
S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Preambula

• There are 8 USB keys circulating, containing
• Oracle VirtualBox
• Ubuntu 12.04 (with the installation instructions — HTML page)
• BIP and all necessary packages (.deb)

• Exercises and a PDF with full installation instructions at
https://documents.epfl.ch/users/b/bl/bliudze/www/

• Update: 5 of the USB keys also contain exercises now!

1

https://documents.epfl.ch/users/b/bl/bliudze/www/

Rigorous Component-
Based Design in BIP

 Tutorial @ CompArch 
2nd of July, 2014

Simon Bliudze

École polytechnique fédérale de Lausanne  
Rigorous System Design Laboratory

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Coordination based on low-level primitives rapidly
becomes unpractical.

Semaphores, locks, monitors, etc.

3

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 4

Synchronisation

Task 1:
...  
free(S1);
take(S2);
...

Task 2:
...  
take(S1);
free(S2);
...

A simple synchronisation barrier

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 5

Synchronisation

Three-way synchronisation barrier

Task 2:
...  
take(S1);
free(S2);
free(S2);
take(S3);
...

Task 3:
...  
take(S1);
take(S2);
free(S3);
free(S3);
...

Task 1:
...
free(S1);  
free(S1);
take(S2);
take(S3);
...

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Task 1:
x = f1(sh1,sh2);  
free(S1);
take(S2);
sh1 = x;
free(S1);
take(S2);
x = f2(sh1,sh2);

Task 2:
y = g1(sh1,sh2);  
take(S1);
free(S2);
sh2 = y;
take(S1);
free(S2);
y = g2(sh1,sh2);

Coordination mechanisms mix up with
computation and do not scale.

Code maintenance is a nightmare!

Synchronisation with data transfer

6

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Task 1:
x = f1(sh1,sh2);  
free(S1);
take(S2);
sh1 = x;
free(S1);
take(S2);
x = f2(sh1,sh2);

Task 2:
y = g1(sh1,sh2);  
take(S1);
free(S2);
sh2 = y;
take(S1);
free(S2);
y = g2(sh1,sh2);

Coordination mechanisms mix up with
computation and do not scale.

Code maintenance is a nightmare!

Synchronisation with data transfer

6

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Objectives

• Make developing correct concurrent systems easier

• Separate computation from coordination

• “Run the model you verified”

7

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Tutorial outline

• Introduction

• Hands-on BIP

• Flavours of BIP

• Architectures in BIP (announcement)

8

Introduction
Motivation and Component model

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

• Motivation
• Unifying modelling formalism for managing system complexity

• BIP component model
• Basic component model
• Formal semantics and engine-driven execution

10

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Managing system complexity

11

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Managing system complexity
• Mastering system complexity

requires
• Manipulating models to raise the abstraction

level
• Expressive enough to avoid ad-hoc

solutions
• Simple enough to be acceptable for

engineers

11

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Managing system complexity
• Mastering system complexity

requires
• Manipulating models to raise the abstraction

level
• Expressive enough to avoid ad-hoc

solutions
• Simple enough to be acceptable for

engineers

• Bridging the gap between high-
level models and run-time code
• Raising abstraction level increases the gap
• Model and implementation must be

provably equivalent

11

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Managing system complexity
• Mastering system complexity

requires
• Manipulating models to raise the abstraction

level
• Expressive enough to avoid ad-hoc

solutions
• Simple enough to be acceptable for

engineers

• Bridging the gap between high-
level models and run-time code
• Raising abstraction level increases the gap
• Model and implementation must be

provably equivalent

• We should build solid and light-
weight bridges

11

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Unifying modelling formalism

• Solid:
• Clearly established formal semantics
• Encompassing heterogeneity

• computation, execution,
implementation

• Proven code generation chain

• Light-weight:
• Clear, accessible formal semantics
• Minimal set of primitives
• Separation of concerns

• computation and
• coordination

• Efficient implementation for popular
platforms

12

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Rigorous System Design

• Models progressively refined with new information
• In light blue — provided by the designer
• In black — generated by automatic transformation tools

13

• Component
design in any
supported
formalism

Translation
into BIP

• Application
model in BIP

• HW architecture
• Mapping

Model
transformation • Abstract system

model in BIP
• Communication
protocol

Model
transformation

• Concrete system
model in BIP

Code
generation • Generated C

code

Simulation and
execution

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Application model

• Application model is
designed directly in BIP
or…

• …using a language factory
transformation from
• C, AADL, NesC/TinyOS, MathLab/

Simulink, Lustre, DOL, GeNoM

• Safety properties are
verified on this model
• Compositional and incremental

deadlock detection (D-Finder
tool)

• High performance even on
models that other tools fail to
analyze

14

• Component
design in any
supported
formalism

Translation
into BIP

• Application
model in BIP

• HW architecture
• Mapping

Model
transformation • Abstract system

model in BIP
• Communication
protocol

Model
transformation

• Concrete system
model in BIP

Code
generation • Generated C

code

Simulation and
execution

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Abstract system model

• Abstract system model is
generated by a
transformation using
• The model of the target execution

platform (processor(s), memory,
etc.)

