Preambula

* There are 8 USB keys circulating, containing

e QOracle VirtualBox

 Ubuntu 12.04 (with the installation instructions — HTML page)

 BIP and all necessary packages (.deb)

e Exercises and a PDF with full installation instructions at

https://documents.epfl.ch/users/b/bl/bliudze/www/

 Update: 5 of the USB keys also contain exercises now!

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

https://documents.epfl.ch/users/b/bl/bliudze/www/

ECOLE POLYTECHNIQUI
FEDERALE DE LAUSANNE

Rigorous Component-
Based Design in BIP

Tutorial @ CompArch
2nd of July, 2014

Simon Bliudze

Fcole polytechnigue fédérale de Lausanne
Rigorous System Design Laboratory

Semaphores, locks, monitors, etc.

Coordination based on low-level primitives rapidly
becomes unpractical.

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Synchronisation

Task 1: Task 2:
%%ée(Sl); ééke(Sl);
take (S2) ; free(S2);

A simple synchronisation barrier '— R —

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 4

Synchronisation

Task 1 Task 2 Task
free (S1); take (S1); take
free (S1); free (S2); take
take (S2) ; free (S2); free
take (S3); take (S3) ; free

Three-way synchronisation barrier

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Synchronisation with data transfer

Task 1: Task 2:

x = f1(shl, sh2); vy = gl (shl,sh2);

free(S1); take (S1) ;

take (S2) ; free (S2);

shl = x; sh2 = vy;

free (S1); take (S1) ;

take (S2) ; free (S2);

x = f£2(shl, sh2); vy = g2 (shl,sh2)
Coordination mechanisms mix up with P

computation and do not scale.

42

Code maintenance is a nightmare! ﬂ

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Synchronisation with data transfer

Task 1: Task 2:

x = f1(shl, sh2); vy = gl (shl,sh2);

free(S1l); take (S1) ;

take (S2) ; free(S2);

shl = x; sh2 = vy;

free(S1); take (S1) ;

take (S2) ; free(S2);

x = f£2(shl, sh?2); vy = g2 (shl,sh2)
Coordination mechanisms mix up with F

computation and do not scale.

42

Code maintenance is a nightmare! ﬂ

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Objectives

* Make developing correct concurrent systems easier
e Separate computation from coordination

 “Run the model you verified”

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Tutorial outline

e [ntroduction
e Hands-on BIP
e Flavours of BIP

* Architectures in BIP (announcement)

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

INntroduction

Motivation and Component model

 Motivation

e Uniftying modelling formalism for managing system complexity

 BIP component model

e Basic component model

* Formal semantics and engine-driven execution

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

10

Managing system complexity

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

11

Managing system complexity

 Mastering system complexity
requires

* Manipulating models to raise the abstraction
level

* Expressive enough to avoid ad-hoc
solutions

* Simple enough to be acceptable for
engineers

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

11

Managing system complexity

 Mastering system complexity
requires

* Manipulating models to raise the abstraction
level

* Expressive enough to avoid ad-hoc
solutions

* Simple enough to be acceptable for
engineers

* Bridging the gap between high-
level models and run-time code

* Raising abstraction level increases the gap

* Model and implementation must be
provably equivalent

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

11

Managing system complexity

 Mastering system complexity
requires

* Manipulating models to raise the abstraction
level

* Expressive enough to avoid ad-hoc
solutions

* Simple enough to be acceptable for
engineers

* Bridging the gap between high-
level models and run-time code

* Raising abstraction level increases the gap

* Model and implementation must be
provably equivalent

* \WWe should build solid and light-
weight bridges

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

11

Unn‘ymg modelling formalism

Solid: e Light-weight:
» Clearly established formal semantics » Clear, accessible formal semantics
« Encompassing heterogeneity * Minimal set of primitives

« computation, execution, * Separation of concerns

implementation « computation and

 Proven code generation chain e coordination
o Efficient implementation for popular
platforms

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

12

Rigorous System Design

«Component *Abstract system *Generated C
design in any — model in BIP code
supported *Application -Communication *Concrete system
formalism model in _BIP protocol model in BIP

*HW architecture
*Mapping

 Models progressively refined with new information
* |n — provided by the designer

* In black — generated by automatic transformation tools

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

13

Application model

«Component *Abstract system ger?eorg?ion *Generated C
design in any — model in BIP code
et e -Commurication || S%este sy
ormansm *HW architecture protocol
*Mapping
1 Model Simulation and
transformation execution
* Application model is e Safety properties are
designed directly in BIP veritied on this model
or... « Compositional and incremental

deadlock detection (D-Finder

 ...Using a language factory tool)

transformation from |
e High performance even on

* C, AADL, NesC/TinyOs, MathLab/ models that other tools fail to
Simulink, Lustre, DOL, GeNoM analyze

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 14

Abstract system model

*Component
design in any
supported
formalism

Translation
into BIP

* Abstract system model is
generated by a

.

*Application

model in BIP

*HW architecture
*Mapping

transformation using

* The model of the target execution
platform (processor(s), memory,

etc.)

Code
*Abstract system generation *Generated C
model in BIP code
«Communication *Concrete system
model in BIP

protocol

Simulation and
execution

e |t takes In account

* [he hardware architecture
constraints (e.g. mutual
exclusion)

e The execution times of atomic
actions

* A mapping of atomic components * The scheduling policies seeking
to the processing units

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

optimal resource utilisation.

15

Concrete system model

Model

«Component transformation *Abstract system *Generated C
design in any o model in BIP code
supported *Application -Communication *Concrete system
formalism model in .BIP protocol model in BIP

*HW architecture

*Mapping

Translation Simulation and
into BIP execution

e Concrete system model is obtained by expressing high
level BIP coordination mechanisms...

* Atomic multiparty interactions

e Priorities

e ...by using primitives of the execution platform

* For examle, protocols using asynchronous message passing

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

16

Code generation

Model

«Component transformation *Abstract system J *Generated C
design in any o model in BIP code
supported *Application -Communication *Concrete system
formalism model in IBIP protocol model in BIP

*HW architecture

*Mapping

Translation Model
into BIP transformation

 C++ code is automatically generated for each
processing unit

* Generated code is monolithic, minimising the
coordination overhead

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

17

Component-based design

Component-based design

» Three layers

Component-based design

» Three layers

 Component behaviour by

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

18

Component-based design

{1 @y
A
10—
b1 rn
+ Three layers I I
 Component behaviour - —o b, 5
« Coordination c bs(® o2
2l @——t

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 18

Component-based design

A.x = max (B.y, C.z)

BE
A
10—
b1 rn
+ Three layers I I
 Component behaviour - —o b, 5
« Coordination c bs(® o2
2l @——t

e Data transfer

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 18

Component-based design

A.x = max (B.y, C.z)

f] | @y
A
P1/@—
b1 1
+ Three layers I I
 Component behaviour - —o b, 5
« Coordination c bs(® o2
2l @——t

e Data transfer

* Interesting|results already at this abstraction level
e Detection of synchronisation deadlocks

S. Bensalem, M. Bozga, J. Sifakis, T.-H. Nguyen.
DFinder: A Tool for Compositional Deadlock Detection and Verification [CAV'09]

e Synthesis of glue for safety properties

S. Bliudze and J. Sifakis.
Synthesizing Glue Operators from Glue Constraints for the Construction of Component-
Based Systems [SC'11]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 18

Connectors

tick1 ticks ticks

O+ Pg + pr+ par
e Connector are tree-like structures

_‘FO

e ports as leaves and nodes of two types
e Jriggers (diamonds) — nodes that can “initiate” an interaction

o Synchrons (bullets) — nodes that can only “join” an interaction initiated by
others

* |n practice, maximal progress is implicitly assumed

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connector examples

* The Algebra of Connectors

l_l_l Strong synchronisation: pgr
par

P 9 r
l | | Broadcast: p + pg + pr + pqr
P g ot o'qr
é_l—l—l Atomic broadcast: p + pqr

0 I

: I S

o’lar]

Causal chain: p + pg + pgr + pqgrs
pla’[rs]]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 20

