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Abstraction

• The fuse model assumes negligible melting duration  
• In particular w.r.t. the raise duration of the voltage source

2

model Fuse  
 extends Interfaces.OnePort;  
 parameter Real iMax; 
 parameter Real Ron, Roff; 
 Boolean on; 
protected Real R; 
initial equation 
 on = true; 
equation  
 when i > iMax then 
  on = false;  
 end when;  
 R = if on then Ron else Roff; 
 v = R * i; 
end Fuse;
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Expected behaviour

• Only the first fuse melts 
• Independently of the voltage slope 

3
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Electrical modelling example

• It is easy to figure out that whatever the 

slope of the voltage source, only the first 

fuse may melt, if ever
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Nested abstraction

• Suppose we also abstract the behaviour of the voltage source 

• Both fuses melt due to the loss of signal continuity
4
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“Higher order” abstraction issues

• Now both fuses melt, so simulation contradicts 

our initial modelling assumptions!

• What happened?
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“Higher order” abstraction issues

• We can see that the voltage step induces a 

large, “impossible” current

• But fuses should have prevented current to 

take arbitrary large values...
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Desired behaviour

• Signals are no longer maps from time to values 

• We need infinitesimal time steps to enable this behaviour
5
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Application to a model involving “higher order” 
abstractions 

• Applied to our previous example, we get the 

following results

• Notice that contrary to previous proposals 

standard real signals are no longer maps 

from time to values
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Non-standard analysis

• Used intuitively by Leibniz and Newton 

• Formalised by Abraham Robinson in the 60s

7

Non-standard analysis

To model both continuous and discrete time, we make use of non-standard

analysis:

0
R

infinitely great

positive reals

infinitely great

negative reals

infinitesimals

−Nτ −2τ −τ 0 τ 2τ Nτ (N = ∞)

Tτ
def
= ∗Zτ

Attention! There is an infinity of infinitesimals and infinitely great numbers.

N , N + 1, N2, N/2, eN etc. . .

ε = 1/N , . . . infinitesimal: ε ≈ 0 infinitely close: x ≈ y

01/06/2006 S. Bliudze — LIX Pizza Seminar 10/16

N,N + 1, N2, N/2, eN , . . . " = 1/N, . . . " ⇡ 0
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Standardisation
• Every finite non-standard real has a unique standard part 

• Functions can be standardised 

• Standardisation of a function is not defined on all non-
standard reals, but only on the standard ones

8

x = std(x) + " std(x) 2 R " ⇡ 0

8x 2 R, std
�
f

�
(x)

def
= std

�
f(x)

�

f : ⇤R ! ⇤R std
�
f
�
: R ! R
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Examples
• Differentiation 

• Integration 

• Continuity

9

d

�
x

2
�

dx

=
(x+ dx)2 � x

2

dx

=
2x dx+ dx

2

dx

= 2x+ dx ⇡ 2x

8x 2 ⇤R, x ⇡ a =) ⇤
f(x) ⇡ ⇤

f(a)

Z 1

0
f(x)dx ⇡

N�1X

i=0

f(i dx)dx , where N = 1/dx



S.Bliudze, SIM@SYST.Level, Cargèse, 19th of October, 2014 /  21

Everything is a sequence

10

1 = [1, 1, 1, . . . ] ⇤f = [f, f, f, . . . ]

N = [1, 2, 3, . . . ] " = 1/N =
⇥
1,

1

2
,
1

3
, . . .

⇤

N + 1 = [2, 3, 4, . . . ] "2 = 1/N2 =
⇥
1,

1

4
,
1

9
, . . .

⇤

x = [x1, x2, x3, . . . ] y = [y1, y2, y3, . . . ]

x < y

def() xi < yi for almost all i

Quite similar in spirit to the definition of reals 
using Cauchy sequences
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Transfer principle
• Non-standard reals are a first-order equivalent model of 

the real field 
• Any first-order formula true in      is true in        and vice-versa. 

• Example (continuity):

11

8" 2 R(" > 0), 9� 2 R(� > 0) :

8x 2 R,
�
|x� a| < � ) |f(x)� f(a)| < "

�

R ⇤R
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Łoś' theorem
• Generalisation of the transfer principle 

• Any first-order formula is true in        if and only if it is true in      for 
almost all indices. 