• A mapping of atomic components
to the processing units

• It takes in account
• The hardware architecture

constraints (e.g. mutual
exclusion)

• The execution times of atomic
actions

• The scheduling policies seeking
optimal resource utilisation.

15

• Component
design in any
supported
formalism

Translation
into BIP

• Application
model in BIP

• HW architecture
• Mapping

Model
transformation • Abstract system

model in BIP
• Communication
protocol

Model
transformation

• Concrete system
model in BIP

Code
generation • Generated C

code

Simulation and
execution

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Concrete system model

• Concrete system model is obtained by expressing high
level BIP coordination mechanisms…
• Atomic multiparty interactions
• Priorities

• …by using primitives of the execution platform
• For examle, protocols using asynchronous message passing

16

• Component
design in any
supported
formalism

Translation
into BIP

• Application
model in BIP

• HW architecture
• Mapping

Model
transformation • Abstract system

model in BIP
• Communication
protocol

Model
transformation

• Concrete system
model in BIP

Code
generation • Generated C

code

Simulation and
execution

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Code generation

• C++ code is automatically generated for each
processing unit

• Generated code is monolithic, minimising the
coordination overhead

17

• Component
design in any
supported
formalism

Translation
into BIP

• Application
model in BIP

• HW architecture
• Mapping

Model
transformation • Abstract system

model in BIP
• Communication
protocol

Model
transformation

• Concrete system
model in BIP

Code
generation • Generated C

code

Simulation and
execution

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Component-based design
Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 8 / 29

18

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Component-based design
Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 8 / 29

18

• Three layers

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Component-based design
Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 8 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

18

• Three layers
• Component behaviour

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Component-based design
Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 8 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

18

• Three layers
• Component behaviour
• Coordination

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Component-based design
Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 8 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

A.x = max (B.y, C.z)

18

• Three layers
• Component behaviour
• Coordination
• Data transfer

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Component-based design
Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 8 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29

• Interesting results already at this abstraction level
• Detection of synchronisation deadlocks

S. Bensalem, M. Bozga, J. Sifakis, T.-H. Nguyen.  
DFinder: A Tool for Compositional Deadlock Detection and Verification [CAV’09]

• Synthesis of glue for safety properties
S. Bliudze and J. Sifakis.  
Synthesizing Glue Operators from Glue Constraints for the Construction of Component-
Based Systems [SC’11]

A.x = max (B.y, C.z)

18

• Three layers
• Component behaviour
• Coordination
• Data transfer

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connectors

• Connector are tree-like structures
• ports as leaves and nodes of two types

• Triggers (diamonds) — nodes that can “initiate” an interaction
• Synchrons (bullets) — nodes that can only “join” an interaction initiated by

others

• In practice, maximal progress is implicitly assumed
19

tick1 tick2 tick3

p + pq + pr + pqr

tick1

p q r

tick2 tick3

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connector examples

20

• The Algebra of Connectors

Strong synchronisation: pqr 
pqr

Broadcast: p + pq + pr + pqr 
p’qr

Atomic broadcast: p + pqr 
p’[qr]

Causal chain: p + pq + pqr + pqrs 
p’[q’[r’s]]

p q r

p q r

p
q r

p
q

r s

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Practical example

• Satellite software design
• A collaboration with Swiss Space Center

• Component-based design in BIP of the control software
for a nano-satellite
• Attitude Determination and Control System (ADCS)
• Communication with other subsystems through an I2C bus

22

Satellite software design with BIP framework

Pagnamenta Marco

Example 1
Nominal housekeeping routine

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 24
8

Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 25
8

Example 1slide courtesy of 
Marco Pagnamenta 9

Example 1

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 26
8

Example 1slide courtesy of 
Marco Pagnamenta 10

Example 1

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 27
8

Example 1slide courtesy of 
Marco Pagnamenta 11

Example 1

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 28
8

Example 1slide courtesy of 
Marco Pagnamenta 12

Example 1

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 29
8

Example 1slide courtesy of 
Marco Pagnamenta 13

Example 1

Example 2
Stopping housekeeping

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 31
8

Example 1slide courtesy of 
Marco Pagnamenta

15

Example 2

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 32
8

Example 1slide courtesy of 
Marco Pagnamenta

Example 3
Switching destination of housekeeping data

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 34
8

Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 35
8

Example 1slide courtesy of 
Marco Pagnamenta 9

Example 1

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 36
8

Example 1slide courtesy of 
Marco Pagnamenta 20

Example 3

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 37
8

Example 1slide courtesy of 
Marco Pagnamenta 21

Example 3

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 38
8

Example 1slide courtesy of 
Marco Pagnamenta 22

Example 3

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 39
8

Example 1slide courtesy of 
Marco Pagnamenta

23

Example 3

Example 4
I2C bus failure management

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 41
8

Example 1slide courtesy of 
Marco Pagnamenta 25

Example 4

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 42
8

Example 1slide courtesy of 
Marco Pagnamenta 26

Example 4

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 43
8

Example 1slide courtesy of 
Marco Pagnamenta

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components
0: input(m,n>0);  
1: while(m != n){
2: if (m > n)
3: m = m - n;
4: else //m < n
5: n = n - m;
6: }
7: //m=n=gcd(m,n)

