 0 1 0 1 0 8 13 4 3 10
CDMS status 1 0 0 0 0 1 3 0 3 0
Error logging 0 0 1 1 0 2 3 0 3 0
Total 1 11 5 10 3 38 57 4 47 10

Table 13
Durations and input sizes of the process steps.

Step Duration Input size

Requirement specification 8 h 38 requirements
Initial design 5 h 12 components
Architecture instantiation 3 h 47 enforced properties
Verification of deadlock freedom 12 s 46 components

E. Stachtiari et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH��������������²��

��

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Future work
BIP

Dynamicity, distribution, self-adaptation

Architectures
Case studies, case studies, case studies and taxonomies (libraries)

Real-time, Synthesis, Dynamicity

DSLs for usability
Verification and proof of architectures and architecture styles

Tool support

General purpose software
JavaBIP...

 42

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

JavaBIP

 43

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP

Figure 5. JavaBIP models of a Publish–Subscribe server. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 6. Annotations for the CommandBuffer component type. [Colour figure can be viewed at
wileyonlinelibrary.com]

The server consists of components of the six types shown in Figure 5. For each client, there is a
dedicated TCPReader, responsible for receiving commands. Additionally, for each client, there is a
dedicated ClientProxy, responsible for receiving (i) acknowledgments that the client has been added
or removed from a topic and (ii) messages published from other clients registered in same topics.
Thus, each client is modeled by two dedicated components (a TCPReader and a ClientProxy), each
modeling a distinct functional aspect of the client.

Upon reception by a TCPReader, each command is forwarded to the unique CommandBuffer
component through the synchronization of the give and put enforceable transitions. The guard
commandExists of the TCPReader is used to check whether it has received a new command, and
the guard notFull of the CommandBuffer is used to check whether the buffer is not full before
receiving a new command (Figure 6: lines 29 and 30). If both guards evaluate to true, the command
is transferred as data to the CommandBuffer (Figure 6: line 25).

The CommandBuffer is a passive component: the responsibility for retrieving commands from the
CommandBuffer belongs to CommandHandlers. This happens through the synchronization of the
handle and get enforceable transitions, when the notEmpty guard evaluates to true (Figure 6:
lines 21 and 22). There can be arbitrarily many CommandHandlers that are concurrently han-

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe

Ports

States

Transitions

Data

S. BLIUDZE ET AL.

Figure 11. Glue specification for the Publish–Subscribe example (cf. Section 3.2). [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 12. Glue specification for the Trackers and Peers example (cf. Section 3.3). [Colour figure can be
viewed at wileyonlinelibrary.com]

If the proposed datum does not satisfy the guard, the interaction among these particular components
is disabled.

5.2. Glue specification

To define the interaction model, a developer must specify the interaction constraints of the system,
that is, which ports of different components must synchronize. Interaction constraints need to be
specified once for each component type of the system. For instance, in the Publish–Subscribe exam-
ple of Figure 5, many instances of readers may exist in the system; however, the interaction model
of the TCPReader component type needs to be specified only once.

Interaction constraints are specified using macro notation:

! Causal constraints (Require) specify ports of other components, necessary for any interac-
tion involving the port with which the constraint is associated.
! Acceptance constraints (Accept) define optional ports of other components, accepted in the

interactions involving the port with which the constraint is associated.

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2017)
DOI: 10.1002/spe

Connectors

[Bliudze et al, SPE '17]

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Conclusion
Powerful theoretical tools
to build systems that are
correct by construction

Going from theory to
practice requires a lot of
effort and cross-domain
collaborations

Bigger challenge yet:
taking these methods to
less constrained
application domains

 44

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Thanks!

 45

Appendices

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Engine-based execution
1. Components notify the

Engine about enabled
transitions.

2. The Engine picks an
interaction and instructs
the components about
next actions to take.

 47

Priorities

Interactions

B E H A V I O U R

Various Engine implementations:
Centralised (enumerative & symbolic)
Distributed (two protocol layers)
Real-Time (timed automata)
Dynamic (evolving topology)

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Core BIP tool-set @ Verimag

Ecore meta-model

Model-checking tools

C++ code generation

 48

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Main idea
Characteristic predicate for

 

Interaction models to predicates and back

 49

5

work

sleep

f1

b1

B1

f1

b1

work

sleep

f2

b2

B2

f2

b2

taken

free

f12

f12

b12

b12

C12

(a) (b)
Fig. 1: Behaviour (a) and coordinator (b) for Ex. 1.