Practical example

» Satellite software design

e A collaboration with Swiss Space Center

 Component-based design in BIP of the control software
for a nano-satellite

e Attitude Determination and Control System (ADCS)

 Communication with other subsystems through an 12C bus

£l SWISS
space center

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 22

Example T

Nominal housekeeping routine

12C_ NOFAIL

MEM_WRNF
INTERFACE INTERFACE
ask 12C PL error res_I2C_TTC (ENABLED
failure res_I12C_PL res_mem -

STATE
le

read HK J >) C read_ HK gisaple
p L £ enable
(WAIT) L[] +

NN I N

> < disable (onsxxewo
read HK I HK switch] ACTIVE STATE
[PERIOD] anomaly
IPacke store switchl send_MEM
START transition—#
FAILURE MEMORY
ask_ |2c PL enabled tr.
{compose essage}f ' disable enable
i ure error —connector
[STATUS ==
success (e ROR] < e
ek 12C TTC ~Q4—>—>—<—? send_TM enabled cnctr.
res_ IZC PL , - [1L L d MEM Ksend TM)
{decodewessage;} write_request 7 - l Sena_ “disable enable . synchron
+
SEND_HK_ ask_12C_
REPORT EPS

NOMINAL

\/

res_12C_
EPS 4 failure
SUCfESS {llmEF — }

ask_I2C_TTC
{compOfeMessage;}

write_request
{selee

WRITE_
g SEND_TM > (MEMORY >success] re'sE_IZSC
anomaly s ask_I2C_EPS
res_I2C_TTC res mem enzt:(le TIMER = MAX]
SUCCESS >/ - S {compose*Message.}
| HK process I

P trigger

read - transition name

[guard]
{external_function;}

ANOMALY

AN
_/ ¢

failure CRITICAL 9"229- slide COUI”[esy of
disabl -
WK FAILURE [| ol e Marco Pagnamenta
HK PL - Status PS
0—‘ *—0—
S.Bliudze @ CompArch, Lille, 2nd of July, 2014

24

12C 12C_NOFAIL

M

ask_I2C_PL
(composeMessage }

f |Iure
[STATUS
ERROR]

res_ I2C PL
{decodexessage;} write_request
SEND_HK_
REPORT
ask_I2C_TTC write_request

{comp?eMessage;} {seante
WRITE_
g SEND_TM) < MEMORY >success
anomaly
res 12C_TTC

START
FAILURE

ask_I2C_TTC

INTERFACE INTERFACE
error
ask 12C PL error res_|2C_TTC
failure res_12C_PL res_mem
read_HK
(WAIT
read_HK
IPETOD] anomaly

enable

res mem
SUCCESS
I HK PL I

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

I
D .
L A 4

I\ I

MEM_WRNF
INTERFACE
readHK
(ENABLED 2
[[€ read HK disable enable
enable

disable < DISABLED
HK switch]

[Packe store swilch] send MEM

< MEMORY

~_/

o

£ 3

SN ¢ ¢
N Y
"4

NI—

disable enable
TTC
¢ ?send_TM
send TM)

.' l send_MEM “disable enable
ask_12C_

EPS NOMINAL
res_|2C_

EPS 4 failure

sucress {timer = 0;)

ANOMALY
res_|2C

)
N

ask_I2C_EPS
[TIMER > MAX]
{composeMessage;}

success

failure CRITICAL
FAILURE

disable

N

enable_

(STATE)
GCTIVE STATa

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

25

oo

12C 12C_NOFAIL MEM_WRNF
INTERFACE 4 INTERFACE INTERFACE
readHK
ask 12C PL error res_|12C_TTC (ENABLED
failure res_I2C_PL res_mem ‘—[—[‘
read_HK J — - read_HK disable enable
WAIT € f [] + enable
oromm— disable DISABLED
read HK I HK switch]
[PETOD] anomaly
Packe store swntch send MEM
START
FAILURE (MEMORY
ask_ I2C PL ‘
{compose essage;} disable enable
f Iure
[STATUS =
ERROR] Tic
\‘: >—) £ r Send_TM
ask_12C_TTC
{decodeMessage;} write_request (l senc_ dlsable enable
SEND_HK_ ask_12C
res_12C_ 4
ask_I12C_TTC write_request s SUCCess {m::,lru ieo.}
{compgseMessage;} {sethte f {
ANOMALY
WRITE _
anomaly -_— ask_12C_EPS
res_I2C_TTC res mem en;l:(le [TIMER > MAX]
SUCCESS >/ - success {composey essage:}
. enable
I HK process I dinah failure CRITICAL_ PS
it FAILURE _
HK Stat disable
l HK PL I aus PS

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

(STATE)
GCTIVE STATa

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

20

I2C_NOFAIL MEM_WRNF
INTERFACE INTERFACE /
readHK
ask 12C PL error res_12C_TTC CENABLED
failure res_I2C_PL res_mem ‘—[—r
read_HK Y o read_HK gisable enable
WAIT € f t enable
— disable DISABLED
reaJ HK I HK switch]
[PETOD] anomaly
[Packe store switch] send MEM
START
FAILURE (MEMORY
ask_ IZC PL
{compose essage} disable enable
f 1Iure
error
[STATUS ==
success ERROR] e
_f\‘: >—) send_TM
ask_I12C_TTC I K
res_ I2C PL ‘ send_TM
(decodexessage;} write_request >0 [send_MEM =lcabic anablo
SEND_HK_ ask_I2C_
REPORT EPS NOMINAL
res_|2C_ ’
ask_12C_TTC write_request EPS SUCCess {m:?::‘:eo.)
{composeMessage;} {setWrite;} r {
ANOMALY
WRITE_
g SEND_TM) (MEMORY)success — res_lzsc< >
anomaly — ask_12C_EPS
res_|12C_TTC res mem en:t:(le [TIMER > MAX]
SUCCESS _ success {composeMessage;}
HK process : xS CRITICAL_ enf;fisle_
[] disable FAILURE _
_HK Status disable
[HK PL] | _Ps

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

o—o—

(STATE >
GCTIVE STAT9

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

27

12C_NOFAIL
INTERFACE

ask _12C_PL error res_I2C_TTC
failure res_I2C_PL res_mem
read_HK
WAIT
read_HK
[PE 'OD] anomaly
START
FAILURE
ask_ I2C PL
{compose essage;}
f nlure
error
[STATUS ==
success ERROR]

res_ I2C PL
{decode&essage;}

SEND_HK_
REPORT

ask_I12C_TTC
{compgseMessage;)

WRITE_
g SEND_TM > < MEMORY >success

anomaly
res_mem
SUCCESS
| HK process I
l HK PL I

write_request
{seante

res_|I2C_TTC

ask_IZC_TTCI Al
write_request -7

MEM_WRNF
INTERFACE /
readHK
(ENABLED
>
> ¢ read_HK gisable enable
>—> £ enable
(DD gy

DISABLED

[HK switch]

lPacke store switch] send MEM

< MEMORY >

.

disable
HK

oo

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

—— -
e —
HK
success

disable enab'e
. m send_TM <
Ksend ™
o (send_MEM disable enable
ask_12C_
EPS NOMINAL
res_12C_
EPS 4 failure
SUC,:ESS {time[= 0_}
ANOMALY
res_|2C
EPS
ask_I2C_EPS
[TIMER > MAX]
{composey!essage;}
failure CRITICAL _ ""ff’s'e-
FAILURE disabl
Isable
Status _PS

o—o—

(STATE)
GCTIVE STATa

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

28

12C 12C_NOFAIL MEM_WRNF
INTERFACE error INTERFACE INTERFACE
readHK
ask 12C PL error res_I2C_TTC ENABLED
failure res_I2C_PL res_mem —
read_HK J — € read HK gisable enable
WAIT - f f j enable
o om— disable DISABLED
read_HK I HK switch
[PERIOD] anomaly