• There is a canonical transformation
• The choice of abstraction level is important

• Taking a transition
1. is allowed if the guard evaluates to true
2. executes the action
3. updates current state

45

label, [guard], action

0

1

7

3

5

2

in
pu

t
[m

 =
 n

]

[m
 > n]

[m
 <

 n
]

[m != n]

m = m - n

n = n - m

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP by example: Mutual exclusion

46

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2

b1

f1

b2

f2

b2 b1

f1

b1b2

f1f2

Interaction model:
{b1, f1, b2, f2, b1f2, b2f1}

Maximal progress:
b1 < b1f2, b2 < b2f1

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2
b1

f1
b2

f2

b2 b1

f1

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2
b1

f1
b2

f2 f1

Design view
Semantic view

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Semantics: Interactions

47

Interaction model: — a set of allowed interactions � ✓ 2P

Bi = (Qi, Pi,!i), !i ✓ Qi ⇥ 2Pi ⇥Qi, P = ·
[

i

Pi

qi
a\Pi�! q0i (if a \ Pi 6= ;) qi = q0i (if a \ Pi = ;)

q1 . . . qn
a! q01 . . . q

0
n

for each .a 2 �

Consider a set of n behaviours, such that

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Semantics: Priority

48

Priority model: — strict partial order � ✓ 2P ⇥ 2P

for each . a 2 2P

Bi = (Qi, Pi,!i), !i ✓ Qi ⇥ 2Pi ⇥Qi, P = ·
[

i

Pi

q
a�! q0 8a � a0, q

a0

6�!
q

a�!� q0

Interaction model: — a set of allowed interactions � ✓ 2P

qi
a\Pi�! q0i (if a \ Pi 6= ;) qi = q0i (if a \ Pi = ;)

q1 . . . qn
a! q01 . . . q

0
n

for each .a 2 �

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Engine-based execution

49

Priorities

Interactions

B E H A V I O U R1. Components notify the
Engine about enabled
transitions.

2. The Engine picks an
interaction and instructs
the components.

Hands-on BIP
Safe control layer of a Rescue robot

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Hello World

51

package HelloPackage
 port type HelloPort_t()

 atom type HelloAtom()
 port HelloPort_t p()

 place START,END

 initial to START
 on p from START to END
 end

 compound type HelloCompound()
 component HelloAtom c1()
 end
end

START

END

p

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Hello World
$ bipc.sh -I . -p HelloPackage -d "HelloCompound()" \ 
 --gencpp-output output

$ cd build
$ cmake ../output
$ make
$./system

52

[BIP ENGINE]: BIP Engine (version 2013.06-RC5)
[BIP ENGINE]:
[BIP ENGINE]: initialize components...
[BIP ENGINE]: random scheduling based on seed=1404226060
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1.p
[BIP ENGINE]: -> choose [0] ROOT.c1.p
[BIP ENGINE]: state #1: deadlock!

package HelloPackage
 port type HelloPort_t()

 atom type HelloAtom()
 port HelloPort_t p()
 place START,END
 initial to START
 on p from START to END
 end

 compound type HelloCompound()
 component HelloAtom c1()
 end
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Hello World
$ bipc.sh -I . -p HelloPackage -d "HelloCompound()" \ 
 --gencpp-output output

$ cd build
$ cmake ../output
$ make
$./system

52

[BIP ENGINE]: BIP Engine (version 2013.06-RC5)
[BIP ENGINE]:
[BIP ENGINE]: initialize components...
[BIP ENGINE]: random scheduling based on seed=1404226060
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1.p
[BIP ENGINE]: -> choose [0] ROOT.c1.p
[BIP ENGINE]: state #1: deadlock!

package HelloPackage
 port type HelloPort_t()

 atom type HelloAtom()
 port HelloPort_t p()
 place START,END
 initial to START
 on p from START to END
 end

 compound type HelloCompound()
 component HelloAtom c1()
 end
end

Also try options
-i — interactive
-d — debug

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example: Rescue robot

• Safety constraints
• Must not advance and rotate at the same time
• Must not leave the region
• Must not move into burning areas
• Must update navigation and sensor data at each move
• When objective is found, must stop

53

Navigator

finished

border

update

Sensor tº in front

measure

Engine rotate

advance

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Rough plan

• One square

• N × N field (with N = 2, 5)

• Complete with the robot

• Remove the field!