2.2 Architecture composition

As will be further illustrated in Sect. 3, architectures can be intuitively under-
stood as imposing constraints on the global state space of the system [3, 5]. More
precisely, component coordination is realised by limiting the allowed synchroni-
sation possibilities, thus imposing constraints on the transitions components can
take. From this perspective, architecture composition can be understood as the
conjunction of their respective constraints. This intuitive notion is formalised by
the two definitions below.

Definition 5 (Characteristic predicates). Let � ✓ 2P be an interaction
model over a set of ports P . Its characteristic predicate ('� : BP ! B) 2 B[P]
is defined by putting

'�
�
=

_

a2�

0

@
^

p2a

p ^
^

p 62a

p

1

A .

For any valuation v : P ! B, '�(v) = tt if and only if {p 2 P | v(p) = tt} 2 �. A
predicate ' 2 B[P] uniquely defines an interaction model �', such that '�' = '.

Definition 6 (Architecture composition). Let Aj = (Bj , Pj , �j), for j =
1, 2 be two architectures. The composition of A1 and A2 is an architecture A1 �
A2 = (B1 [B2, P1 [P2, �'), where ' = '�1 ^ '�2 .

The following lemma states that the interaction model of the composed be-
haviour consists precisely of the interactions, such that both their projections on
the interfaces of the composed architectures belong to the corresponding inter-
action models. In other words, these are precisely the interactions that satisfy
the coordination constraints imposed by both composed architectures.

Lemma 1. Consider two interaction models �i ✓ 2Pi , for i = 1, 2, and let
' = '�1 ^'�2 . For an interaction a ✓ P1[P2, a 2 �' i↵ a\Pi 2 �i, for i = 1, 2.

Proposition 1. Architecture composition ’�’ is commutative, associative and
idempotent.

Example 2 (Mutual exclusion (contd.)). Building upon Ex. 1, let B3 be a third
behaviour, similar to B1 and B2, with the interface {b3, f3}. We define two addi-
tional architecturesA13 andA23 similar toA12: for i = 1, 2,Ai3 = ({Ci3}, Pi3, �i3),

5

work

sleep

f1

b1

B1

f1

b1

work

sleep

f2

b2

B2

f2

b2

taken

free

f12

f12

b12

b12

C12

(a) (b)
Fig. 1: Behaviour (a) and coordinator (b) for Ex. 1.

2.2 Architecture composition

As will be further illustrated in Sect. 3, architectures can be intuitively under-
stood as imposing constraints on the global state space of the system [3, 5]. More
precisely, component coordination is realised by limiting the allowed synchroni-
sation possibilities, thus imposing constraints on the transitions components can
take. From this perspective, architecture composition can be understood as the
conjunction of their respective constraints. This intuitive notion is formalised by
the two definitions below.

Definition 5 (Characteristic predicates). Let � ✓ 2P be an interaction
model over a set of ports P . Its characteristic predicate ('� : BP ! B) 2 B[P]
is defined by putting

'�
�
=

_

a2�

0

@
^

p2a

p ^
^

p 62a

p

1

A .

For any valuation v : P ! B, '�(v) = tt if and only if {p 2 P | v(p) = tt} 2 �. A
predicate ' 2 B[P] uniquely defines an interaction model �', such that '�' = '.

Definition 6 (Architecture composition). Let Aj = (Bj , Pj , �j), for j =
1, 2 be two architectures. The composition of A1 and A2 is an architecture A1 �
A2 = (B1 [B2, P1 [P2, �'), where ' = '�1 ^ '�2 .

The following lemma states that the interaction model of the composed be-
haviour consists precisely of the interactions, such that both their projections on
the interfaces of the composed architectures belong to the corresponding inter-
action models. In other words, these are precisely the interactions that satisfy
the coordination constraints imposed by both composed architectures.

Lemma 1. Consider two interaction models �i ✓ 2Pi , for i = 1, 2, and let
' = '�1 ^'�2 . For an interaction a ✓ P1[P2, a 2 �' i↵ a\Pi 2 �i, for i = 1, 2.

Proposition 1. Architecture composition ’�’ is commutative, associative and
idempotent.

Example 2 (Mutual exclusion (contd.)). Building upon Ex. 1, let B3 be a third
behaviour, similar to B1 and B2, with the interface {b3, f3}. We define two addi-
tional architecturesA13 andA23 similar toA12: for i = 1, 2,Ai3 = ({Ci3}, Pi3, �i3),

5

work

sleep

f1

b1

B1

f1

b1

work

sleep

f2

b2

B2

f2

b2

taken

free

f12

f12

b12

b12

C12

(a) (b)
Fig. 1: Behaviour (a) and coordinator (b) for Ex. 1.