START
FAILURE
ask_12C_PL
{composer!essage;} } f

failure

error
[STATUS ==
12C
success (E ROR]

ask_I12C_TTC

|
res |12C_PL
{decodewessage;}

SEND_HK_
REPORT

ask _12C_TTC
{comp?eMessage;}

WRITE_
g SEND_TM > < MEMORY)success

anomaly

write_request

write_request
{sethe

res_12C_TTC

N res mem
SUCCESS

| HK process I

[Packe store swilch] send_MEM

(MEMORY
®

disable enable

send TM

dlsable

l HK PL I

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

o

I:‘FH_HW send_TM 5
h A ._

ask_|I2C_
EPS
res_12C_
EPS ’ fallure
N - -
enable
_HK X
? success *
. enable_

send_MEM “disable enable

—9-

NOMINAL

\/

ANOMALY
res_12C

_EPS

)
_ &

ask_I12C_EPS
[TIMER > MAX]
{composeMessage;}

failure CRITICAL

FAILURE akia
|Isable
Status PS

PS

N

o—o—

(STATE)
GCTIVE STATa

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

29

Example 2

Stopping housekeeping

MEM_WRNF
INTERFACE

12C_NOFAIL
INTERFACE
readHK

ask_12C_PL error res_|2C_TTC ENABLED
failure res_|2C_PL res_mem 54 STATE
read_HK ¢ ¢ read HK gisable %ble

WAIT € >—> < enable

(E E J disable DISABLED
read HK I HK switch] ACTIVE STATE
[PERIOD] anoma,y

[Packe store swilch] send MEM

START transition—#
(FAILURE > (MEMORY

enabled tr.

ask_ I2C PL | 1
{compose essage;} disable enable

f Iure error —connector
[STATUS ==
ERROR
sucgcess <] @ —>—> m send TM enabled cnctr.

ask_12C_TTC
res_ IZC _PL . -t
(deCOdevaSSage;} write_request >

7\

’ @- send_MEM send dlsable enable
| @ synchron
SEND_HK_ ask_12C_
REPORT EFs NOMINAL) _
res_i2C B tigger
EPS 4 faillure
ask_l2c_TTC . "
comgaiesioe) ooy SUSFESS (imer 20) read - transition name
[guard]
ANOMALY .
gsem) TM) (O > success resE_IZSC {external_function;}
anomaly ask_IZIC_EPS
res_I2C_TTC res mem en:l:(le [TIMER > MAX]
SUCCESS >/ - success {compose*M essage:}
[m] LS e CRITICAL enable_ slide courtesy of
"HK - FAILURE disable Marco Pagnamenta
=
k *

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

I2C NOFAIL
INTERFACE
ask_12C_PL error res_12C_TTC
failure res_12C_PL res_mem
read_HK {
< WAIT
read HK
[PERIOD] anoma!y
START
FAILURE
ask | C PL

(compose essage;}

f{ lute
[STATUS ==
success ERROR]

ask_|2C_TTC

res_ IZC _PL
{decodexessage;} write_request
SEND_HK_
REPORT
ask_12C_TTC write_request

(comp?eMessage.} {sethe

WRITE_
gSEND_TM> < MEMORY > success

res_12C_TTC res mem
SUCCESS

MEM_WRNF

INTERFACE

(-teadHK\

ENABLED >

N

b 4

. (DISABLED)

IPacke store swnchl send MEM

MEMORY >

disable

en
TTC
;“ p. m Send ™
5 l~ send_MEM

able

l dlsable enable
ask _12C _
EPS NOMINAL
res_I12C_
EPS failure

suci;e:.s {timer = 0;}

ANOMALY
res |2C

ask_ I2C EPS

[TIMER > MAX]

composenessage,
success { P r ge:}

_ falure CRITICAL
e - FAILURE

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

(STATE)
(‘\CTIVE STATa

transition—#

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name
[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

32

Example 3

Switching destination of housekeeping data

12C_ NOFAIL

MEM_WRNF
INTERFACE INTERFACE
ask 12C PL error res_I2C_TTC (ENABLED
failure res_I12C_PL res_mem -

STATE
le

read HK J >) C read_ HK gisaple
p L £ enable
(WAIT) L[] +

NN I N

> < disable (onsxxewo
read HK I HK switch] ACTIVE STATE
[PERIOD] anomaly
IPacke store switchl send_MEM
START transition—#
FAILURE MEMORY
ask_ |2c PL enabled tr.
{compose essage}f ' disable enable
i ure error —connector
[STATUS ==
success (e ROR] < e
ek 12C TTC ~Q4—>—>—<—? send_TM enabled cnctr.
res_ IZC PL , - [1L L d MEM Ksend TM)
{decodewessage;} write_request 7 - l Sena_ “disable enable . synchron
+
SEND_HK_ ask_12C_
REPORT EPS

NOMINAL

\/

res_12C_
EPS 4 failure
SUCfESS {llmEF — }

ask_I2C_TTC
{compOfeMessage;}

write_request
{selee

WRITE_
g SEND_TM > (MEMORY >success] re'sE_IZSC
anomaly s ask_I2C_EPS
res_I2C_TTC res mem enzt:(le TIMER = MAX]
SUCCESS >/ - S {compose*Message.}
| HK process I

P trigger

read - transition name

[guard]
{external_function;}

ANOMALY

AN
_/ ¢

failure CRITICAL 9"229- slide COUI”[esy of
disabl -
WK FAILURE [| ol e Marco Pagnamenta
HK PL - Status PS
0—‘ *—0—
S.Bliudze @ CompArch, Lille, 2nd of July, 2014

34

12C 12C_NOFAIL

M

ask_I2C_PL
(composeMessage }

f |Iure
[STATUS
ERROR]

res_ I2C PL
{decodexessage;} write_request
SEND_HK_
REPORT
ask_I2C_TTC write_request

{comp?eMessage;} {seante
WRITE_
g SEND_TM) < MEMORY >success
anomaly
res 12C_TTC

START
FAILURE

ask_I2C_TTC

INTERFACE INTERFACE
error
ask 12C PL error res_|2C_TTC
failure res_12C_PL res_mem
read_HK
(WAIT
read_HK
IPETOD] anomaly

enable

res mem
SUCCESS
I HK PL I

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

I
D .
L A 4

I\ I

MEM_WRNF
INTERFACE
readHK
(ENABLED 2
[[€ read HK disable enable
enable

disable < DISABLED
HK switch]

[Packe store swilch] send MEM

< MEMORY

~_/

o

£ 3

SN ¢ ¢
N Y
"4

NI—

disable enable
TTC
¢ ?send_TM
send TM)

.' l send_MEM “disable enable
ask_12C_

EPS NOMINAL
res_|2C_

EPS 4 failure

sucress {timer = 0;)

ANOMALY
res_|2C

)
N

ask_I2C_EPS
[TIMER > MAX]
{composeMessage;}

success

failure CRITICAL
FAILURE

disable

N

enable_

(STATE)
GCTIVE STATa

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

35

ask_12C_PL

failure res_12C_PL

WAIT

reaJ HK

[PEliIOD]

START

)
N

ask_ I2C PL
{compose essage}

sSuccess

/\
\/&

res_|2C_PL
{decodeMessage;}

SEND_HK_
REPORT

ask_12C_TT7C write
{comp&seMessage;}

error res_I12C_TTC

(sethe

12C_NOFAIL
INTERFACE

MEM_WRNF
INTERFACE

res_mem

read_HK

f

A 4

readHK

ENABLED 2

£ read HK

anomaly

(FAILURE)

/]

failure

[STATUS ==
ERROR]

ask_IZC_TTCI Al
write_request 17

_request

res 12C_TTC

| HK process |

WRITE_
QSEND_TM> < MEMORY) success
res mem
SUCCESS

anomaly

| HK PL I

A 4

disable enable
enable

I
A 4 A
L

7T\ 7N

disable

(DISABLED
| HK switch I
IPacke store switchl send MEM

(MEMORY)

disable enable

. ? send_TM j

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

A 4

ask_I2C_
EPS NOMINAL
res_l12C_
EPS 4 failure
suci:ess {timer = 0;}
ANOMALY
A res_I2C
_EPS T
| ask_I2C_EPS
enable [TIMER > MAX]
HK {composeMessage;}
success *
' failure CRITICAL _ enable_.
disable FAILURE iy
_HK disable
| Status PS