54

Navigator

finished

border

update

Sensor tº in front

measure

Engine rotate

advance

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 55

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 <...>
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)
 connector Singleton
 c_spark(square.spark)
 end

 compound type RescueCompound()
 component Field field()
 end
end

Atoms, ports and places

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 55

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 <...>
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)
 connector Singleton
 c_spark(square.spark)
 end

 compound type RescueCompound()
 component Field field()
 end
end

Atoms, ports and places

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

RescueRobot/10

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Atoms, ports and places

56

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 on heat from SAFE to HOT
 on burn from HOT to BURNING
 on spark from BURNING to BURNING
 on cool from BURNING to HOT
 on extinguish from HOT to SAFE
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)
 connector Singleton
 c_spark(square.spark)
 end

 compound type RescueCompound()
 component Field field()
 end
end

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Atoms, ports and places

56

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 on heat from SAFE to HOT
 on burn from HOT to BURNING
 on spark from BURNING to BURNING
 on cool from BURNING to HOT
 on extinguish from HOT to SAFE
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)
 connector Singleton
 c_spark(square.spark)
 end

 compound type RescueCompound()
 component Field field()
 end
end

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Atoms, ports and places

56

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 on heat from SAFE to HOT
 on burn from HOT to BURNING
 on spark from BURNING to BURNING
 on cool from BURNING to HOT
 on extinguish from HOT to SAFE
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)
 connector Singleton
 c_spark(square.spark)
 end

 compound type RescueCompound()
 component Field field()
 end
end

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Atoms, ports and places

56

package RescueRobot
 port type Port_t()

 atom type Square()
 export port Port_t heat()
 export port Port_t spark()

 port Port_t burn()
 port Port_t cool()
 port Port_t extinguish()

 place SAFE, HOT, BURNING

 initial to SAFE
 on heat from SAFE to HOT
 on burn from HOT to BURNING
 on spark from BURNING to BURNING
 on cool from BURNING to HOT
 on extinguish from HOT to SAFE
 end

 connector type Singleton (Port_t p)
 define p
 end

 compound type Field()
 component Square square()

 connector Singleton
 c_heat(square.heat)
 connector Singleton
 c_spark(square.spark)
 end

 compound type RescueCompound()
 component Field field()
 end
end

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

57

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)

 <...>
 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

57

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)

 <...>
 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

57

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)

 <...>
 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

57

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)

 <...>
 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

57

atom type Square (int delay)
 data int timer

 export port Port_t tick()

 <...>
 on heat from SAFE to HOT
 do {timer = 0;}

 on burn from HOT to BURNING
 provided (timer >= delay)

 <...>
 on tick from SAFE to SAFE
 on tick from HOT to HOT
 do {timer = timer + 1;}
 on tick from BURNING to BURNING
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

RescueRobot/20
Exercise

1. Add volatility
2. Add initial temperature

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Internal transitions

58

internal from INIT to ...

SAFE HOT

heat
timer = 0

BURN

burn
[timer ≥ delay]

extinguish

cool spark

ticktick
timer++

tick

INIT

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connectors

59

connector type Synchron2 (
 Port_t p, Port_t q
)
 export port Port_t sync()
 define p q
end

Notice:
• [[tick11 tick12] [tick21 tick22]]

~ [tick1 tick2 tick3 tick4]

• spark12’ heat11 heat22

~ [spark12’ heat11]’ heat22

S21

S11

S22

S12tick tick

tick tick

spark

spark

spark

spark

heat

heat heat

heat

S. Bliudze, J. Sifakis.  
The Algebra of Connectors—Structuring Interaction in BIP [EMSOFT’07]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connectors

59

connector type Synchron2 (
 Port_t p, Port_t q
)
 export port Port_t sync()
 define p q
end

Notice:
• [[tick11 tick12] [tick21 tick22]]

~ [tick1 tick2 tick3 tick4]

• spark12’ heat11 heat22

~ [spark12’ heat11]’ heat22

S21

S11

S22

S12tick tick

tick tick

spark

spark

spark

spark

heat

heat heat

heat

S. Bliudze, J. Sifakis.  
The Algebra of Connectors—Structuring Interaction in BIP [EMSOFT’07]

RescueRobot/30

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w

4 7 5

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w
w = max (p.x, q.y)7

5

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w
w = max (p.x, q.y)

v = max (exp.w, r.z)

7

5

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w
w = max (p.x, q.y)

v = max (exp.w, r.z)7

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w

777

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w

exp.w, r.z = v

77

7

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w
p.x, q.y = exp.w

exp.w, r.z = v

7 7 7

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q)
 data int w
 export port Port_int exp(w)
 define p q
 up {w = max(p.v, q.v);}
 down {p.v = w; q.v = w;}
end

60

p.x q.y
r.z

exp.w
p.x, q.y = exp.w

exp.w, r.z = v

7 7 7

RescueRobot/35
Exercise

1. Add connectors to gather and print information  
about the temperature in all squares of the field.

2. Add an atom to enforce this after each tick of  
the clock.

(Notice also the @cpp(…) annotation in the 1st line.)