2.2 Architecture composition

As will be further illustrated in Sect. 3, architectures can be intuitively under-
stood as imposing constraints on the global state space of the system [3, 5]. More
precisely, component coordination is realised by limiting the allowed synchroni-
sation possibilities, thus imposing constraints on the transitions components can
take. From this perspective, architecture composition can be understood as the
conjunction of their respective constraints. This intuitive notion is formalised by
the two definitions below.

Definition 5 (Characteristic predicates). Let � ✓ 2P be an interaction
model over a set of ports P . Its characteristic predicate ('� : BP ! B) 2 B[P]
is defined by putting

'�
�
=

_

a2�

0

@
^

p2a

p ^
^

p 62a

p

1

A .

For any valuation v : P ! B, '�(v) = tt if and only if {p 2 P | v(p) = tt} 2 �. A
predicate ' 2 B[P] uniquely defines an interaction model �', such that '�' = '.

Definition 6 (Architecture composition). Let Aj = (Bj , Pj , �j), for j =
1, 2 be two architectures. The composition of A1 and A2 is an architecture A1 �
A2 = (B1 [B2, P1 [P2, �'), where ' = '�1 ^ '�2 .

The following lemma states that the interaction model of the composed be-
haviour consists precisely of the interactions, such that both their projections on
the interfaces of the composed architectures belong to the corresponding inter-
action models. In other words, these are precisely the interactions that satisfy
the coordination constraints imposed by both composed architectures.

Lemma 1. Consider two interaction models �i ✓ 2Pi , for i = 1, 2, and let
' = '�1 ^'�2 . For an interaction a ✓ P1[P2, a 2 �' i↵ a\Pi 2 �i, for i = 1, 2.

Proposition 1. Architecture composition ’�’ is commutative, associative and
idempotent.

Example 2 (Mutual exclusion (contd.)). Building upon Ex. 1, let B3 be a third
behaviour, similar to B1 and B2, with the interface {b3, f3}. We define two addi-
tional architecturesA13 andA23 similar toA12: for i = 1, 2,Ai3 = ({Ci3}, Pi3, �i3),

5

work

sleep

f1

b1

B1

f1

b1

work

sleep

f2

b2

B2

f2

b2

taken

free

f12

f12

b12

b12

C12

(a) (b)
Fig. 1: Behaviour (a) and coordinator (b) for Ex. 1.

2.2 Architecture composition

As will be further illustrated in Sect. 3, architectures can be intuitively under-
stood as imposing constraints on the global state space of the system [3, 5]. More
precisely, component coordination is realised by limiting the allowed synchroni-
sation possibilities, thus imposing constraints on the transitions components can
take. From this perspective, architecture composition can be understood as the
conjunction of their respective constraints. This intuitive notion is formalised by
the two definitions below.

Definition 5 (Characteristic predicates). Let � ✓ 2P be an interaction
model over a set of ports P . Its characteristic predicate ('� : BP ! B) 2 B[P]
is defined by putting

'�
�
=

_

a2�

0

@
^

p2a

p ^
^

p 62a

p

1

A .

For any valuation v : P ! B, '�(v) = tt if and only if {p 2 P | v(p) = tt} 2 �. A
predicate ' 2 B[P] uniquely defines an interaction model �', such that '�' = '.

Definition 6 (Architecture composition). Let Aj = (Bj , Pj , �j), for j =
1, 2 be two architectures. The composition of A1 and A2 is an architecture A1 �
A2 = (B1 [B2, P1 [P2, �'), where ' = '�1 ^ '�2 .

The following lemma states that the interaction model of the composed be-
haviour consists precisely of the interactions, such that both their projections on
the interfaces of the composed architectures belong to the corresponding inter-
action models. In other words, these are precisely the interactions that satisfy
the coordination constraints imposed by both composed architectures.

Lemma 1. Consider two interaction models �i ✓ 2Pi , for i = 1, 2, and let
' = '�1 ^'�2 . For an interaction a ✓ P1[P2, a 2 �' i↵ a\Pi 2 �i, for i = 1, 2.

Proposition 1. Architecture composition ’�’ is commutative, associative and
idempotent.

Example 2 (Mutual exclusion (contd.)). Building upon Ex. 1, let B3 be a third
behaviour, similar to B1 and B2, with the interface {b3, f3}. We define two addi-
tional architecturesA13 andA23 similar toA12: for i = 1, 2,Ai3 = ({Ci3}, Pi3, �i3),

()

A1 �A2
def
= (C1 [C2, P1 [P2, �') ' = '�1 ^ '�2

'(v) = ttv : P ! B,

Architecture composition is commutative and associative. 
If coordinators are deterministic, it is also idempotent.