@~ send_MEM L alisable enable

(STATE >
GCTIVE STATa

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

36

MEM_WRNF
INTERFACE

12C_NOFAIL
INTERFACE

error res_|2C_TTC

readHK

(ENABLED

STATE
disable enable
WAIT

disable (DISABLED
readl HK | HK switch I ACT'VE STATE
[PETOD] anomaly

Packe store switch send MEM

(START) transition—#
(FAILURE > (MEMORY)
enabled tr.

ask_ I2C PL
{compose essage;} dis ble enable

: "u"-’ , —connector
[STATUS ==
sSuccess £ ROR] e
) d ¢ send_TM™ enabled cnctr.

ask_12C_TTC [[
res_ '2C PL ! 1 A A send TM
(decodeNessage) write_request { .'+ send_MEM isable enable

o - @ synchron

ask_12C_PL
failure reS_IZC_PL

res_mem

A 4
N

read_HK

read_HK

enable

YT N
A o L 4 4
I 7

SEND_HK_ ask_12C_
REREAT EPS NOMINAL) ’
trigger
res_12C_
EPS 4 failure
ask_12C_TTC write_request - A e
{composeMessage;} {seante sucr ©SS {timer =0} read - transition name
uard
WRITE_ ANOMALY {exterrllgl fugction'}
SEND_TM MEMORY SUCCeSS p— rez_lzsc - '
anomaly — ask_IZIC_EPS
res_I2C_TTC res mem enable [TIMER > MAX]
HK :
SUCCESS }/ _ cuccess {compose*Message.}
L = e CRITICAL. enable_ slide courtesy of
™ FAILURE disable Marco Pagnamenta
HK PL B PS
e] oo -

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

SEND_HK_
REPORT

N

ask_12C_TTC write_request
{comp;seMessage;} {setWrite;%
WRITE
(SEND_TM) (MEMORY >success
) anomaly
res_12C_TTC

12C_NOFAIL
INTERFACE

ask 12C PL error res_|2C_TTC
faillure res_|2C_PL res._mem
read_HK
WAIT
read_HK
[PETOD] anomaly
START
FAILURE
ask_I2C_PL
{composey!essage;} f
failure
error
[STATUS ==
(12¢ j ERROR]
| ask_I2C_TTC
res_|12C_PL .
(decoder&essage;} write_request

MEM_WRNF
INTERFACE

readHK

ENABLED

I
b 4 A 4
4

=

A~/

enable

res_mem
SUCCESS
| HK PL I

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

\‘i“
gl

oo

e—(read HK gicaple enable
— £ enable
> l;] disable <DISABLED
I HK switch]

IPacke store switchI s'end MEM

MEMORY >

send TM

A

HK

disable
_HK

* —
ask_12C_
EPS NOMINAL
res_I2C_
EPS 4 failure
suci:ess {timer = 0;}
ANOMALY
res_|2C
_EPS
ask_12C_EPS
[TIMER > MAX]
composeMessage;
success {comp r ge}
failure CRITICAL_ en;;:e_
FAILURE disable
is

send TM
’-+ send_MEM disable enable

7 —

(STATE)
GCTIVE STATa

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

38

MEM_WRNF
INTERFACE

I2C_NOFAIL
INTERFACE

ask_12C_PL error res_I2C_TTC
failure res 12C_PL res_mem

readHK

(ENABLED
1t STATE
> read HK gisable

enable
< WAIT + enable
disable (DISABLED
read HK I o) ACTIVE STATE
[PE |oo]

7\ —
2

read_HK

M

I\

N
VY
y, — N

anomaly

[Packe store swilch] s'end MEM

START
FAILURE (MEMORY

ask_ l2C PL
{compose essage} disable enable

f lure
STATUS
success [E ROR] e
".H—)—f— send_TM

transition—#

_

enabled tr.

—connector

N

enabled cnctr.

ask_I12C_TTC |
res_ |2C PL . h AN L send TM
{decodeMessage;} write_request (send_MEM disable enable h
Y @ synchron
h —
SEND_HK_ ask_12C_
REPORT EPS NOMINAL .
res_I2C_ , . trigger
EPS failure
aSK_'ZC_TTC write reQUESl success . - A 0g e
{comp?eMessage;) {selee f {timer =0} read - transition name

[guard]
{external_function;}

N

ANOMALY
WRITE_
g SEND_TM) (MEMORY) — resE_IZSC<

anomaly - ask_I2C_EPS
res_I12C_TTC res mem enali)(le [TIMER > MAX]
\n(SUCCESS)/ - ? success {°°mp°se*M essage:)
| enable_ slide courtesy of

failure CRITICAL

HK process - PS
l I disable FAILURE Gishbie Marco Pagnamenta
HK PL _5S

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

N

Example 4

12C bus failure management

MEM_WRNF
INTERFACE

12C_NOFAIL
INTERFACE

readHK

ask_I12C_PL error res_I2C_TTC < ENABLED
failure res_I2C_PL res_mem [[STATE
read_HK € read HK disable enable
WAIT ¢ E E] enable
- < disable <DISABLED
read HK l wen) ACTIVE STATE
[PE 'OD] anomaly
[Packe store switch] s'end_MEh<
START transition—#
FAILURE MEMORY >
ask_ |2c o)) enabled tr.
{compose essage} disinble enable
failure error connector
[STATUS ==
success © ROR] e
I:\.H_._‘_ send_TM enabled cnctr.
ask_I12C_TTC
res_I2C_PL , L 1L L d T™
{decodeMessage;} write_request ([.'# send_MEM sen “disable enable svnchron
SEND_HK_ ask_I2C_
REPORT EPS NOMINAL) .
res_12C_ ’ ’ tngger
EPS failure
ask_I12C_ TTC wme request SRR, "
{comp {seMessage) {setWrge squ °5% {timer = 0;} read - transition name
uard
SEND_TM MEMORY) success - res_2C {external_function;}
anomaly —_— ask_I12C_EPS
res_I2C_TTC res mem enable [TIMER > MAX]
SUCCESS >/ K success {c°mp°se3ﬂ essage:}
[m] L e CRITICAL. onale_ slide courtesy of
"HK o FAILURE disable Marco Pagnamenta
) | | Stanss | T

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

12C_NOFAIL
INTERFACE

error res_|I2C_TTC

ask_12C_PL

failure res_I2C_PL res_mem

MEM_WRNF

INTERFACE

readHK

ENABLED >
\

{

read_HK

(=)

rea

ask_ I2C _PL
{compose essage}

Iure
error
[STATUS
ERROR]

ask_I12C_TTC

res_ I2C PL

{decode essage} write_request

SEND HK_ ask_12C_
REPORT EPS NOMINAL
res_l2C_ ’
ask_|2C TTC wme _request EPS SUCCess {“:::l;eo.}
{comp {seMessage} {sethte f '
ANOMALY
T
anomaly ask_I2C_EPS
res_I2C_TTC res mem enal')(le [TIMER > MAX]
SUCCESS }/ - success {composeMessage:}
disable FAILURE _
_HK Statu disable
l HK PL I | S PS
v W —-—

I:\‘H_)_‘_ send_TM

A 4
-
2\

A A
L
v —

an

read_HK gisable engble
€ ¢ + enable
disable DISABLED
I HK switch]

IPacke store swntchl send MEM

MEMORY

/"

\/\

disabl enable

L AL L send TM
([.'+ send_MEM “disable enable

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

(STATE >
GCTIVE STAT9

transition—#

enabled tr.
—connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

42

ask 12C_PL
failure lcs_IZC_PL

res_mem >
read HK <) [€ read HK disable enable
WAIT j enable
< disable < DISABLED
read HK HK switch
Packe store S\Mlch 5;,“1 MEQ
START :
FAILURE MEMORY >
ask_ l C PL
(compose essage) enable
f Iure
enor
STATUS =
[TTC
sucgess E ROR]
‘: ¢ send T™M
ask 12C T7C
res IZC _PL A send TM
{decodexessage.} write_request send_MEM disable enable
SEND_HK_ ask_I2C_
REPORT () EPS NOMINAL)
res 12C _
f
ask_12C_TTC write_request - success {"ma;lrur_eo)
{compgseMessage.) (seante
ANOMALY
IT
g SEND_TM) < moiv) success — e '2C<)
anomaly _— ask 12C_EPS
res_I2C_TTC res mem enable [TIMER > MAX]
HK
SUCCESS }/ - success \ ComposeMessage;}
. failure CRITICAL
HK process -
HK

12C_NOFAIL
INTERFACE

error res_12C_TTC

MEM_WRNF
INTERFACE

readHK

(ENABLED

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

oo

Status

(STATE)
GCTIVE STATa

transition—#

enabled tr.
connector

enabled cnctr.

