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Preambula 

• There are 8 USB keys circulating, containing 
• Oracle VirtualBox 
• Ubuntu 12.04 (with the installation instructions — HTML page) 
• BIP and all necessary packages (.deb) 

• Exercises and a PDF with full installation instructions at 
https://documents.epfl.ch/users/b/bl/bliudze/www/ 

• Update: 5 of the USB keys also contain exercises now!
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Coordination based on low-level primitives rapidly 
becomes unpractical.

Semaphores, locks, monitors, etc.
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Synchronisation

Task 1:
...  
free(S1); 
take(S2); 
...

Task 2:
...  
take(S1); 
free(S2); 
...

A simple synchronisation barrier
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Synchronisation

Three-way synchronisation barrier

Task 2:
...  
take(S1); 
free(S2); 
free(S2); 
take(S3); 
...

Task 3:
...  
take(S1); 
take(S2); 
free(S3); 
free(S3); 
...

Task 1:
... 
free(S1);  
free(S1); 
take(S2); 
take(S3); 
...
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Task 1:
x = f1(sh1,sh2);  
free(S1); 
take(S2); 
sh1 = x; 
free(S1); 
take(S2); 
x = f2(sh1,sh2);

Task 2:
y = g1(sh1,sh2);  
take(S1); 
free(S2); 
sh2 = y; 
take(S1); 
free(S2); 
y = g2(sh1,sh2);

Coordination mechanisms mix up with 
computation and do not scale. 

Code maintenance is a nightmare!

Synchronisation with data transfer

6
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Objectives

• Make developing correct concurrent systems easier 

• Separate computation from coordination 

• “Run the model you verified”

7
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Tutorial outline

• Introduction 

• Hands-on BIP 

• Flavours of BIP 

• Architectures in BIP (announcement)

8



Introduction
Motivation and Component model
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• Motivation 
• Unifying modelling formalism for managing system complexity 

• BIP component model 
• Basic component model 
• Formal semantics and engine-driven execution

10
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Managing system complexity

11



S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Managing system complexity
• Mastering system complexity 

requires 
• Manipulating models to raise the abstraction 

level 
• Expressive enough to avoid ad-hoc 

solutions 
• Simple enough to be acceptable for 

engineers

11
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• Mastering system complexity 

requires 
• Manipulating models to raise the abstraction 

level 
• Expressive enough to avoid ad-hoc 

solutions 
• Simple enough to be acceptable for 
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level models and run-time code 
• Raising abstraction level increases the gap 
• Model and implementation must be 

provably equivalent
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Managing system complexity
• Mastering system complexity 

requires 
• Manipulating models to raise the abstraction 

level 
• Expressive enough to avoid ad-hoc 

solutions 
• Simple enough to be acceptable for 

engineers

• Bridging the gap between high-
level models and run-time code 
• Raising abstraction level increases the gap 
• Model and implementation must be 

provably equivalent

• We should build solid and light-
weight bridges

11
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Unifying modelling formalism

• Solid: 
• Clearly established formal semantics 
• Encompassing heterogeneity 

• computation, execution, 
implementation 

• Proven code generation chain 

• Light-weight: 
• Clear, accessible formal semantics 
• Minimal set of primitives 
• Separation of concerns 

• computation and 
• coordination 

• Efficient implementation for popular 
platforms

12
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Rigorous System Design

• Models progressively refined with new information 
• In light blue — provided by the designer 
• In black — generated by automatic transformation tools
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• Component 
design in any 
supported 
formalism 

Translation 
into BIP 

• Application 
model in BIP 

• HW architecture 
• Mapping 

Model 
transformation • Abstract system 

model in BIP 
• Communication 
protocol 

Model 
transformation 

• Concrete system 
model in BIP 

Code 
generation • Generated C 

code 

Simulation and 
execution 
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Application model

• Application model is 
designed directly in BIP 
or… 

• …using a language factory 
transformation from 
• C, AADL, NesC/TinyOS, MathLab/

Simulink, Lustre, DOL, GeNoM 

• Safety properties are 
verified on this model 
• Compositional and incremental 

deadlock detection (D-Finder 
tool) 

• High performance even on 
models that other tools fail to 
analyze
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Abstract system model

• Abstract system model is 
generated by a 
transformation using 
• The model of the target execution 

platform (processor(s), memory, 
etc.) 