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Example continued

 50

sleep

work

b1f1

b1 f1
sleep

work

b3f3

b3 f3

sleep

work

b2f2

b2 f2

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Example continued

 51

sleep

work

b1f1

b1 f1
sleep

work

b3f3

b3 f3
sleep

work

b2f2

b2 f2

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Example continued

 52

b1 f1 b2 f2
free

taken

b12f12

b12 f12

6

where, up to the renaming of ports, Ci3 is the same as the behaviour C12 in
Fig. 1(b), Pi3 = {bi, b3, bi3, fi, f3, fi3} and �i3 = {;, bibi3, b3bi3, fifi3, f3fi3}. The
composition of these three architectures, (A12�A13�A23)(B1, B2, B3), ensures
mutual exclusion among the work states of all three behaviours.

Notice that

'�12 ⌘ (b1) b12) ^ (f1) f12) ^ (b2) b12) ^ (f2) f12) ^
(b12) b1 XOR b2) ^ (f12) f1 XOR f2) ^ (b12) f12) .

Intuitively, the implication b1) b12, for instance, means that, for the port b1
to be fired, it is necessary that the port b12 be fired in the same interaction.
By considering the similar expressions for '�13 and '�23 , it is easy to compute
'�12 ^ '�13 ^ '�23 as the conjunction of the following implications:

b1) b12 ^ b13 , f1) f12 ^ f13 , b12) b1 XOR b2 , f12) f1 XOR f2 , b12) f12 ,

b2) b12 ^ b23 , f2) f12 ^ f23 , b13) b1 XOR b3 , f13) f1 XOR f3 , b13) f13 ,

b3) b13 ^ b23 , f3) f13 ^ f23 , b23) b2 XOR b3 , f23) f2 XOR f3 , b23) f23 .

Finally, it is straightforward to obtain the interaction model for A12�A13�A23:

{; , b1b12b13 , f1f12f13 , b2b12b23 , f2f12f23 , b3b13b23 , f3f13f23} .

Again, assuming that the initial states of B1, B2 and B3 are sleep, whereas
those of C12, C13 and C23 are free, one can observe that, neither of the states
(·, ·, ·, work, work, ·), (·, ·, ·, work, ·, work) and (·, ·, ·, ·, work, work) is reachable in
(A12 �A13 �A23)(B1, B2, B3).

2.3 Hierarchical composition of architectures

Proposition 2. Let B be a set of behaviours and let A1 = (C1, P 0
a, �1) and

A2 = (C2, P 00
a , �2) be two architectures, such that P 0

a ✓ P 0 �
=

S
B2B[C1

PB and

P 00
a ✓ P 00 �

=
S

B2B[C1[C2
PB. Then A2(A1(B)) = (A1 �A2)(B).

Proposition 3. Let B1,B2 be two sets of behaviours, such that P1\P2 = ;, with
Pi =

S
B2Bi

PB, for i = 1, 2. Let A1 = (C1, P 0
a, �1) and A2 = (C2, P 00

a , �2) be two
architectures, such that P 0

a \ P2 = ;. Then A2(A1(B1,B2)) = A2(A1(B1),B2).

We now generalise Def. 4 to the case where Pa 6✓
S

B2B[C PB . This means
that the architecture imposes constraints on some ports which are not present
in any of the control or base behaviours. In other words, the system obtained by
applying the architecture to a given set of behaviours is not complete. The result
can then itself be considered as an architecture that can be further applied to
additional behaviours in order to complete the system.

Definition 7. Let A = (C, Pa, �) be an architecture and B be a set of behaviours.

Let P =
S

B2B[C PB. A partial application of A to B is an architecture A[B] �
=

(B0, P[Pa, � k 2P\Pa), where B0 �
= (�P k 2P\Pa)(C[B) with �P = {a \ P | a 2 �}

and the operator ’k’ as in Def. 4.

6

where, up to the renaming of ports, Ci3 is the same as the behaviour C12 in
Fig. 1(b), Pi3 = {bi, b3, bi3, fi, f3, fi3} and �i3 = {;, bibi3, b3bi3, fifi3, f3fi3}. The
composition of these three architectures, (A12�A13�A23)(B1, B2, B3), ensures
mutual exclusion among the work states of all three behaviours.