@ synchron

P trigger

read - transition name

[guard]
{external_function;}

slide courtesy of
Marco Pagnamenta

43

Components

0: 1nput (m,n>0);

1: while(m !'= n){
2: 1f (m > n)

3 m =m — n;

4: else //m < n

5: n =n-m;

6: }

7: //m=n=gcd(m, n)

e There is a canonical transformation

e The choice of abstraction level is important

e Jaking a transition

1. is allowed if the guard evaluates to true
2. executes the action Q label, [guard], action »O

3. updates current state

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

45

BIP by example: Mutual exclusion

l

D,

.

l

b,

f,

Interaction model:
{b1, f1, b2, f2, b1 f2, b2f1}

Maximal progress:
b1 < bifo, bo < boff

(Design view

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

@emantic vievv)

46

Semantics: Interactions

Consider a set of n behaviours, such that
B; = (Qi, P, =), —; CQ; x 2" x Qy, P:UPZ'

Interaction model: v C 27 — a set of allowed interactions

qiﬂqg ifanP;,#0) ¢ =4q. (ifan P; =0)

ql...qniq’l...q,ﬁl

for each a € .

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 47

Semantics: Priority
B; = (Qi, P, =), —; CQ; x 2" x Qi PZUP@'

Interaction model: v C 28 — a set of allowed interactions

qiﬂqg ifanP;,#0) ¢ =4q (ifan P; =0)

ql...qnﬂq’l...qg

for each a € .

Priority model: < C 2 x 28 — strict partial order

q —> ¢ Ya < a', ¢ /—

— for each a € 2%
q —<(

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

ENngine-based execution

1. Components notify the B

| Sngine avoutenabled H‘ i H‘ TIRITR T i

2. The Engine picks an ; RN *
I interaction and instructs
the components.

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 49

ROBOT BRAND

100dd dNUC

[wen)
EALS J
e
=
_
2
LV
(& <
Q.
-

MADE IN JAPAN

BEST SAFETYMATCHES
Hands-on BIP

Safe control layer of a Rescue robot

Hello World

package HelloPackage
port type HelloPort t ()

atom type HelloAtom()
port HelloPort t p()

place START, END

initial to START
on p from START to END
end

compound type HelloCompound ()
component HelloAtom cl ()
end
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

51

Hello World

S bipc.sh -I . -p HelloPackage -d "HelloCompound()" \

——gencpp-output output package HelloPackage
$ cd build port type HelloPort t()
$ cmake ../output atom type HelloAtom ()
port HelloPort t p()
$ make place START,END
$./system initial to START
on p from START to END .
end

compound type HelloCompound ()
component HelloAtom cl ()

end
initialize components... end

random scheduling based on S€8A=TZAUZI2760060 | o

state #0: 1 internal port:
[0] ROOT.cl.p

-> choose [0] ROOT.cl.p

state #1: deadlock!

BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE

BIP Engine (version 2013.

]
]
]
] :
] e
]
]
]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Hello World

S bipc.sh -I . -p HelloPackage -d "HelloCompound()"

——gencpp-output output package HelloPackage
$ cd build port type HelloPort t()
$ cmake .. /O111—n111— atom type HelloAtom ()
$ make Also try options g‘;ggjgigiogggt e ()
$./system -1 — interactive initial to START

-d — debu S on p from START to END
, y J . end

compound type HelloCompound ()
component HelloAtom cl ()

end
initialize components... end

random scheduling based on S€8A=TZAUZI2760060 | o

state #0: 1 internal port:
[0] ROOT.cl.p

-> choose [0] ROOT.cl.p

state #1: deadlock!

BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE
BIP ENGINE

BIP Engine (version 2013.

]
]
]
] :
] e
]
]
]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

\

52

Example: Rescue robot

e Safety constraints

m

[N
<_measure > -

Sensor & t°in front 31/

e Must not advance and rotate at the same time

* Must not leave the region

* Must not move into burning areas

* Must update navigation and sensor data at each move

* When objective is found, must stop

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

[Navigator x
r\‘;advance>

[Engine J

53

Rougn plan

 One square

« N x N field (with N = 2, 5)

 Complete with the robot

e Remove the field!

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

54

Atoms, ports and places

| heat |

| spark |

(SAFEg CHOT 3 CBURND)

extinguish

cool

package RescueRobot
port type Port t()

atom type Square()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish()

place SAFE, HOT, BURNING
initial to SAFE

< .0
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

connector type Singleton (Port t p)
define p
end

compound type Field()
component Square square ()

connector Singleton
c heat (square.heat)
connector Singleton
Cc spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

95

Atoms, ports and places

| heat |

| spark |

(SAFEg CHOT 3 CBURND)

extinguish

cool

package RescueRobot
port type Port t

connector type Singleton (Port t p)

o wee e, RESCUERODOL/10

export port Port T Neaummmesesees
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish()
place SAFE, HOT, BURNING

initial to SAFE
<. 00>

end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

compeounastype Flield ()
component Square square ()

connector Singleton
c heat (square.heat)
connector Singleton
Cc spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

95

Atoms, ports and places

package RescueRobot
port type Port t()

atom type Square ()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish()
place SAFE, HOT, BURNING
initial to SAFE
on heat from SAFE to HOT
on burn from HOT to BURNING
on spark from BURNING to BURNING
on cool from BURNING to HOT
on extinguish from HOT to SAFE
end

connector type Singleton
define p
end

(Port t p)

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

N

CSAFEQ CHOT 3 CBURNY |

heat

heat

spark

burn spark

extinguish cool

compound type Field ()
component Square square ()

connector Singleton
Cc_heat (square.heat)
connector Singleton
Cc spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

56

Atoms, ports and places

package RescueRobot
port type Port t()

atom type Square ()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish()
place SAFE, HOT, BURNING
initial to SAFE
on heat from SAFE to HOT
on burn from HOT to BURNING
on spark from BURNING to BURNING
on cool from BURNING to HOT
on extinguish from HOT to SAFE
end

connector type Singleton
define p
end

(Port t p)

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

N

CSAFEQ CHOT 3 CBURNY |

heat

heat

spark

burn

spark

extinguish cool

compound type Field ()
component Square square ()

connector Singleton
Cc_heat (square.heat)
connector Singleton
Cc spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

56

Atoms, ports and places

package RescueRobot
port type Port t()

atom type Square ()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish()
place SAFE, HOT, BURNING
initial to SAFE
on heat from SAFE to HOT
on burn from HOT to BURNING
on spark from BURNING to BURNING
on cool from BURNING to HOT
on extinguish from HOT to SAFE
end

connector type Singleton
define p
end

(Port t p)

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

N

CSAFEQ CHOT 3 CBURNY |

heat

heat

spark

burn

spark

extinguish cool

compound type Field()
component Square square ()

connector Singleton
c heat (square.heat)
connector Singleton
Cc spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

56

Atoms, ports and places

package RescueRobot
port type Port t()

atom type Square ()
export port Port t heat()
export port Port t spark()

port Port t burn()
port Port t cool()
port Port t extinguish()
place SAFE, HOT, BURNING
initial to SAFE
on heat from SAFE to HOT
on burn from HOT to BURNING
on spark from BURNING to BURNING
on cool from BURNING to HOT
on extinguish from HOT to SAFE
end

connector type Singleton
define p
end

(Port t p)