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components of the robot
• Safety constraints

• Must not advance and rotate at the same time
• Must not leave the region
• Must not move into burning areas
• Must update navigation and sensor data at

each move
• When objective is found, must stop

61

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

tick

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components of the robot
• Safety constraints

• Must not advance and rotate at the same time
• Must not leave the region
• Must not move into burning areas
• Must update navigation and sensor data at

each move
• When objective is found, must stop

61

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

tick

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components of the robot
• Safety constraints

• Must not advance and rotate at the same time
• Must not leave the region
• Must not move into burning areas
• Must update navigation and sensor data at

each move
• When objective is found, must stop

61

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

tick

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components of the robot
• Safety constraints

• Must not advance and rotate at the same time
• Must not leave the region
• Must not move into burning areas
• Must update navigation and sensor data at

each move
• When objective is found, must stop

61

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

tick

RescueRobot/40

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components of the robot
• Safety constraints

• Must not advance and rotate at the same time
• Must not leave the region
• Must not move into burning areas
• Must update navigation and sensor data at

each move
• When objective is found, must stop

61

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

tick

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connecting the robot

62

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

• Must update
navigation and
sensor data at
each move

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connecting the robot

62

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

• Must update
navigation and
sensor data at
each move

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connecting the robot

63

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

• Must not leave the region
• Must not move into burning areas
• When objective is found, must stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connecting the robot

63

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

• Must not leave the region
• Must not move into burning areas
• When objective is found, must stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connecting the robot

63

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

• Must not leave the region
• Must not move into burning areas
• When objective is found, must stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connecting the robot

63

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

• Must not leave the region
• Must not move into burning areas
• When objective is found, must stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connecting the robot

63

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance

check

tick

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]

tick
tick

measure

tick

danger
danger

measure
VALID

Navigator

INIT

tick

border
[at_border]

finished
[on_target]

update rotate

tick

border finished

update

rotate

tick

• Must not leave the region
• Must not move into burning areas
• When objective is found, must stop

priority p_rotate c_rotate:* < c_finished:*
priority p_advance1 c_advance:* < c_finished:*
priority p_advance2 c_advance:* < c_danger:*
priority p_advance3 c_advance:* < c_border:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

The final step

• Remove the model of the
environment

• Replace “interface”
elements with
corresponding primitives

• Generate executable
code from the remaining
model

64

The flavours of BIP
Real-time, Dynamic, Java, Scala,…

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Core BIP tool-set for ES

• Uses an EMF model as
a pivot.

• Targets a C/C++
implementation.

• Complete code
generation.

66

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Real-time BIP

• Real-Time extension of the
BIP language and tools
• abstract model: timed automata

representing user requirements
• real-time execution on the target

platform (actual execution
times)

• static verification for known
properties on execution times

67

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

RT-BIP methodology

68

Introduction Methodology

Methodology

From an (abstract) Real-Time BIP model:

��������
���������
	�
	�

���������	
���
����	
�����

	
��
�������
�

���
	
��

�����	
�����	���
�

	
���	������
����
������
	
���������
���
����

���	���
�
�����
�����
�����

� !��	��
"#�
$
���

�����
���

�����

	
���	�����
�
�����
	 �	������

Jacques Combaz (VERIMAG) Real-Time BIP January 30, 2014 3 / 24

slide courtesy of 
Jacques Combaz

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Dynamic BIP (Dy-BIP)

• Dynamic interconnection is necessary for modern systems
• web services, robotic systems, reconfigurable middleware, wireless sensor

networks, fault-tolerant systems, etc.

• Architecture is the composition of dynamically changing
architecture constraints defined by components
• A feasible interaction satisfies the constraints of all the involved components.

69

Dynamic Architecture Using Dy-BIP

Dynamic Architecture

Modern systems are increasingly required to be capable of
dynamically changing their architectures at run-time (e.g., web
services, robotic systems, reconfigurable middleware, wireless sensor
networks, fault-tolerant systems, . . .).

Architecture is defined as the composition of dynamically changing
architecture constraints defined by components.

p[Cp] q[Cq]

p q

r [Cr]

r

p qp q q r q r

A feasible interaction satisfies the
constraints of all the involved
components.

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 10 / 28

M. Bozga, M. Jaber, N. Maris, J. Sifakis.  
Modeling Dynamic Architectures using
Dy-BIP [SC’12]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Dynamic BIP (Dy-BIP)

• Dynamic interconnection is necessary for modern systems
• web services, robotic systems, reconfigurable middleware, wireless sensor

networks, fault-tolerant systems, etc.