Notice that

'�12 ⌘ (b1) b12) ^ (f1) f12) ^ (b2) b12) ^ (f2) f12) ^
(b12) b1 XOR b2) ^ (f12) f1 XOR f2) ^ (b12) f12) .

Intuitively, the implication b1) b12, for instance, means that, for the port b1
to be fired, it is necessary that the port b12 be fired in the same interaction.
By considering the similar expressions for '�13 and '�23 , it is easy to compute
'�12 ^ '�13 ^ '�23 as the conjunction of the following implications:

b1) b12 ^ b13 , f1) f12 ^ f13 , b12) b1 XOR b2 , f12) f1 XOR f2 , b12) f12 ,

b2) b12 ^ b23 , f2) f12 ^ f23 , b13) b1 XOR b3 , f13) f1 XOR f3 , b13) f13 ,

b3) b13 ^ b23 , f3) f13 ^ f23 , b23) b2 XOR b3 , f23) f2 XOR f3 , b23) f23 .

Finally, it is straightforward to obtain the interaction model for A12�A13�A23:

{; , b1b12b13 , f1f12f13 , b2b12b23 , f2f12f23 , b3b13b23 , f3f13f23} .

Again, assuming that the initial states of B1, B2 and B3 are sleep, whereas
those of C12, C13 and C23 are free, one can observe that, neither of the states
(·, ·, ·, work, work, ·), (·, ·, ·, work, ·, work) and (·, ·, ·, ·, work, work) is reachable in
(A12 �A13 �A23)(B1, B2, B3).

2.3 Hierarchical composition of architectures

Proposition 2. Let B be a set of behaviours and let A1 = (C1, P 0
a, �1) and

A2 = (C2, P 00
a , �2) be two architectures, such that P 0

a ✓ P 0 �
=

S
B2B[C1

PB and

P 00
a ✓ P 00 �

=
S

B2B[C1[C2
PB. Then A2(A1(B)) = (A1 �A2)(B).

Proposition 3. Let B1,B2 be two sets of behaviours, such that P1\P2 = ;, with
Pi =

S
B2Bi

PB, for i = 1, 2. Let A1 = (C1, P 0
a, �1) and A2 = (C2, P 00

a , �2) be two
architectures, such that P 0

a \ P2 = ;. Then A2(A1(B1,B2)) = A2(A1(B1),B2).

We now generalise Def. 4 to the case where Pa 6✓
S

B2B[C PB . This means
that the architecture imposes constraints on some ports which are not present
in any of the control or base behaviours. In other words, the system obtained by
applying the architecture to a given set of behaviours is not complete. The result
can then itself be considered as an architecture that can be further applied to
additional behaviours in order to complete the system.

Definition 7. Let A = (C, Pa, �) be an architecture and B be a set of behaviours.

Let P =
S

B2B[C PB. A partial application of A to B is an architecture A[B] �
=

(B0, P[Pa, � k 2P\Pa), where B0 �
= (�P k 2P\Pa)(C[B) with �P = {a \ P | a 2 �}

and the operator ’k’ as in Def. 4.

6

where, up to the renaming of ports, Ci3 is the same as the behaviour C12 in
Fig. 1(b), Pi3 = {bi, b3, bi3, fi, f3, fi3} and �i3 = {;, bibi3, b3bi3, fifi3, f3fi3}. The
composition of these three architectures, (A12�A13�A23)(B1, B2, B3), ensures
mutual exclusion among the work states of all three behaviours.

Notice that

'�12 ⌘ (b1) b12) ^ (f1) f12) ^ (b2) b12) ^ (f2) f12) ^
(b12) b1 XOR b2) ^ (f12) f1 XOR f2) ^ (b12) f12) .

Intuitively, the implication b1) b12, for instance, means that, for the port b1
to be fired, it is necessary that the port b12 be fired in the same interaction.
By considering the similar expressions for '�13 and '�23 , it is easy to compute
'�12 ^ '�13 ^ '�23 as the conjunction of the following implications:

b1) b12 ^ b13 , f1) f12 ^ f13 , b12) b1 XOR b2 , f12) f1 XOR f2 , b12) f12 ,

b2) b12 ^ b23 , f2) f12 ^ f23 , b13) b1 XOR b3 , f13) f1 XOR f3 , b13) f13 ,

b3) b13 ^ b23 , f3) f13 ^ f23 , b23) b2 XOR b3 , f23) f2 XOR f3 , b23) f23 .

Finally, it is straightforward to obtain the interaction model for A12�A13�A23:

{; , b1b12b13 , f1f12f13 , b2b12b23 , f2f12f23 , b3b13b23 , f3f13f23} .