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

N

CSAFEQ CHOT 3 CBURNY |

heat

heat

spark

burn

spark

extinguish cool

compound type Field()
component Square square ()

connector Singleton
c heat (square.heat)
connector Singleton
Cc spark(square.spark)
end

compound type RescueCompound ()
component Field field()
end
end

56

Data, guards and actions

heat

timer++ tick
tick

atom type Square (int delay) on burn from HOT to BURNING

data int timer provided (timer >= delay)

export port Port t tick() < ll>

on tick from SAFE to SAFE
<o ooo> on tick from HOT to HOT
on heat from SAFE to HOT do {timer = timer + 1;}
do {timer = 0;} on tick from BURNING to BURNING
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

heat

timer++ tick
tick

atom type Square (int delay) on burn from HOT to BURNING

data int timer provided (timer >= delay)

export port Port t tick() < ll>

on tick from SAFE to SAFE
<o ooo> on tick from HOT to HOT
on heat from SAFE to HOT do {timer = timer + 1;}
do {timer = 0;} on tick from BURNING to BURNING
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

heat

timer++ tick
tick

atom type Square (int delay) on burn from HOT to BURNING

data int timer provided (timer >= delay)

export port Port t tick() < ll>

on tick from SAFE to SAFE
<o ooo> on tick from HOT to HOT
on heat from SAFE to HOT do {timer = timer + 1;}
do {timer = 0;} on tick from BURNING to BURNING
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

heat

timer++ tick
tick

atom type Square (int delay) on burn from HOT to BURNING

data int timer provided (timer >= delay)

export port Port t tick() < ll>

on tick from SAFE to SAFE
<o ooo> on tick from HOT to HOT
on heat from SAFE to HOT do {timer = timer + 1;}
do {timer = 0;} on tick from BURNING to BURNING
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data, guards and actions

heat
tick
spark
tick [timer = d Exercise
timer++ .
1. Add volatility
atom type Square (int W_.,__%_'_édd initial temw . to BURNING
data int timer provided (timer >= delay)
export port Port t tick() < ll>
on tick from SAFE to SAFE
<o ooo> on tick from HOT to HOT
on heat from SAFE to HOT do {timer = timer + 1;}
do {timer = 0;} on tick from BURNING to BURNING
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

S/

INnternal transitions

tick

_+" heat
" timer=0

CGAFEY XHOTY XEUARY
‘ extinguish ‘ burn

N

o : S
o LN
0
o [
o (] (Y
(]
(]

cool “. spark

[timer = delay] ;

tick tick

timer++

internal from INIT to

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

58

Connectors

connector type Synchron2Z (
Port t p, Port t g

export port Port t sync()
define p g
end

Notice:

. [[tickﬂ tick12] [tickor ’[iCKZZ]]

~ [ticks ticks ticks ticka]

e sparki2’ heati1 heatop

~ [sparku’ heatﬂ]’ heatoo

S. Bliudze, J. Sifakis.
The Algebra of Connectors—Structuring Interaction in BIP [EMSOFT'07]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 59

Connectors

connector type Synchron2Z (
Port t p, Port t g

export port Port t sync()
define p g

anAd

RescueRobot/SO

NOUTcT ———a———

. [[tickﬂ tick12] [tickor ’[iCKZZ]]

~ [ticks ticks ticks ticka]

e sparki2’ heati1 heatop

~ [sparku’ heatﬂ]’ heatoo

S. Bliudze, J. Sifakis.
The Algebra of Connectors—Structuring Interaction in BIP [EMSOFT'07]

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 59

Data transter

exp.w
r.z
P.X d.y

connector type Max (Port int p, Port int q)
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);,}
down {p.v = w; g.v = w;}
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

60

Data transter

exp.w

P-X A

connector type Max (Port int p,
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);,}
down {p.v = w; g.v = w;}

end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

7 a4y

Port i1nt q)

I.Z 55

60

Data transter

1 3

connector type Max (Port int p,
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);,}
down {p.v = w; g.v = w;}

end

D.X

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

/ & W=max (p.x, .y)

q.y

Port i1nt q)

I.Z 55

60

Data transter

1 3

connector type Max
data int w

D.X

V = max (exp.w, r.z)

/ & W =max (p.x, g.y)

q.y

(Port int p, Port int q)

export port Port int exp (w)

define p g
up {w = max(p.v,

q.v) ;}

down {p.v = w; g.v = w;}

end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

I.Z 55

60

Data transter

1 3

connector type Max
data int w

D.X

/ v =max (exp.w, r.z)

w = max (p.X, 9.y)

q.y

(Port int p, Port int q)

export port Port int exp (w)

define p g
up {w = max(p.v,

q.v) ;}

down {p.v = w; g.v = w;}

end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

60

Data transter

/

exp.w

D.X

connector type Max (Port int p,
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);,}
down {p.v = w; g.v = w;}

end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

q.y

Port i1nt q)

I.Z

60

Data transter

exp.w, r.z =V

£

exp.w

\ 4

connector type Max (Port int p,
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);,}
down {p.v = w; g.v = w;}

end

D.X

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

q.y

Port i1nt q)

I.Z -77

60

Data transter

exp.w, r.z =V

\ 4
p-X 7

connector type Max (Port int p,
data int w
export port Port int exp (w)
define p g
up {w = max(p.v, g.v);,}
down {p.v = w; g.v = w;}

end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

D.X, .Y = exp.w

7 9y

Port i1nt q)

I.Z -77

60

Data transter

RARXN W r7 =V

RescueRobot/35

Exercise

N

.2
1. Add connectors to gather and print information 7
about the temperature in all squares of the field.

2. Add an atom to enforce this after each tick of

connecto
data ; the clock.
export (Notice also the @cpp(...) annotation in the 1st line.)
define p g

up {w = max(p.v, g.v);,}
down {p.v = w; g.v = w;}
end

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

60

Components of the robot

e Safety constraints

* Must not advance and rotate at the same time

 Must not leave the region

e Must not move into burning areas

* Must update navigation and sensor data at

each move

« \When objective is found, must stop

rotate I

| ugdate |

border
[at_border]

N7
(™
T

| tick |
tick

Navigator

finished
[on_target]

advance

I rotate I

| advance |

update rotate
| border | |finished |
Sensor

. internal
[t° < burning]

|danqer |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components of the robot

e Safety constraints

| ugdate | | tick |

. Navigator
* Must not advance and rotate at the same time ek J
rotate I
 Must not leave the region \ .
border @ finished

 Must not move into burning areas [a‘—b"“’er B ——
« Must update navigation and sensor data at update rotate

each move [border] [finished]

« \When objective is found, must stop

. internal
[t° < burning]

advance

| rotate | |advance|

| measure | |danqer |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components of the robot

e Safety constraints

| update | | tick | N .
. avigator
\/- Must not advance and rotate at the same time ek J
rotate I
 Must not leave the region \ .
border @ finished
 Must not move into burning areas [a‘—b"“’er B ——
« Must update navigation and sensor data at update rotate
each move [border] [finished]

« \When objective is found, must stop

. internal
[t° < burning]

advance

| rotate | |advance|

| measure | |danqer |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

e Safety constraints

v

\
Y
\

V]

each move

ust not advance and rotate at the same time
ust not leave the region
ust not move into burning areas

ust update navi

« When objective is found, must stop

Components of the robot

RescueRobot/40=

| ugdate |

| tick |

advance

I rotate I

| advance |

Navigator
rotate I tICk
border l finished
[at_border] @ [on_target]
update rotate
[finished |
Sensor

. internal
[t° < burning]

|danqer |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components of the robot

e Safety constraints

| update | | tick | N .
. avigator
'/- Must not advance and rotate at the same time ek J
rotate I
 Must not leave the region \ .
border @ finished
 Must not move into burning areas [a‘—b‘”der B ——
« Must update navigation and sensor data at update rotate
each move [border] [finished]