• Architecture is the composition of dynamically changing
architecture constraints defined by components
• A feasible interaction satisfies the constraints of all the involved components.

69

Dynamic Architecture Using Dy-BIP

Dynamic Architecture

Modern systems are increasingly required to be capable of
dynamically changing their architectures at run-time (e.g., web
services, robotic systems, reconfigurable middleware, wireless sensor
networks, fault-tolerant systems, . . .).

Architecture is defined as the composition of dynamically changing
architecture constraints defined by components.

p[Cp] q[Cq]

p q

r [Cr]

r

p qp q q r q r

A feasible interaction satisfies the
constraints of all the involved
components.

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 10 / 28

M. Bozga, M. Jaber, N. Maris, J. Sifakis.  
Modeling Dynamic Architectures using
Dy-BIP [SC’12]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Interaction constraints
• Sets of ports can be characterised by boolean constraints

• p ⇒ false — p is absent from the interaction; p ⇒ true — no constraints

Strong synchronisation: pqr 
p ⇒ q, q ⇒ r, r ⇒ p

Broadcast: p + pq + pr + pqr 
q ⇒ p, r ⇒ p

Atomic broadcast: p + pqr 
q ⇒ pr, r ⇒ pq

Causal chain: p + pq + pqr + pqrs 
q ⇒ p, r ⇒ q, s ⇒ r

70

p q r

p q r

p
q r

p
q

r s

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Dynamic Architecture Using Dy-BIP Dynamic BIP Model

Components

An atomic component B is defined by B = (L,P ,H,T), where,

L is a finite set of control locations;

P is a finite set of ports;

H is a finite set of history variables;

T ✓ L⇥ P ⇥ C ⇥ 2H ⇥ L is a set of transitions.

A transition (`, p,C ,h, `0):

`, `0 2 L are the source, target locations

p 2 P , is the port o↵ered for interaction

C 2 C is the interaction constraint

h ✓ H, the set of history variables to be updated

`

`0

p,C ,h

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 12 / 28

Transition constraints

• A transition
• , are the source, target locations
• , is the port offered for interaction
• , is the interaction constraint
• , is the set of history variables to

be updated

71

Dynamic Architecture Using Dy-BIP Dynamic BIP Model

Components

An atomic component B is defined by B = (L,P ,H,T), where,

L is a finite set of control locations;

P is a finite set of ports;

H is a finite set of history variables;

T ✓ L⇥ P ⇥ C ⇥ 2H ⇥ L is a set of transitions.

A transition (`, p,C ,h, `0):

`, `0 2 L are the source, target locations

p 2 P , is the port o↵ered for interaction

C 2 C is the interaction constraint

h ✓ H, the set of history variables to be updated

`

`0

p,C ,h

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 12 / 28

Dynamic Architecture Using Dy-BIP Dynamic BIP Model

Components

An atomic component B is defined by B = (L,P ,H,T), where,

L is a finite set of control locations;

P is a finite set of ports;

H is a finite set of history variables;

T ✓ L⇥ P ⇥ C ⇥ 2H ⇥ L is a set of transitions.

A transition (`, p,C ,h, `0):

`, `0 2 L are the source, target locations

p 2 P , is the port o↵ered for interaction

C 2 C is the interaction constraint

h ✓ H, the set of history variables to be updated

`

`0

p,C ,h

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 12 / 28

Dynamic Architecture Using Dy-BIP Dynamic BIP Model

Components

An atomic component B is defined by B = (L,P ,H,T), where,

L is a finite set of control locations;

P is a finite set of ports;

H is a finite set of history variables;

T ✓ L⇥ P ⇥ C ⇥ 2H ⇥ L is a set of transitions.

A transition (`, p,C ,h, `0):

`, `0 2 L are the source, target locations

p 2 P , is the port o↵ered for interaction

C 2 C is the interaction constraint

h ✓ H, the set of history variables to be updated

`

`0

p,C ,h

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 12 / 28

Dynamic Architecture Using Dy-BIP Dynamic BIP Model

Components

An atomic component B is defined by B = (L,P ,H,T), where,

L is a finite set of control locations;

P is a finite set of ports;

H is a finite set of history variables;

T ✓ L⇥ P ⇥ C ⇥ 2H ⇥ L is a set of transitions.

A transition (`, p,C ,h, `0):

`, `0 2 L are the source, target locations

p 2 P , is the port o↵ered for interaction

C 2 C is the interaction constraint

h ✓ H, the set of history variables to be updated

`

`0

p,C ,h

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 12 / 28

Dynamic Architecture Using Dy-BIP Dynamic BIP Model

Components

An atomic component B is defined by B = (L,P ,H,T), where,

L is a finite set of control locations;

P is a finite set of ports;

H is a finite set of history variables;

T ✓ L⇥ P ⇥ C ⇥ 2H ⇥ L is a set of transitions.