• A mapping of atomic components 
to the processing units 

• It takes in account  
• The hardware architecture 

constraints (e.g. mutual 
exclusion) 

• The execution times of atomic 
actions 

• The scheduling policies seeking 
optimal resource utilisation.
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Concrete system model

• Concrete system model is obtained by expressing high 
level BIP coordination mechanisms… 
• Atomic multiparty interactions 
• Priorities 

• …by using primitives of the execution platform 
•  For examle, protocols using asynchronous message passing
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Code generation

• C++ code is automatically generated for each 
processing unit 

• Generated code is monolithic, minimising the 
coordination overhead 
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Component-based design
Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 8 / 29

18
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• Three layers
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• Component behaviour
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Component design by refinement

Three layers:

1 Component
behaviour

2 Coordination

3 Data transfer

A

b1 r1

p1

f1

B
f2

b2

C

p3 f3

r3

b3

SC 2011 — S. Bliudze, J. Sifakis, “Synthesizing Glue Operators...” — Zürich, June 30th , 2011 — 9 / 29
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• Interesting results already at this abstraction level
• Detection of synchronisation deadlocks 

S. Bensalem, M. Bozga, J. Sifakis, T.-H. Nguyen.  
DFinder: A Tool for Compositional Deadlock Detection and Verification [CAV’09] 

• Synthesis of glue for safety properties 
S. Bliudze and J. Sifakis.  
Synthesizing Glue Operators from Glue Constraints for the Construction of Component-
Based Systems [SC’11]

A.x = max (B.y, C.z)
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Connectors

• Connector are tree-like structures 
•  ports as leaves and nodes of two types 

• Triggers (diamonds) — nodes that can “initiate” an interaction 
• Synchrons (bullets) — nodes that can only “join” an interaction initiated by 

others 

• In practice, maximal progress is implicitly assumed
19

tick1 tick2 tick3

p + pq + pr + pqr

tick1

p q r

tick2 tick3
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Connector examples

20

• The Algebra of Connectors  

Strong synchronisation: pqr 
pqr 

Broadcast: p + pq + pr + pqr 
p’qr 

Atomic broadcast: p + pqr 
p’[qr] 

Causal chain: p + pq + pqr + pqrs 
p’[q’[r’s]]

p q r

p q r

p
q r

p
q

r s
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Practical example

• Satellite software design 
• A collaboration with Swiss Space Center 

• Component-based design in BIP of the control software 
for a nano-satellite 
• Attitude Determination and Control System (ADCS) 
• Communication with other subsystems through an I2C bus

22

Satellite software design with BIP framework

Pagnamenta Marco



Example 1
Nominal housekeeping routine
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Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta
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Example 1
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Example 1
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Example 1slide courtesy of 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Example 1



Example 2
Stopping housekeeping
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Example 1slide courtesy of 
Marco Pagnamenta
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Example 2
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Marco Pagnamenta



Example 3
Switching destination of housekeeping data
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Example 1
8

Example 1
slide courtesy of 

Marco Pagnamenta
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Example 3
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Example 3
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Example 3
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Example 1slide courtesy of 
Marco Pagnamenta

23

Example 3



Example 4
I2C bus failure management
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Example 4



S.Bliudze @ CompArch, Lille, 2nd of July, 2014 42
8

Example 1slide courtesy of 
Marco Pagnamenta 26

Example 4



S.Bliudze @ CompArch, Lille, 2nd of July, 2014 43
8

Example 1slide courtesy of 
Marco Pagnamenta





S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Components
0: input(m,n>0);  
1: while(m != n){ 
2:  if (m > n) 
3:    m = m - n; 
4:  else //m < n 
5:    n = n - m; 
6: } 
7: //m=n=gcd(m,n)

• There is a canonical transformation 
• The choice of abstraction level is important 

• Taking a transition 
1. is allowed if the guard evaluates to true 
2. executes the action 
3. updates current state

45

label, [guard], action

0

1

7

3

5

2

in
pu

t
[m

 =
 n

]

[m
 > n]

[m
 <

 n
]

[m != n]

m = m - n

n = n - m
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BIP by example: Mutual exclusion

46

work 
sleep

sleep 
work

sleep 
sleep

work 
work

f1b2

b1f2

f2

b1

f1

b2

f2

b2 b1

f1

b1b2

f1f2

Interaction model:
{b1, f1, b2, f2, b1f2, b2f1} 

Maximal progress:
b1 < b1f2, b2 < b2f1

work 
sleep

sleep 
work

sleep 
sleep

work 
work

f1b2

b1f2

f2
b1

f1
b2

f2

b2 b1

f1

work 
sleep

sleep 
work

sleep 
sleep

work 
work

f1b2

b1f2

f2
b1

f1
b2

f2 f1

Design view
Semantic view

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
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Semantics: Interactions

47

Interaction model:              — a set of allowed interactions          � ✓ 2P

Bi = (Qi, Pi,!i), !i ✓ Qi ⇥ 2Pi ⇥Qi, P = ·
[

i

Pi

qi
a\Pi�! q0i (if a \ Pi 6= ;) qi = q0i (if a \ Pi = ;)

q1 . . . qn
a! q01 . . . q

0
n

for each           .a 2 �

Consider a set of n behaviours, such that
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Semantics: Priority