• Example (Archimedean property):

12

⇤R R

" = ["1, "2, "3, . . . ], 8i 2 N, "i 2 R("i > 0)

8x 2 R, 9n 2 Z : n"i < x  (n+ 1)"i

8x 2 ⇤R, 9n 2 ⇤Z : n" < x  (n+ 1)"
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QSS approach

• Force all dense-time signals to have discrete codomains 
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Time and physical signals

• Fortunately, a solution exists which consists in 

considering these irreconcilable aspects separately

• First, we re-establish density of time:

• Second, we impose all dense-time signals to have 

discrete codomains

• In particular, a physical signal is modelled as a 

piecewise constant map having type

where      is the initial value of the signal and

            is the reference activity threshold of real 

signals
14

    ⇤T def
= ⇤R+

0

    ⇤T ! r + " · ⇤Z

    " ⇡ 0
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The meaning of ODE

• Red dots indicate events on the input signal
15
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Time and physical signals

• The fundamental change of perspective with respect to 

other non-standard proposals is to discretise the 

codomain of signals instead of their domain

• Moreover, in order to reflect continuity of physical 

signals we impose physical signal values to change 

by infinitesimal amounts of

• This requires changing the semantics of 

differential and reset equations to meet this 

constraint

• We propose to unify both concepts by defining 

their semantics by means of a non-standard 

order-one QSS-like recurrence relation

    ẋ = f(x, y)

x(0) = r
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Inifinite slope signals

• After “standardisation” they have vertical slopes
16
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Infinite slope signals

• Infinite slope signals are actually “ordinary” physical signals

• Only after standardisation they appear to be “vertical slope” ones
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Back to the circuit

• When the current reaches the rated value of the first fuse, 
this produces an input event, inverting the slope

17
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Application to a model involving “higher order” 
abstractions 

• Applied to our previous example, we get the 

following results

• Notice that contrary to previous proposals 

standard real signals are no longer maps 

from time to values
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Infinite slope signals

• Infinite slope signals are actually “ordinary” physical signals

• Only after standardisation they appear to be “vertical slope” ones
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Key assumptions

• We rely on two assumptions 
• The signal passes by all intermediate values in the “right order” (continuity) 
• The fuse melts infinitely faster than the voltage increases (model assumption)

19
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Electrical modelling example

• It is easy to figure out that whatever the 

slope of the voltage source, only the first 

fuse may melt, if ever
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Signets

• Consider signals as sequences of additive signets 

• A signet is a non-standard continuous internal function
20

f : ⇤[0, df ] ! ⇤R
f(0) = 0
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Specifying abstraction

• Internal functions are 
sequences of standard functions 

• As a consequence of Łoś' theorem, we can reason on standard 
functions to draw conclusions about the signet 

• Use this to derive interval boundaries for the interval abstraction

21
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Conclusion
• We proposed a semantic model for hybrid signals 

• Uniform (linear) and dense nature of time 
• The “physical” properties of signals (read “continuity”) 

• Operational, although not directly implementable 
• Describes how to compute the exact solution of a system of dynamic equations 
• Disregarding the finiteness of computational resources 

• Can serve as a basis for reasoning and implementation 
• Concrete implementations approximate the solution with non-infinitesimal error 
• New language features can be discussed on a sound basis 

• First step towards formalising signal abstraction

22
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model BouncingBall 
 Real v, x;  
 constant Real g = 10; 
initial equation 
 v = 1.0; 
 x = 0.0; 
equation  
 der(v) = -g; 
 der(x) = v; 
 when x < 0 then 
  reinit(v, -0.8 * pre(v)); 
  reinit(x, 0.0);  
 end when; 
end BouncingBall;
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Which one is correct?

25
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The challenging bouncing ball model

• Results with simulator A • Results with simulator B

• We are likely to obtain one of the following results (other results are possible):

• Question: are these results acceptable?
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What’s wrong?

26
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The challenging bouncing ball model

• Consider the sequence of bounce

instants (including start time):

where

• From the equations of the model:

it is easy to show that:

lim
n!1

tn � t0 =
10v0
g

= 1
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Zeno point
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Abstraction

28
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The challenging bouncing ball model
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model BouncingBall 
 Real v, x;  
 constant Real g = 10; 
initial equation 
 v = 1.0; 
 x = 0.0; 
equation  
 der(v) = -g; 
 der(x) = v; 
 when x < 0 then 
  reinit(v, -0.8 * pre(v)); 
  reinit(x, 0.0);  
 end when; 
end BouncingBall;

This model is an idealised representation of the real-world 
behaviour of the ball.
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Approximation

29
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Review: the standard explicit, fixed step Euler method

• Successive refinements of time steps yield better and better approximations of the 

solution, that all overshoot the Zeno point of the model:

• So why not use the standard explicit Euler method to define our reference semantics?

• Fixed-step Euler method 

• Approximates the desired model behaviour 
• Necessarily oversteps the Zeno point 

• To fit all models, we need an infinitesimal step.

    xn+1 = xn + h · f(xn)
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Non-standard semantics

30
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The problem of choosing the ideal step size

• Non-standard real numbers contain infinitely many infinitesimal positive numbers 

among which we can choose our ideal step size

• Notice that any positive infinitesimal fulfils the desired constraint

standard positive step sizes

non-standard infinitesimal positive step sizes

    ⇤T def
=

�
" · n |n 2 ⇤N0

 

8" ⇡ 0, 8x 2 ⇤R, 9n 2 ⇤Z : n" < x  (n+ 1)"
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