A transition (`, p,C ,h, `0):

`, `0 2 L are the source, target locations

p 2 P , is the port o↵ered for interaction

C 2 C is the interaction constraint

h ✓ H, the set of history variables to be updated

`

`0

p,C ,h

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 12 / 28

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Location constraints

The location constraint characterises the contribution of the
component to a global interaction:

72

Dynamic Architecture Using Dy-BIP Dynamic BIP Model

Location Constraint CL

`

`
1

`
2

`
3

p
1

, C
1 p

2

, C
2

p
3

, C
3

The location constraint characterizes the possible contribution of the
component to a global interaction:

CL(`, s) =
_

`
p,C ,h�����!`0

0

@p ^ C (s) ^
^

p02P\{p}

¬p0
1

A _
^

p2P
¬p

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 14 / 28

CL(`, s) =
_

`
p,C,h���!`0

0

@p ^ C(s) ^
^

p02P\{p}

¬p0
1

A _
^

p2P

¬p

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Symbolic execution engine
• Atoms send location

contraints encoded as
BDDs

• The engine performs the
global conjunction

• If satisfiable, it picks one
(maximal) solution

• Notifies the atoms

73

Dynamic Architecture Using Dy-BIP

Dynamic Architecture

Modern systems are increasingly required to be capable of
dynamically changing their architectures at run-time (e.g., web
services, robotic systems, reconfigurable middleware, wireless sensor
networks, fault-tolerant systems, . . .).

Architecture is defined as the composition of dynamically changing
architecture constraints defined by components.

p[Cp] q[Cq]

p q

r [Cr]

r

p qp q q r q r

A feasible interaction satisfies the
constraints of all the involved
components.

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 10 / 28

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Macro notation
• Main types of constraints for a given port p

• Causal constraints: 
of the form p ⇒ (q ∧ r) ∨ (s ∧ t), meaning that one of q r and s t is required

• Acceptance constraints: 
of the form p ⇒ ¬q, meaning that q is forbidden

• Macro notation for constraints:  
Let A, B be component types with instances a1, a2, a3, b1, b2
• Require A.q translates to: p ⇒ a1.q ∨ a2.q ∨ a3.q

• Accept A.r, B.q translates to: p ⇒ ∧t∉{p, a1.r, a2.r, a3.r, b1.q, b2.q} ¬t

• Unique A.q translates to: p ⇒ (a1.q ¬a2.q ¬a3.q) ∨
(¬a1.q a2.q ¬a3.q) ∨ (¬a1.q ¬a2.q a3.q)

74

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example: Master and Slaves

75

Experimental Results Masters and Slaves

Masters and Slaves

Each master sends requests sequentially to two slaves, and then performs
some computation involving both of them.

[y : Slave | y .get 2 h

2

]

req

Require x .get[x : Slave | x .get /2 h

1

]

Accept x .get[x : Slave | x .get /2 h

1

]

Unique Slave.get
Update h

2

0 1 2

req req

compute

req

Require Slave.get
Accept Slave.get
Unique Slave.get
Update h

1

Accept x .work y .work[x : Slave | x .get 2 h

1

]

Require x .work y .work[x : Slave | x .get 2 h

1

]
compute

[y : Slave | y .get 2 h

2

]

Master Type

[x : Master | x .req 2 h]

0 1

get

work

Update h

get

Require Master .req
Accept Master .req
Unique Master .req

work

Require x .compute

Accept Slave.work x .compute

[x : Master | x .req 2 h]

Slave Type

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 19 / 28

Each master sends requests sequentially to two slaves, and
then performs some computation involving both of them.

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP coordination for Java

• BIP framework addresses three important issues:
• High-level abstraction for synchronisation
• Atomicity of state manipulation (e.g. as opposed to threads)
• Separation of concerns: coordination is defined independently of component code

• State-of-practice: AKKA — asynchronous communication between actors

• Coordination mechanisms must not disrupt the existing software stack

76

S. Bliudze, A. Mavridou, R. Szymanek,
A. Zolotukhina. Coordination of software
components with BIP: application to
OSGi. [MiSE 2014]

Installed

ResolvedUninstalled

StoppingStarting

Active

install

uninstall resolve

uninstall

start

stop

update

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Use case: Camel Routes

• Many independent routes share memory
• We have to control the memory usage
• e.g., by limiting to only a safe number of routes simultaneously

77

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Camel routes

• Transition types:
• Enforceable — can be controlled by

the Engine
• Spontaneous — inform about

uncontrollable external events

public class RouteBuilder(...)
{
from(…).process(…).to(…);