48

Priority model:                       — strict partial order � ✓ 2P ⇥ 2P

for each          .         a 2 2P

Bi = (Qi, Pi,!i), !i ✓ Qi ⇥ 2Pi ⇥Qi, P = ·
[

i

Pi

q
a�! q0 8a � a0, q

a0

6�!
q

a�!� q0

Interaction model:              — a set of allowed interactions          � ✓ 2P

qi
a\Pi�! q0i (if a \ Pi 6= ;) qi = q0i (if a \ Pi = ;)

q1 . . . qn
a! q01 . . . q

0
n

for each           .a 2 �
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Engine-based execution

49

Priorities

Interactions

B E H A V I O U R1. Components notify the 
Engine about enabled 
transitions. 

2. The Engine picks an 
interaction and instructs 
the components.



Hands-on BIP
Safe control layer of a Rescue robot
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Hello World

51

package HelloPackage 
  port type HelloPort_t() 

  atom type HelloAtom() 
    port HelloPort_t p() 

    place START,END 

    initial to START 
    on p from START to END 
  end 

  compound type HelloCompound() 
    component HelloAtom c1() 
  end 
end

START

END

p
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Hello World
$ bipc.sh -I . -p HelloPackage -d "HelloCompound()" \ 
    --gencpp-output output 

$ cd build 
$ cmake ../output 
$ make 
$ ./system

52

[BIP ENGINE]: BIP Engine (version 2013.06-RC5 ) 
[BIP ENGINE]: 
[BIP ENGINE]: initialize components... 
[BIP ENGINE]: random scheduling based on seed=1404226060 
[BIP ENGINE]: state #0: 1 internal port: 
[BIP ENGINE]:   [0] ROOT.c1.p 
[BIP ENGINE]: -> choose [0] ROOT.c1.p 
[BIP ENGINE]: state #1: deadlock!

package HelloPackage 
  port type HelloPort_t() 

  atom type HelloAtom() 
    port HelloPort_t p() 
    place START,END 
    initial to START 
    on p from START to END 
  end 

  compound type HelloCompound() 
    component HelloAtom c1() 
  end 
end
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Hello World
$ bipc.sh -I . -p HelloPackage -d "HelloCompound()" \ 
    --gencpp-output output 

$ cd build 
$ cmake ../output 
$ make 
$ ./system

52

[BIP ENGINE]: BIP Engine (version 2013.06-RC5 ) 
[BIP ENGINE]: 
[BIP ENGINE]: initialize components... 
[BIP ENGINE]: random scheduling based on seed=1404226060 
[BIP ENGINE]: state #0: 1 internal port: 
[BIP ENGINE]:   [0] ROOT.c1.p 
[BIP ENGINE]: -> choose [0] ROOT.c1.p 
[BIP ENGINE]: state #1: deadlock!

package HelloPackage 
  port type HelloPort_t() 

  atom type HelloAtom() 
    port HelloPort_t p() 
    place START,END 
    initial to START 
    on p from START to END 
  end 

  compound type HelloCompound() 
    component HelloAtom c1() 
  end 
end

Also try options 
-i — interactive 
-d — debug
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Example: Rescue robot

• Safety constraints 
• Must not advance and rotate at the same time 
• Must not leave the region 
• Must not move into burning areas 
• Must update navigation and sensor data at each move 
• When objective is found, must stop

53

Navigator

finished

border

update

Sensor tº in front

measure

Engine rotate

advance
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Rough plan

• One square 

• N × N field (with N = 2, 5) 

• Complete with the robot 

• Remove the field!

54

Navigator

finished

border

update

Sensor tº in front

measure

Engine rotate

advance
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package RescueRobot 
  port type Port_t() 

  atom type Square() 
    export port Port_t heat() 
    export port Port_t spark() 

    port Port_t burn() 
    port Port_t cool() 
    port Port_t extinguish() 

    place SAFE, HOT, BURNING 

    initial to SAFE 
 <...> 
  end 

  connector type Singleton (Port_t p) 
 define p 
  end 

  compound type Field() 
   component Square square() 

   connector Singleton  
   c_heat(square.heat) 
   connector Singleton 
   c_spark(square.spark) 
  end 

  compound type RescueCompound() 
 component Field field() 
  end 
end

Atoms, ports and places

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark
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package RescueRobot 
  port type Port_t() 

  atom type Square() 
    export port Port_t heat() 
    export port Port_t spark() 

    port Port_t burn() 
    port Port_t cool() 
    port Port_t extinguish() 

    place SAFE, HOT, BURNING 

    initial to SAFE 
 <...> 
  end 

  connector type Singleton (Port_t p) 
 define p 
  end 

  compound type Field() 
   component Square square() 

   connector Singleton  
   c_heat(square.heat) 
   connector Singleton 
   c_spark(square.spark) 
  end 

  compound type RescueCompound() 
 component Field field() 
  end 
end

Atoms, ports and places

SAFE HOT
heat

BURN
burn

extinguish cool

spark
heat spark

RescueRobot/10
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Atoms, ports and places