Again, assuming that the initial states of B1, B2 and B3 are sleep, whereas
those of C12, C13 and C23 are free, one can observe that, neither of the states
(·, ·, ·, work, work, ·), (·, ·, ·, work, ·, work) and (·, ·, ·, ·, work, work) is reachable in
(A12 �A13 �A23)(B1, B2, B3).

2.3 Hierarchical composition of architectures

Proposition 2. Let B be a set of behaviours and let A1 = (C1, P 0
a, �1) and

A2 = (C2, P 00
a , �2) be two architectures, such that P 0

a ✓ P 0 �
=

S
B2B[C1

PB and

P 00
a ✓ P 00 �

=
S

B2B[C1[C2
PB. Then A2(A1(B)) = (A1 �A2)(B).

Proposition 3. Let B1,B2 be two sets of behaviours, such that P1\P2 = ;, with
Pi =

S
B2Bi

PB, for i = 1, 2. Let A1 = (C1, P 0
a, �1) and A2 = (C2, P 00

a , �2) be two
architectures, such that P 0

a \ P2 = ;. Then A2(A1(B1,B2)) = A2(A1(B1),B2).

We now generalise Def. 4 to the case where Pa 6✓
S

B2B[C PB . This means
that the architecture imposes constraints on some ports which are not present
in any of the control or base behaviours. In other words, the system obtained by
applying the architecture to a given set of behaviours is not complete. The result
can then itself be considered as an architecture that can be further applied to
additional behaviours in order to complete the system.

Definition 7. Let A = (C, Pa, �) be an architecture and B be a set of behaviours.

Let P =
S

B2B[C PB. A partial application of A to B is an architecture A[B] �
=

(B0, P[Pa, � k 2P\Pa), where B0 �
= (�P k 2P\Pa)(C[B) with �P = {a \ P | a 2 �}

and the operator ’k’ as in Def. 4.

sleep

work

b1f1

b1 f1
sleep

work

b3f3

b3 f3
sleep

work

b2f2

b2 f2

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

Example continued

 53

6

where, up to the renaming of ports, Ci3 is the same as the behaviour C12 in
Fig. 1(b), Pi3 = {bi, b3, bi3, fi, f3, fi3} and �i3 = {;, bibi3, b3bi3, fifi3, f3fi3}. The
composition of these three architectures, (A12�A13�A23)(B1, B2, B3), ensures
mutual exclusion among the work states of all three behaviours.

Notice that

'�12 ⌘ (b1) b12) ^ (f1) f12) ^ (b2) b12) ^ (f2) f12) ^
(b12) b1 XOR b2) ^ (f12) f1 XOR f2) ^ (b12) f12) .

Intuitively, the implication b1) b12, for instance, means that, for the port b1
to be fired, it is necessary that the port b12 be fired in the same interaction.
By considering the similar expressions for '�13 and '�23 , it is easy to compute
'�12 ^ '�13 ^ '�23 as the conjunction of the following implications:

b1) b12 ^ b13 , f1) f12 ^ f13 , b12) b1 XOR b2 , f12) f1 XOR f2 , b12) f12 ,

b2) b12 ^ b23 , f2) f12 ^ f23 , b13) b1 XOR b3 , f13) f1 XOR f3 , b13) f13 ,

b3) b13 ^ b23 , f3) f13 ^ f23 , b23) b2 XOR b3 , f23) f2 XOR f3 , b23) f23 .

Finally, it is straightforward to obtain the interaction model for A12�A13�A23:

{; , b1b12b13 , f1f12f13 , b2b12b23 , f2f12f23 , b3b13b23 , f3f13f23} .

Again, assuming that the initial states of B1, B2 and B3 are sleep, whereas
those of C12, C13 and C23 are free, one can observe that, neither of the states
(·, ·, ·, work, work, ·), (·, ·, ·, work, ·, work) and (·, ·, ·, ·, work, work) is reachable in
(A12 �A13 �A23)(B1, B2, B3).

2.3 Hierarchical composition of architectures

Proposition 2. Let B be a set of behaviours and let A1 = (C1, P 0
a, �1) and

A2 = (C2, P 00
a , �2) be two architectures, such that P 0

a ✓ P 0 �
=

S
B2B[C1

PB and

P 00
a ✓ P 00 �

=
S

B2B[C1[C2
PB. Then A2(A1(B)) = (A1 �A2)(B).