}

working

ready

begin end

begin

end

finishing

suspended

end

off

off

on on

off

78

Camel API: suspendRoute and resumeRoute

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finishedon

add rm

0

add

1 2

add

rmrm

Use case: BIP model

79

BIP Specifications

BIP Monitor

working

ready

begin end

begin

end

finishing

suspended

end

off

off

on on

off

The Monitor component
limits the number of
active routes to two

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Implemented architecture

Arrows
• Blue — API calls between model and entity
• Red — OSGi-managed through published services
• Green — called once at initialisation phase

80

BIP Coordinator bundle

OSGi bundle

BIP Component

Spring app context bundle
BIP ComponentSpring

bean to
control

Notifier

BIP
Control
Spec

BIP
Model
Executor

BIP Monitor
Spec

BIP Model
Executor

Symbolic BIP Engine

Current
State

Encoder
Glue

Encoder

Behaviour Encoder

Glue description
from an XML file

Components register
during initialisation

inform

execute

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Specification: Ports, Initial state

81

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

@bipPorts({
@bipPort(name = "end", type = "spontaneous"),
@bipPort(name = "off", type = "enforceable"),
…

})

@bipComponentType(
initial = "off",  
name = "org.bip.spec.switchableRoute")

public class SwitchableRoute
 implements CamelContextAware,  
 InitializingBean,
 DisposableBean
{ … }

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Specification: Transitions

• Transition annotations
• Label, i.e. a port, declared by @bipPort
• Source and target states
• Guard expression

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

@bipTransition(name = "off",
source = "on", target = "wait", guard = "")

public void stopRoute() throws Exception {
 camelContext.suspendRoute(routeId);
}

82

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Specification: Guards

83

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

@bipTransition(name = "end",  
 source = "wait", target = "done",  
 guard = "!isFinished")  
public void spontaneousEnd() throws Exception { … }

@bipTransition(name = "",  
 source = "wait", target = "done",  
 guard = "isFinished")  
public void internalEnd() throws Exception { … }

BIP Specification: Guards

83

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

@bipTransition(name = "end",  
 source = "wait", target = "done",  
 guard = "!isFinished")  
public void spontaneousEnd() throws Exception { … }

@bipTransition(name = "",  
 source = "wait", target = "done",  
 guard = "isFinished")  
public void internalEnd() throws Exception { … }

@bipGuard(name = "isFinished")  
public boolean isFinished() {  
 CamelContext cc = camelContext;  
 return  
 cc.getInflightRepository().size( 
 cc.getRoute(routeId).getEndpoint()  
) == 0;  
}

BIP Specification: Guards

83

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Component interface

• Interface methods:
• execute — called by the Engine to

execute an enforceable transition
• inform — called by Notifiers to

inform about spontaneous events

84

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

public interface BIPComponent extends BIPSpecification
{
 void execute(String portID);
 void inform(String portID);
}

BIP in functional
languages

Example in Scala

slide courtesy of 
Romain Edelmann

slide courtesy of 
Romain Edelmann

slide courtesy of 
Romain Edelmann

slide courtesy of 
Romain Edelmann

Example in Haskell

slide courtesy of 
Romain Edelmann

slide courtesy of 
Romain Edelmann

The theory of architectures
One of the current research directions

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Reusable design patterns
• Systems are not built from

scratch

• Maximal re-use of building
blocks  
(off-the-shelf components)

• Maximal re-use of solutions 
(libraries, design patterns,
etc.)

• Express coordination
constraints in declarative
manner

93

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Applications
• Concurrency:  

(a)synchronous, time-triggered, token-ring,  
mutual exclusion

• Interface adaptation:  
communication protocols, data access control

• Robustness:  
fault detection & recovery, resource management

• etc.

94

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Theory of architectures

• How to model?

• How to specify?

• How to combine?

• Are properties preserved?

95

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example in BIP

96

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example in BIP

96

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example in BIP

96

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example in BIP

96

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example in BIP

96

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example in BIP

96

�12 = {;, b1b12, b2b12, f1f12, f2f12}

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Enforcing properties
• Consider behaviour

• A property: initial:
• An invariant:

• An architecture imposes a property on  
if is an initial invariant of the projection of the reachable
behaviour of onto

97

B = (Q, q0, P,!)

� ✓ Q

8q 2 �, 8a 2 2P , (q
a�! q0) q0 2 �)

q0 2 �

A � B
�

A(B) B

A(B) |= �

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Main result
• Safety

• Also an efficient testing methodology for liveness

• Will be presented at SEFM’14 in Grenoble

A1(B) |= �1

A2(B) |= �2

)
=)

�
A1 �A2

�
(B) |= �1 \ �2

98

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Summary
• Rigorous design workflow

• Validate first, then generate the code
• A sequence of semantics-preserving transformations

• BIP language: provide higher-level abstraction for
coordination of concurrent components
• We used the general language and the basic Engine

• BIP framework (at different stages of maturity)
• Several other language flavours
• Several engine implementations
• Analysis & verification tools

99

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 100

…and many others.