56

package RescueRobot 
  port type Port_t() 

  atom type Square() 
    export port Port_t heat() 
    export port Port_t spark() 

    port Port_t burn() 
    port Port_t cool() 
    port Port_t extinguish() 

    place SAFE, HOT, BURNING 

    initial to SAFE 
    on heat from SAFE to HOT 
    on burn from HOT to BURNING 
 on spark from BURNING to BURNING 
    on cool from BURNING to HOT 
    on extinguish from HOT to SAFE 
  end 

  connector type Singleton (Port_t p) 
 define p 
  end 

  compound type Field() 
   component Square square() 

   connector Singleton  
   c_heat(square.heat) 
   connector Singleton 
   c_spark(square.spark) 
  end 

  compound type RescueCompound() 
 component Field field() 
  end 
end

SAFE HOT
heat

BURN
burn
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heat spark
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Atoms, ports and places
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Atoms, ports and places
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Atoms, ports and places

56

package RescueRobot 
  port type Port_t() 

  atom type Square() 
    export port Port_t heat() 
    export port Port_t spark() 

    port Port_t burn() 
    port Port_t cool() 
    port Port_t extinguish() 

    place SAFE, HOT, BURNING 

    initial to SAFE 
    on heat from SAFE to HOT 
    on burn from HOT to BURNING 
 on spark from BURNING to BURNING 
    on cool from BURNING to HOT 
    on extinguish from HOT to SAFE 
  end 

  connector type Singleton (Port_t p) 
 define p 
  end 

  compound type Field() 
   component Square square() 

   connector Singleton  
   c_heat(square.heat) 
   connector Singleton 
   c_spark(square.spark) 
  end 

  compound type RescueCompound() 
 component Field field() 
  end 
end
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Data, guards and actions

57

atom type Square (int delay) 
  data int timer 

  export port Port_t tick() 

  <...> 
  on heat from SAFE to HOT 
 do {timer = 0;} 

  on burn from HOT to BURNING  
 provided (timer >= delay) 

  <...> 
  on tick from SAFE to SAFE 
  on tick from HOT to HOT 
 do {timer = timer + 1;} 
  on tick from BURNING to BURNING 
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick
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Data, guards and actions

57

atom type Square (int delay) 
  data int timer 

  export port Port_t tick() 

  <...> 
  on heat from SAFE to HOT 
 do {timer = 0;} 

  on burn from HOT to BURNING  
 provided (timer >= delay) 

  <...> 
  on tick from SAFE to SAFE 
  on tick from HOT to HOT 
 do {timer = timer + 1;} 
  on tick from BURNING to BURNING 
end
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Data, guards and actions

57

atom type Square (int delay) 
  data int timer 

  export port Port_t tick() 
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Data, guards and actions

57

atom type Square (int delay) 
  data int timer 

  export port Port_t tick() 

  <...> 
  on heat from SAFE to HOT 
 do {timer = 0;} 

  on burn from HOT to BURNING  
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  <...> 
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Data, guards and actions

57

atom type Square (int delay) 
  data int timer 

  export port Port_t tick() 

  <...> 
  on heat from SAFE to HOT 
 do {timer = 0;} 

  on burn from HOT to BURNING  
 provided (timer >= delay) 

  <...> 
  on tick from SAFE to SAFE 
  on tick from HOT to HOT 
 do {timer = timer + 1;} 
  on tick from BURNING to BURNING 
end

SAFE

HOT

heat
timer = 0

BURN
burn
[timer ≥ delay]

extinguish

cool spark

tick

tick
tick
timer++

heat

spark

tick

RescueRobot/20 
Exercise 

1. Add volatility  
2. Add initial temperature



S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Internal transitions

58

internal from INIT to ...