Proposition 3. Let B1,B2 be two sets of behaviours, such that P1\P2 = ;, with
Pi =

S
B2Bi

PB, for i = 1, 2. Let A1 = (C1, P 0
a, �1) and A2 = (C2, P 00

a , �2) be two
architectures, such that P 0

a \ P2 = ;. Then A2(A1(B1,B2)) = A2(A1(B1),B2).

We now generalise Def. 4 to the case where Pa 6✓
S

B2B[C PB . This means
that the architecture imposes constraints on some ports which are not present
in any of the control or base behaviours. In other words, the system obtained by
applying the architecture to a given set of behaviours is not complete. The result
can then itself be considered as an architecture that can be further applied to
additional behaviours in order to complete the system.

Definition 7. Let A = (C, Pa, �) be an architecture and B be a set of behaviours.

Let P =
S

B2B[C PB. A partial application of A to B is an architecture A[B] �
=

(B0, P[Pa, � k 2P\Pa), where B0 �
= (�P k 2P\Pa)(C[B) with �P = {a \ P | a 2 �}

and the operator ’k’ as in Def. 4.

b1

f1

b2

f2
free

taken

b12f12

b12 f12

b3

f3

free

taken

b13f13

b13 f13

free

taken

b23f23

b23 f23

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Enforcing properties (safety)
Consider a behaviour

A property:

An architecture imposes a property on if contains
the projection of all the reachable states of  
 onto

 54

B = (Q, q0, P,!)

� ✓ Q

A � B �

A(B) B

A(B) |= �

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Properties
MUX (B1, B2)

Assumed:
AG (f1 => A [state1 ≠ work W b1])
AG (f2 => A [state2 ≠ work W b2])

 55

b1 f1 b2 f2
free

taken

b12f12

b12 f12

Characteristic:
AG (state1 ≠ work v state2 ≠ work)

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Nice properties
Under suitable conditions

Architectures can be composed before applying  

Architecture application can be restricted

Architecture can be applied partially

 56

A2(A1(B)) = (A1 �A2)(B)

A2(A1(B1,B2)) = A2(A1(B1),B2)

A(B1,B2) = A[B1](B2)

BIP coordination for Java…
SOFTWARE: PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2017)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2495

Exogenous coordination of concurrent software components with
JavaBIP

Simon Bliudze1,*,† , Anastasia Mavridou2, Radoslaw Szymanek3 and Alina
Zolotukhina1

1Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
2Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37235, USA

3Crossing-Tech S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland

SUMMARY

A strong separation of concerns is necessary in order to make the design of domain-specific functional
components independent from cross-cutting concerns, such as concurrent access to the shared resources of
the execution platform. Native coordination mechanisms, such as locks and monitors, allow developers to
address these issues. However, such solutions are not modular; they are complex to design, debug, and main-
tain. We present the JavaBIP framework that allows developers to think on a higher level of abstraction and
clearly separate the functional and coordination aspects of the system behavior. It implements the principles
of the Behavior, Interaction, and Priority (BIP) component framework rooted in rigorous operational seman-
tics. It allows the coordination of existing concurrent software components in an exogenous manner, relying
exclusively on annotations, component APIs, and external specification files. We introduce the annotation
and specification syntax of JavaBIP and illustrate its use on realistic examples, present the architecture of our
implementation, which is modular and easily extensible, and provide and discuss performance evaluation
results. Copyright © 2017 John Wiley & Sons, Ltd.

Received 14 March 2016; Revised 26 January 2017; Accepted 16 February 2017

KEY WORDS: BIP; JavaBIP; component coordination; concurrency; modularity

1. INTRODUCTION

When building large concurrent systems, one of the key difficulties lies in coordinating component
behavior and, in particular, management of the access to shared resources of the execution platform.
This is well illustrated by our motivating use-case, which consists in managing the memory usage
by a set of Camel routes [1]. Camel routes are extensively utilized in Connectivity Factory™—the
flagship product of Crossing-Tech S.A. A Camel route connects a number of data sources to transfer
data among them. The data can be fairly large and may require additional processing. Hence, Camel
routes share and compete for memory. Without additional coordination, simultaneous execution of
several Camel routes can lead to OutOfMemory exceptions, even when each route has been tested
and sized appropriately on its own.

In all mainstream programming languages, including Java and C++, basic coordination prim-
itives are implemented as built-in features of the language [2, 3]. Different variations of locks,
semaphores, and monitors are used to express coordination constraints. However, these low-level
primitives are mixed up with the functional code, forcing developers to keep both aspects simul-
taneously in mind—not only at design time but also during debugging and maintenance. Because

*Correspondence to: Simon Bliudze, EPFL IC IINFCOM LCA2, Station 14, 1015 Lausanne, Switzerland.
†E-mail: simon.bliudze@epfl.ch

Copyright © 2017 John Wiley & Sons, Ltd.