« \When objective is found, must stop

. internal
[t° < burning]

advance

| rotate | |advance|

| measure | |danqer |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Connecting the robot

rotate

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

| measure | | danger |

Sensor

, internal
[t° < burning]

advance
| rot'ate | |adv%nce|
|u9date|
— rotate |

| border |

r
L Navigator

tick

finished
[on_target]

rotate

[finished |

Must update
navigation and
sensor data at
each move

62

Connecting the robot

rotate

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Sensor

, internal
[t° < burning]

| measure | | danger |

advance
| rot'ate | |adv%nce|
|u9date|
— rotate |

| border |

r
L Navigator

tick

finished
[on_target]

rotate

[finished |

/- Must update
navigation and
sensor data at
each move

62

Connecting the robot

Sensor

priority p rotate

priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

C rotate:*

VANVANEVANRIVAN

. [check jo— . internal
» [t° < burning]
check ick,
T tick j@— @ tick
l@l (ovase] danger ITI (Groar]
7 s 3 v * Must not leave the region
avigator
oy tick . .
. ..' _ * Must not move into burning areas
[eﬁr_b%rrder] @‘ [on_target] . . .
pd D » When objective is found, must stop
update rotate
[border] [finished]

c finished:*
c finished:*
c danger:*
Cc border:*

63

Connecting the robot

advance

tick |j@=—

Sensor

. internal
» [t° < burning]

Idangerl

[oe] [aovgme] danger ITI
[ipdate] tick]
update ic .
Navigator
—g rotate I tICk

border (8 l finished

[at_border] ' [on_target]
update rotate

[Border | [fiished]

priority p rotate

priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

C rotate:*

VANVANEVANRIVAN

* Must not leave the region
* Must not move into burning areas

 \When objective is found, must stop

c finished:*
c finished:*
c danger:*
Cc border:*

63

Connecting the robot

Sensor

priority p rotate

priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

C rotate:*

VANVANEVANRIVAN

. Leheck = tick i[?‘}irrt;ilrning]
check ick,
T tick |@=— @ tick
[oe] [aovgme] danger [resmre] [anger]
7 s 3 v \/ * Must not leave the region
avigator
-y tick _ .
. ..' _— * Must not move into burning areas
[aﬁr_b%rrder] @‘ [on_target] _ . .
pd D e When objective is found, must stop
update rotate
[border | [finished |

c finished:*
c finished:*
c danger:*
Cc border:*

63

Connecting the robot

Sensor

) . internal
tick ! [t° < burning]

advance =
[oe] [aovgme] Genger [memuel (o]
7 s 3 v \/ * Must not leave the region
avigator
-y tick _ .

. f,,hd / * Must not move into burning areas

[aﬁr_beorrder] @ [lC?r:S_Taerget] _ . .
pd D e When objective is found, must stop
update rotate

[border | [finished]

priority p rotate

priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

C rotate:*

VANVANEVANRIVAN

c finished:*
c finished:*
c danger:*
Cc border:*

63

Connecting the robot

Sensor

) . internal
tick ! [t° < burning]

advance =
[oe] [aovgme] Genger [memuel (o]
7 s 3 v \/ * Must not leave the region
avigator
-y tick _ .

. f,,hd / * Must not move into burning areas

[aﬁr_beorrder] @ [lC?r:S_Taerget] _ . .
pd F / \When objective is found, must stop
update rotate

[border | [finished]

priority p rotate

priority p advancel c¢ advance:*
priority p advanceZ c advance:*
priority p advance3 c advance:*

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

C rotate:*

VANVANEVANRIVAN

c finished:*
c finished:*
c danger:*
Cc border:*

63

The final step

e Remove the model of the
environment

* Replace “interface”
elements with
corresponding primitives

e Generate executable
code from the remaining
model

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

64

-
“ -~ -
\n

Sweet Papria

Cumn
o P

.
(TITTTT
The ﬂavours of BIP

Real-time, Dynamic, Java, Scala, ...

Core BIP tool-set for ES

‘ﬂﬂ esc] DOLy Lustre |S|muLink|I B|p,q BIP

S

Source250urce transformers

Language Bwp"jk+ %A e Uses an EMF model as
BIP

Language

Factory | Parser |

s a pivot.
‘ ~ Meta-Modell C BIP Model
DFinder <€ | — W Transformers
Validation (SR BIP Model 3¢

l e Targets a C/C++
implementation.

Code GeneratT'ion &

Runtimes [C++ Generator | [Distributed BIP
| (engine based) | Generator

@ﬂ &;igm Complete code
—BIP ,~--"“'§|;'>’" > BIP X g ene rat | on.

' " Executable / | Executable / ' Executable /

' BIP Executai?lg"' h

BIP Engine Runtime

— —_— ——

Commumcatuon anltuves (Send/Recewe)

— ———— — —

Vpl_atfo_r_m, . Dustn buted Platform ____

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 66

Real-time BIP

e Real-Time extension of the
BIP language and tools

e abstract model: timed automata
representing user requirements

* real-time execution on the target
platform (actual execution
times)

e gstatic verification for known
properties on execution times

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

67

R [-BIP methodology

execution times

R.-T.

5 (e.g. WCET)

\

Physical

BIP
Model

l

[code generator }

l

/ C++ code \

—
correctness
(online checking)?

<— Real-Time Execution Engine

x

real-time
clock

platform

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Model

[static verification }

l

correctness, i.e.
timing constraints are met?

slide courtesy of
Jacques Combaz

68

vnamic BIP (Dy-BIP)

®© o o oo
q | p qq

o o
P q r
\ 3 / M. Bozga, M. Jaber, N. Maris, J. Sifakis.
P q r

Modeling Dynamic Architectures using
Dy-BIP [SC'12]

@

p[Cp] q[Cq] r[C,]

 Dynamic interconnection is necessary for modern systems

e Wweb services, robotic systems, reconfigurable middleware, wireless sensor
networks, fault-tolerant systems, etc.

e Architecture is the composition of dynamically changing
architecture constraints defined by components

« A feasible interaction satisfies the constraints of all the involved components.

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 69

Dynamic BIP (Dy-BIP)
gD
N\ _ Y / 1. Bozga, M. Jaber,N. Mari, J. Siaks

p q r Modeling Dynamic Architectures using
Dy-BIP [SC’'12]

plCp] q[Cq] r[G

 Dynamic interconnection is necessary for modern systems

e Wweb services, robotic systems, reconfigurable middleware, wireless sensor
networks, fault-tolerant systems, etc.

e Architecture is the composition of dynamically changing
architecture constraints defined by components

« A feasible interaction satisfies the constraints of all the involved components.

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 69

INteraction constraints

* Sets of ports can be characterised by boolean constraints

* p = false — p is absent from the interaction; p = true — no constraints

m Strong synchronisation: pqr

° ° r P=(0,g=IILTI=pP

l l l Broadcast: p + pg + pr + paqr
pa qQ=p,r=0

Ip | | Atomic broadcast: p + pqr

0= prLr=pg

q r
% {xp_l Causal chain: p + pg + pgr + pgrs
r S

g=pP,=0q,S=1T1

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

70

Transition constraints

* A transition (4, p, C,h, (')
« (V' € L, are the source, target locations
 p € P, isthe port offered for interaction
» C € C, isthe interaction constraint

« h C H, is the set of history variables to
be updated

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

(2

p, C,h

Y

71

| ocation constraints

The location constraint characterises the contribution of the
component to a global interaction:

CL(l,s)= \/ (pAC(s)A /\ ﬁp') AN

p,C,h>£,

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

/2

Symbolic execution engine

e Atoms send location

contraints encoded as
BDDs

* The engine performs the
global conjunction

 |f satisfiable, it picks one
(maximal) solution

e Notifies the atoms

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

s
N\

P e
Lood

p

Em

Em

ir[c,]

/3

Vlacro notation

Main types of constraints for a given port p

e Causal constraints:
of the form p = (g A) v (S A t), meaning that one of gr and st is required

* Acceptance constraints:
of the form p = —q, meaning that g is forbidden

e Macro notation for constraints:
Let A, B be component types with instances ai, as, as, b1, bo

* Require A.q translates to: p = ai1.q v a2.q Vv as.g

« Accept A.r, B.q franslates to. p = /\tg{p’ alr a2r a3r bi.g b2.a) L

* Unique A.Q translates to: p = (ai.q na>.q —~asz.q) v

(—a1.q a2.q —az.q) v (—a1.q —a2.q as.q)

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

74

Example: Master and Slaves

req req get

Require Slave.get Require x.get[x : Slave | x.get ¢ hq] Require Master.req

Accept Slave.get Accept x.get|x : Slave | x.get & hy] Accept Master.req

Unique Slave.get Unique Slave.get Unique Master.req

Update hy Update h, Update h

a " a
—_ compute work
compute work

Require x.work y.work[x : Slave | x.get € hy]

ly : Slave | y.get € hy]
Accept x.work y.work[x : Slave | x.get € hy]

ly : Slave | y.get € hy]

Require x.compute
[x : Master | x.req € h]
Accept Slave.work x.compute
[x : Master | x.req € h]

Master Type Slave Type

Each master sends requests sequentially to two slaves, and
then pertorms some computation involving both of them.