SAFE HOT

heat
timer = 0

BURN

burn
[timer ≥ delay]

extinguish

cool spark

ticktick
timer++

tick

INIT
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Connectors

59

connector type Synchron2 ( 
  Port_t p, Port_t q 
) 
 export port Port_t sync() 
 define p q 
end 

Notice: 
•  [[tick11 tick12] [tick21 tick22]] 

~ [tick1 tick2 tick3 tick4] 

•  spark12’ heat11 heat22 

~ [spark12’ heat11]’ heat22

S21

S11

S22

S12tick tick

tick tick

spark

spark

spark

spark

heat

heat heat

heat

S. Bliudze, J. Sifakis.  
The Algebra of Connectors—Structuring Interaction in BIP [EMSOFT’07]
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Connectors

59

connector type Synchron2 ( 
  Port_t p, Port_t q 
) 
 export port Port_t sync() 
 define p q 
end 

Notice: 
•  [[tick11 tick12] [tick21 tick22]] 

~ [tick1 tick2 tick3 tick4] 

•  spark12’ heat11 heat22 

~ [spark12’ heat11]’ heat22

S21

S11

S22

S12tick tick

tick tick

spark

spark

spark

spark

heat

heat heat

heat

S. Bliudze, J. Sifakis.  
The Algebra of Connectors—Structuring Interaction in BIP [EMSOFT’07]

RescueRobot/30
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Data transfer

connector type Max (Port_int p, Port_int q) 
 data int w 
 export port Port_int exp(w) 
 define p q 
 up {w = max(p.v, q.v);} 
 down {p.v = w; q.v = w;} 
end

60

p.x q.y
r.z

exp.w
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Data transfer

connector type Max (Port_int p, Port_int q) 
 data int w 
 export port Port_int exp(w) 
 define p q 
 up {w = max(p.v, q.v);} 
 down {p.v = w; q.v = w;} 
end

60

p.x q.y
r.z

exp.w

4 7 5



S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Data transfer

connector type Max (Port_int p, Port_int q) 
 data int w 
 export port Port_int exp(w) 
 define p q 
 up {w = max(p.v, q.v);} 
 down {p.v = w; q.v = w;} 
end

60

p.x q.y
r.z

exp.w
w = max (p.x, q.y)7
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Data transfer

connector type Max (Port_int p, Port_int q) 
 data int w 
 export port Port_int exp(w) 
 define p q 
 up {w = max(p.v, q.v);} 
 down {p.v = w; q.v = w;} 
end

60

p.x q.y
r.z

exp.w
w = max (p.x, q.y)

v = max (exp.w, r.z)
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Data transfer

connector type Max (Port_int p, Port_int q) 
 data int w 
 export port Port_int exp(w) 
 define p q 
 up {w = max(p.v, q.v);} 
 down {p.v = w; q.v = w;} 
end

60

p.x q.y
r.z

exp.w
w = max (p.x, q.y)

v = max (exp.w, r.z)7
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Data transfer

connector type Max (Port_int p, Port_int q) 
 data int w 
 export port Port_int exp(w) 
 define p q 
 up {w = max(p.v, q.v);} 
 down {p.v = w; q.v = w;} 
end

60

p.x q.y
r.z

exp.w
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Data transfer

connector type Max (Port_int p, Port_int q) 
 data int w 
 export port Port_int exp(w) 
 define p q 
 up {w = max(p.v, q.v);} 
 down {p.v = w; q.v = w;} 
end

60

p.x q.y
r.z

exp.w

exp.w, r.z = v
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Data transfer
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Data transfer

connector type Max (Port_int p, Port_int q) 
 data int w 
 export port Port_int exp(w) 
 define p q 
 up {w = max(p.v, q.v);} 
 down {p.v = w; q.v = w;} 
end

60

p.x q.y
r.z

exp.w
p.x, q.y = exp.w

exp.w, r.z = v

7 7 7

RescueRobot/35 
Exercise 

1. Add connectors to gather and print information  
about the temperature in all squares of the field. 

2. Add an atom to enforce this after each tick of  
the clock. 

(Notice also the @cpp(…) annotation in the 1st line.)
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Components of the robot
• Safety constraints 

• Must not advance and rotate at the same time 
• Must not leave the region 
• Must not move into burning areas 
• Must update navigation and sensor data at 

each move 
• When objective is found, must stop

61

Engine
STOP

GO

check TEMP

advance

tick,
rotate

tick

tick, rotate

advance
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tick
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Navigator

INIT

tick

border
[at_border]
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[on_target]

update rotate

tick

border finished

update

rotate

Sensor

DANGER

SAFE
internal
[tº < burning]  

tick
tick

measure

tick

danger
danger

measure
VALID

tick
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Components of the robot
• Safety constraints 

• Must not advance and rotate at the same time 
• Must not leave the region 
• Must not move into burning areas 
• Must update navigation and sensor data at 

each move 
• When objective is found, must stop
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RescueRobot/40
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Components of the robot
• Safety constraints 
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Connecting the robot

62
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• Must update 
navigation and 
sensor data at 
each move
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Connecting the robot
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Connecting the robot