Entities/components code that needs coordination often can not be changed (even by AOP).
Entities or the existing managers of those entities provide API to control those entities.

/ 40S.Bliudze @ Inria Grenoble, 28th of September, 2018

Use case: Camel Routes

Many independent routes share memory
We have to control the memory usage
e.g., by limiting to only a safe number of routes simultaneously

 58

Lack of coordination can easily result in fatal errors, like JVM running out of memory, or bad behaviour like too large

S.Bliudze @ Inria Grenoble, 28th of September, 2018 / 45

JavaBIP

 59

10 S. BLIUDZE ET AL.

1 @Ports({
2 @Port(name = "add", type = PortType.enforceable),
3 @Port(name = "rm", type = PortType.enforceable)
4 })
6 @ComponentType(initial = "on", name = "MemoryMonitor")
7 public class MemoryMonitor {
8
9 final private int memoryLimit;

10 private int currentCapacity = 0;
11
12 public MemoryMonitor(int memoryLimit) {
13 this.memoryLimit = memoryLimit;
14 }
15
16 @Transition(name = "add", source = "on", target = "on",
17 guard = "hasCapacity")
18 public void addRoute(@Data("memoryUsage") Integer deltaMemory) {
19 currentCapacity += deltaMemory;
20 }
21
22 @Transition(name = "rm", source = "on", target = "on", guard = "")
23 public void removeRoute(@Data(name="memoryUsage") Integer deltaMemory) {
24 currentCapacity -= deltaMemory;
25 }
26
27 @Guard(name = "hasCapacity")
28 public boolean hasCapacity(@Data("memoryUsage") Integer memoryUsage) {
29 return currentCapacity + memoryUsage < memoryLimit;
30 }
31 }

Figure 5. Annotations for the Monitor component type.

Figure 6. JavaBIP models of a publish-subscribe server.

The server consists of components of the six types shown in Figure 6. For each client, there
is a dedicated TCPReader, responsible for receiving commands from the client. Additionally, for
each client there is dedicated a ClientProxy, responsible for receiving acknowledgements that the
client has been added or removed from a topic and messages published from other clients registered
in the same topics. registered in the same topic. Upon reception by a TCPReader, each command
is forwarded to the unique CommandBuffer component through the synchronization of the give
and put enforceable transitions. The guard commandExists of the TCPReader is used to check
whether it has received a new command and the guard notFull of the CommandBuffer is used
to check whether the buffer is not full before receiving a new command (Figure 7: lines 29–30). If
both guards evaluate to true, the command is transferred as data to the CommandBuffer (Figure 7:
line 25).

The CommandBuffer is a passive component: the responsibility for retrieving commands from the
CommandBuffer belongs to CommandHandlers. This happens through the synchronization of the
handle and get enforceable transitions, when the notEmpty guard evaluates to true (Figure 7:
lines 21–22). There can be arbitrarily many CommandHandlers that are concurrently handling
commands. The CommandHandlers asynchronously forward commands to the TopicManager, by
generating the event associated to the execute spontaneous transition of the TopicManager

Copyright c� 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

24 S. BLIUDZE ET AL.

Figure 14. JavaBIP software architecture.

use dedicated encoders to transform the specifications acquired from the modules into permanent
and temporary constraints that are sent to the kernel.

The kernel solves the combined constraints imposed by the behavior, glue and data-wire
specifications and passes the solution back to the coordinators. Each coordinator interprets the
relevant part of the solution and triggers the corresponding action in the executors, where the actual
API function calls to the controlled source code are made. How the solution is forwarded from the
kernel to the functional code is illustrated in Figure 14 with dashed arrows labelled execute. If the
kernel cannot find a solution because the combined constraints are contradictory, a deadlock occurs.

6.1. JavaBIP module

A module comprises the functional code and the behavior specification of the corresponding
component (cf. Section 5.1), as well as a dedicated executor. The behavior specification contains
the FSM with calls to the API methods provided by the component. It is used by the executor to
drive the interaction with the engine and the environment.

Each executor is associated to a unique behavior specification. At each execution cycle, an
executor computes the set of transitions enabled in the current state of the component (both
enforceable and spontaneous). A transition is enabled when it has no guard or when its guard
evaluates to true. The executor then uses the following protocol to pick one transition to fire:

1. Internal: At most one internal transition can be enabled at a time (cf. Section 4). The executor
fires it right away.

Copyright c� 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