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

75

BIP coordination for Java

install l

S. Bliudze, A. Mavridou, R. Szymanek,
A. Zolotukhina. Coordination of software
components with BIP: application to
OSGi. [MISE 2014]

uninstall

Uninstalled

stop

* BIP framework addresses three important issues: tActive

* High-level abstraction for synchronisation

« Atomicity of state manipulation (e.g. as opposed to threads)

« Separation of concerns: coordination is defined independently of component code
e State-of-practice: AKKA — asynchronous communication between actors

* Coordination mechanisms must not disrupt the existing software stack

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Use case: Camel Routes

LOCAL SYSTEMS

REMOTE SYSTEMS

VIRTUAL SYSTEMS

 Many independent routes share memory

* We have to control the memory usage

* e.g., by limiting to only a safe number of routes simultaneously

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 Va4

Camel routes

public class RouteBuilder(...)
{

from(..) .process (..) .to(..);
}

Camel API: suspendRoute and resumeRoute

e [ransition types:

* Enforceable — can be controlled by
the Engine

e Spontaneous — inform about
uncontrollable external events

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

\ |

off

(begin ,end end
/ ff
\ 0 ! end
@‘ suspended
begin on on

/8

Use case: BIP model

off
. ~ Cooring y——Ciristng) _
: (BIP Specifications | \ ,

‘begin ,end end
\ /I off

S~

end

@‘ suspended

begin on on

' |Z The Monitor component
I&daldd Iad_rgl @ limits the number of
active routes to two

o ogo

'm 'm

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Implemented architecture

Glue description

. “ from an XML file |
Spring app context bundler N - ~
Spring BIP Component \\ BIP Coordinator bundle *
bean to p BIP inform Current Glue
Control State
control Encoder
. Spec Encoder
' I ' '
BIP
Notifier Model execute
> Executor [Symbolic BIP Engine
| _ J
| L J
A\ W,
. J T
(N\
OSGi bundle
(BIP Component N Behaviour Encoder
BIP Monitor BIP Model *
Spec Executor [« \ y
- J Components register
. J

during initialisation

Arrows

* Blue — API calls between model and entity
 Red — OSGi-managed through published services

 Green — called once at initialisation phase

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Specification: Ports, Initial state

@bipPorts ({
@bipPort (name
@bipPort (name

"end", type
"off", type

"spontaneous"),
"enforceable"),

}f”

@bipComponentType (
initial = "off",
name = "org.bip.spec.switchableRoute")

Behavior

public class SwitchableRoute
implements CamelContextAware, off
InitializingBean,

DisposableBean on

 finished |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Specification: Transitions

@bipTransition(name = "off",
source = "on", target = "wait", guard = "")

public void stopRoute () throws Exception {
camelContext.suspendRoute (routeld) ;

J

» Transition annotations e
e Label, I.e. a port, declared by @bipPort off
* Source and target states e[?g? on
e (Guard expression end
or [finished |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Specitication: Guards

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Behavior

on

 finished |

83

BIP Specitication: Guards

@bipTransition(name = "end",
source = "wait", target = "done",
guard = "!isFinished")

public void spontaneousEnd () throws Exception {

@bipTransition(name = "",
source = "wait", target
guard = "isFinished")

public void internalEnd ()

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

= "done'",

throws Exception {

Behavior

on

 finished |

83

BIP Specitication: Guards

@bipTransition (name = "end",
source = "wait", target = "done",
guard = "!'isFinished")
public void spontaneousEnd() throws Exception { .. }
@bipTransition (name = "",
source = "wait", target = "done",
guard = "isFinished")
public void internalkEnd() throws Exception { .. }
@bipGuard(name = "isFinished") &%ﬁﬁ#d
public boolean isFinished () { —
CamelContext cc = camelContext; ond
return

on

cc.getInflightRepository () .size (

cc.getRoute(routeId).getEndpoint()end

) == 0; on]
}

 finished |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP Component interface

public interface BIPComponent extends BIPSpecification

{

void execute (String portlID);
void inform(String portID);

e |nterface methods:

Behavior
* execute — called by the Engine to finished
execute an enforceable transition off
end
e inform — called by Notifiers to o] o

iInform about spontaneous events

 finished |

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

BIP In functional
languages

Example in Scala

Producer Agent {

send = newPort[Any, Int]

run() {
produceValue()

produceValue() {
value = 42

await(send, value) { (_ : Any) =>
produceValue()
}

slide courtesy of
Romain Edelmann

Consumer Agent {

receive

receive = newPort([Int, Unit]

run() {
waitForValue()

waitForValue() {
await(receive, ()) { (value : Int) =>

handleValue(value)

waitForValue()

handleValue(value : Int) {

slide courtesy of
Romain Edelmann

Main BIPSystem {

Producer()

producer
consumers = (_ <=1 to 5) Consumer()

registerConnector(producer.send ~> one0Of(consumers.map(_.receive)))

slide courtesy of
Romain Edelmann

Example in Haskell

main I0 ()
main runSystem Eager

receive

receive newPort
consumers replicateM 10 ¢ newAgent & forever
value await receive ()

lift ¢ putStrLn value

send newPort
producer newAgent

value Lift ¢ getLine

await send (read value)

registerConnector
bind producer send
b 3
one0Of [bind consumer receive | consumer consumers |
slide courtesy of

Romain Edelmann

The theory of architectures

One of the current research directions

e Systems are not built from
scratch

 Maximal re-use of building
blocks
(off-the-shelf components)

 Maximal re-use of solutions
(libraries, design patterns,
etc.)

* EXpress coordination
constraints in declarative
manner

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Applications

e Concurrency:
(a)synchronous, time-triggered, token-ring,
mutual exclusion

* |nterface adaptation:
communication protocols, data access control

* Robustness:
fault detection & recovery, resource management

* elC.

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

94

Theory of architectures

e How to model?
* How to specity?
e How to combine?

* Are properties preserved?

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

95

Example in BIP

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

96

Example in BIP

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

96

Example in BIP

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

96

Example in BIP

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

96

Example in BIP

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

96

Example in BIP

Y12 = {0, b1b12, babio, f1fi2, fofiz}

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

96

Enforcing properties

» Consider behaviour B = (Q, ¢", P, =)
* A property: ® C () initial: ¢° € ®

« Aninvariant: Vg e ®, Va € 2", (¢ = ¢ = ¢ € D)

e An architecture A imposes a property & on 3
it @ is an initial invariant of the projection of the reachable
behaviour of A(B) onto B

A(B) = ®

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

97

Vlain result

e Safety
A1(B) = P4
A1 DA — o, NP
AQ(B)CPQ} — (A1 ® Ay)(B) 1 NPy

* Also an efficient testing methodology for liveness

* Will be presented at SEFM’14 in Grenoble

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

98

summary

* Rigorous design workflow
* Validate first, then generate the code

* A seqguence of semantics-preserving transformations

* BIP language: provide higher-level abstraction for
coordination of concurrent components

* We used the general language and the basic Engine

* BIP framework (at different stages of maturity)

e Several other language flavours
* Several engine implementations

* Analysis & verification tools

S.Bliudze @ CompArch, Lille, 2nd of July, 2014

99

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

...and many others. SAVE MILK

S.Bliudze @ CompArch, Lille, 2nd of July, 2014 100