63
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• Must not leave the region 
• Must not move into burning areas 
• When objective is found, must stop

priority p_rotate   c_rotate:*  < c_finished:* 
priority p_advance1 c_advance:* < c_finished:* 
priority p_advance2 c_advance:* < c_danger:* 
priority p_advance3 c_advance:* < c_border:*
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Connecting the robot
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Connecting the robot
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Connecting the robot
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priority p_rotate   c_rotate:*  < c_finished:* 
priority p_advance1 c_advance:* < c_finished:* 
priority p_advance2 c_advance:* < c_danger:* 
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Connecting the robot

63
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• Must not leave the region 
• Must not move into burning areas 
• When objective is found, must stop

priority p_rotate   c_rotate:*  < c_finished:* 
priority p_advance1 c_advance:* < c_finished:* 
priority p_advance2 c_advance:* < c_danger:* 
priority p_advance3 c_advance:* < c_border:*
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The final step

• Remove the model of the 
environment 

• Replace “interface” 
elements with 
corresponding primitives 

• Generate executable 
code from the remaining 
model 

64



The flavours of BIP
Real-time, Dynamic, Java, Scala,…
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Core BIP tool-set for ES

• Uses an EMF model as 
a pivot. 

• Targets a C/C++ 
implementation. 

• Complete code 
generation.

66
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Real-time BIP

• Real-Time extension of the 
BIP language and tools 
• abstract model: timed automata 

representing user requirements 
• real-time execution on the target 

platform (actual execution 
times) 

• static verification for known 
properties on execution times

67
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RT-BIP methodology

68

Introduction Methodology

Methodology

From an (abstract) Real-Time BIP model:
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Jacques Combaz (VERIMAG) Real-Time BIP January 30, 2014 3 / 24

slide courtesy of 
Jacques Combaz
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Dynamic BIP (Dy-BIP)

• Dynamic interconnection is necessary for modern systems 
• web services, robotic systems, reconfigurable middleware, wireless sensor 

networks, fault-tolerant systems, etc. 

• Architecture is the composition of dynamically changing 
architecture constraints defined by components 
• A feasible interaction satisfies the constraints of all the involved components.

69

Dynamic Architecture Using Dy-BIP

Dynamic Architecture

Modern systems are increasingly required to be capable of
dynamically changing their architectures at run-time (e.g., web
services, robotic systems, reconfigurable middleware, wireless sensor
networks, fault-tolerant systems, . . . ).

Architecture is defined as the composition of dynamically changing
architecture constraints defined by components.

p[Cp] q[Cq]

p q

r [Cr ]

r

p qp q q r q r

A feasible interaction satisfies the
constraints of all the involved
components.

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 10 / 28

M. Bozga, M. Jaber, N. Maris, J. Sifakis.  
Modeling Dynamic Architectures using 
Dy-BIP [SC’12]
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Dynamic BIP (Dy-BIP)

• Dynamic interconnection is necessary for modern systems 
• web services, robotic systems, reconfigurable middleware, wireless sensor 

networks, fault-tolerant systems, etc. 

• Architecture is the composition of dynamically changing 
architecture constraints defined by components 
• A feasible interaction satisfies the constraints of all the involved components.
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Dynamic Architecture

Modern systems are increasingly required to be capable of
dynamically changing their architectures at run-time (e.g., web
services, robotic systems, reconfigurable middleware, wireless sensor
networks, fault-tolerant systems, . . . ).

Architecture is defined as the composition of dynamically changing
architecture constraints defined by components.
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Interaction constraints
• Sets of ports can be characterised by boolean constraints 

• p ⇒ false — p is absent from the interaction; p ⇒ true — no constraints 

Strong synchronisation: pqr 
p ⇒ q, q ⇒ r, r ⇒ p 

Broadcast: p + pq + pr + pqr 
q ⇒ p, r ⇒ p 

Atomic broadcast: p + pqr 
q ⇒ pr, r ⇒ pq 

Causal chain: p + pq + pqr + pqrs 
q ⇒ p, r ⇒ q, s ⇒ r

70
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Dynamic Architecture Using Dy-BIP Dynamic BIP Model

Components

An atomic component B is defined by B = (L,P ,H,T ), where,

L is a finite set of control locations;

P is a finite set of ports;

H is a finite set of history variables;

T ✓ L⇥ P ⇥ C ⇥ 2H ⇥ L is a set of transitions.

A transition (`, p,C ,h, `0):

`, `0 2 L are the source, target locations

p 2 P , is the port o↵ered for interaction

C 2 C is the interaction constraint

h ✓ H, the set of history variables to be updated

`

`0

p,C ,h

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 12 / 28

Transition constraints

• A transition   
•             , are the source, target locations 
•          , is the port offered for interaction 
•           , is the interaction constraint 
•            , is the set of history variables to 

be updated
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Location constraints

The location constraint characterises the contribution of the 
component to a global interaction:
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Location Constraint CL

`
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The location constraint characterizes the possible contribution of the
component to a global interaction:

CL(`, s) =
_

`
p,C ,h�����!`0

0

@p ^ C (s) ^
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p02P\{p}

¬p0
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Symbolic execution engine
• Atoms send location 

contraints encoded as 
BDDs 

• The engine performs the 
global conjunction 

• If satisfiable, it picks one 
(maximal) solution 

• Notifies the atoms
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Dynamic Architecture

Modern systems are increasingly required to be capable of
dynamically changing their architectures at run-time (e.g., web
services, robotic systems, reconfigurable middleware, wireless sensor
networks, fault-tolerant systems, . . . ).

Architecture is defined as the composition of dynamically changing
architecture constraints defined by components.

p[Cp] q[Cq]

p q

r [Cr ]
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p qp q q r q r

A feasible interaction satisfies the
constraints of all the involved
components.
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Macro notation
• Main types of constraints for a given port p

• Causal constraints: 
of the form  p ⇒ (q ∧ r) ∨ (s ∧ t), meaning that one of q r  and s t  is required 

• Acceptance constraints: 
of the form  p ⇒ ¬q, meaning that q is forbidden 

• Macro notation for constraints:  
Let A, B be component types with instances a1, a2, a3, b1, b2 
• Require A.q       translates to:  p ⇒ a1.q ∨ a2.q ∨ a3.q 

• Accept A.r, B.q  translates to:  p ⇒ ∧t∉{p, a1.r, a2.r, a3.r, b1.q, b2.q} ¬t 

• Unique A.q        translates to:  p ⇒ (a1.q ¬a2.q ¬a3.q) ∨ 
(¬a1.q a2.q ¬a3.q) ∨ (¬a1.q ¬a2.q a3.q)
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Example: Master and Slaves

75

Experimental Results Masters and Slaves

Masters and Slaves

Each master sends requests sequentially to two slaves, and then performs
some computation involving both of them.

[y : Slave | y .get 2 h

2

]

req

Require x .get[x : Slave | x .get /2 h

1

]

Accept x .get[x : Slave | x .get /2 h

1

]

Unique Slave.get
Update h

2

0 1 2

req req

compute

req

Require Slave.get
Accept Slave.get
Unique Slave.get
Update h

1

Accept x .work y .work[x : Slave | x .get 2 h

1

]

Require x .work y .work[x : Slave | x .get 2 h

1

]
compute

[y : Slave | y .get 2 h

2

]

Master Type

[x : Master | x .req 2 h]

0 1

get

work

Update h

get

Require Master .req
Accept Master .req
Unique Master .req

work

Require x .compute

Accept Slave.work x .compute

[x : Master | x .req 2 h]

Slave Type

Marius Bozga (Verimag) Dynamic BIP May 31, 2012 19 / 28

Each master sends requests sequentially to two slaves, and 
then performs some computation involving both of them.
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BIP coordination for Java

• BIP framework addresses three important issues: 
• High-level abstraction for synchronisation 
• Atomicity of state manipulation (e.g. as opposed to threads) 
• Separation of concerns: coordination is defined independently of component code 

• State-of-practice: AKKA — asynchronous communication between actors 

• Coordination mechanisms must not disrupt the existing software stack

76

S. Bliudze, A. Mavridou, R. Szymanek, 
A. Zolotukhina. Coordination of software 
components with BIP: application to 
OSGi. [MiSE 2014]
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StoppingStarting

Active

install

uninstall resolve

uninstall

start

stop

update



S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Use case: Camel Routes

• Many independent routes share memory 
• We have to control the memory usage 
• e.g., by limiting to only a safe number of routes simultaneously

77
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Camel routes

• Transition types: 
• Enforceable — can be controlled by 

the Engine 
• Spontaneous — inform about 

uncontrollable external events

public class RouteBuilder(...) 
{ 
from(…).process(…).to(…); 

}

working

ready

begin end

begin

end

finishing

suspended

end

off

off

on on

off

78

Camel API: suspendRoute and resumeRoute 
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off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finishedon

add rm

0

add

1 2

add

rmrm

Use case: BIP model
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BIP Specifications

BIP Monitor

working

ready

begin end

begin

end

finishing

suspended

end

off

off

on on

off

The Monitor component 
limits the number of 
active routes to two
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Implemented architecture

Arrows 
• Blue — API calls between model and entity 
• Red — OSGi-managed through published services 
• Green — called once at initialisation phase

80

BIP Coordinator bundle

OSGi bundle

BIP Component

Spring app context bundle
BIP ComponentSpring 

bean to 
control

Notifier

BIP 
Control 
Spec

BIP 
Model 
Executor

BIP Monitor 
Spec

BIP Model 
Executor

Symbolic BIP Engine

Current 
State 

Encoder
Glue 

Encoder

Behaviour Encoder

Glue description 
from an XML file

Components register 
during initialisation

inform

execute
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BIP Specification: Ports, Initial state

81

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

@bipPorts({ 
@bipPort(name = "end", type = "spontaneous"),  
@bipPort(name = "off", type = "enforceable"),  
… 

}) 

@bipComponentType( 
initial = "off",  
name = "org.bip.spec.switchableRoute") 

public class SwitchableRoute  
  implements CamelContextAware,  
             InitializingBean, 
             DisposableBean  
{ … }
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BIP Specification: Transitions

• Transition annotations 
• Label, i.e. a port, declared by @bipPort 
• Source and target states 
• Guard expression

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

@bipTransition(name = "off", 
source = "on", target = "wait", guard = "") 

public void stopRoute() throws Exception { 
 camelContext.suspendRoute(routeId); 
}
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BIP Specification: Guards

83

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on
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@bipTransition(name = "end",  
  source = "wait", target = "done",  
  guard = "!isFinished")  
public void spontaneousEnd() throws Exception { … }

@bipTransition(name = "",  
  source = "wait", target = "done",  
  guard = "isFinished")  
public void internalEnd() throws Exception { … }

BIP Specification: Guards
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Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on
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@bipTransition(name = "end",  
  source = "wait", target = "done",  
  guard = "!isFinished")  
public void spontaneousEnd() throws Exception { … }

@bipTransition(name = "",  
  source = "wait", target = "done",  
  guard = "isFinished")  
public void internalEnd() throws Exception { … }

@bipGuard(name = "isFinished")  
public boolean isFinished() {  
  CamelContext cc = camelContext;  
  return  
    cc.getInflightRepository().size(  
      cc.getRoute(routeId).getEndpoint()  
    ) == 0;  
}

BIP Specification: Guards

83

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on
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BIP Component interface

• Interface methods: 
• execute — called by the Engine to 

execute an enforceable transition 
• inform — called by Notifiers to 

inform about spontaneous events

84

Behavior
off

on

end
[!g] on

end

off

wait

done
internal
[g]

off

finished

finished
on

public interface BIPComponent extends BIPSpecification  
{ 
 void execute(String portID); 
 void inform(String portID); 
}



BIP in functional 
languages



Example in Scala
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Example in Haskell
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The theory of architectures
One of the current research directions
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Reusable design patterns
• Systems are not built from 

scratch 

• Maximal re-use of building 
blocks  
(off-the-shelf components) 

• Maximal re-use of solutions 
(libraries, design patterns, 
etc.) 

• Express coordination 
constraints in declarative 
manner
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Applications
• Concurrency:  

(a)synchronous, time-triggered, token-ring,  
mutual exclusion 

• Interface adaptation:  
communication protocols, data access control 

• Robustness:  
fault detection & recovery, resource management 

• etc.
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Theory of architectures

• How to model? 

• How to specify? 

• How to combine? 

• Are properties preserved?
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Example in BIP

96
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Example in BIP

96

sleep
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b1f1

b1 f1
sleep

work

b2f2

b2 f2
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Example in BIP

96

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12



S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example in BIP

96

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12



S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Example in BIP

96

b1 f1 b2 f2
free
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Example in BIP

96

�12 = {;, b1b12, b2b12, f1f12, f2f12}

b1 f1 b2 f2
free

taken

b12f12

b12 f12
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Enforcing properties
• Consider behaviour  

• A property:                       initial:  
• An invariant: 

• An architecture     imposes a property     on  
if     is an initial invariant of the projection of the reachable 
behaviour of          onto 
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B = (Q, q0, P,!)

� ✓ Q

8q 2 �, 8a 2 2P , (q
a�! q0 ) q0 2 �)

q0 2 �

A � B
�

A(B) B

A(B) |= �



S.Bliudze @ CompArch, Lille, 2nd of July, 2014

Main result
• Safety 

• Also an efficient testing methodology for liveness 

• Will be presented at SEFM’14 in Grenoble

A1(B) |= �1

A2(B) |= �2

)
=)

�
A1 �A2

�
(B) |= �1 \ �2
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Summary
• Rigorous design workflow 

• Validate first, then generate the code 
• A sequence of semantics-preserving transformations 

• BIP language: provide higher-level abstraction for 
coordination of concurrent components 
• We used the general language and the basic Engine 

• BIP framework (at different stages of maturity) 
• Several other language flavours 
• Several engine implementations 
• Analysis & verification tools
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…and many others.


