
Amending Contracts for Choreographies

Laura Bocchi Julien Lange Emilio Tuosto

Department of Computer Science, University of Leicester

ICE’11
June 2011

Introduction

I Well-Assertedness
I Difficult to attain by hand
I Three algorithms:

I Strengthening
I Propagation
I Lifting

cf. Honda et al. in POPL 2008
Bocchi et al. in CONCUR 2010

Background - Global Assertion

An example of global assertion:

A→ B : {x | x > 0}.
B→ C : {x ≥ 5} gt : C→ B : {y | ∃u.y = u × 2},

{x < 5} le : C→ B : {z | ∃u.z = u × 2 + 1}

I Logic needs to be decidable
I Global assertions have to be closed
I ... and they must obey two conditions

Background - Global Assertion

An example of global assertion:
A→ B : {x | x > 0}

B→ C

{x ≥ 5} gt {x < 5} le

C→ B : {y | ∃u.y = u × 2} C→ B : {z | ∃u.z = u × 2 + 1}

I Logic needs to be decidable
I Global assertions have to be closed
I ... and they must obey two conditions

Background - Well-Assertedness

I History Sensitivity (HS): a participant having an
obligation has enough information for choosing a set of
values that guarantees it,

Alice→ Bob : {x | true}.
Bob→ Carol : {y | true}.
Carol→ Alice : {z | z > x}

I Temporal Satisfiability (TS): the values sent in each
interaction do not make predicates of future interactions
unsatisfiable,

Alice→ Bob : {x | x > 10}.
Bob→ Alice : {y | y < x ∧ y > 10}

Background - Well-Assertedness

I History Sensitivity (HS): a participant having an
obligation has enough information for choosing a set of
values that guarantees it,

Alice→ Bob : {x | true}.
Bob→ Carol : {y | true}.
Carol→ Alice : {z | z > x}

I Temporal Satisfiability (TS): the values sent in each
interaction do not make predicates of future interactions
unsatisfiable,

Alice→ Bob : {x | x > 10}.
Bob→ Alice : {y | y < x ∧ y > 10}

Outline

Introduction

Recovering History Sensitivity
Strengthening
Propagation

Recovering Temporal Satisfiability
Lifting

A Methodology

Conclusions

History Sensitivity

A participant having an obligation has enough information
for choosing a set of values that guarantees it.

I A participant knows a variable if s/he either sends or
receives it,

I a sender must know all the variables which appear in a
predicate s/he guarantees,

I otherwise, history sensitivity is violated!

Strengthening

s1 → r1

{χ} l1 {ψ1} l2

s2 → r2 : {v1 | ψ2}

sn → rn : {vn | ψn}

st → rt : {x | φ}

I Assume no HS problems in ψs,
I st does not know v (appearing in φ).
I Find a variable vi:

I vi is known to st
I (ψ1 ∧ ψ2 ∧ . . . ψn) ∧ φ[vi/v]⇒ φ holds?

I Replace φ by φ[vi/v]

Strengthening: Example

A→ B : {v0 | v0 ≤ 50}.
B→ C : {v1 | v1 > v0}.
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 70}.
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v0},

{v1 < 0} neg : D→ C : {v5 | v5 < v0}

Can we find vi such that D knows vi and

(v0 ≤ 50 ∧ v1 > v0 ∧ v2 > v1 ∧ v3 ≤ 70︸ ︷︷ ︸
ψ1∧ψ2∧...ψn

) ∧ (v4 > vi︸ ︷︷ ︸
φ[vi/v]

)⇒ (v4 > v0︸ ︷︷ ︸
φ

)

holds?

Yes, D knows v2 for which the equation above holds!

Strengthening: Example

A→ B : {v0 | v0 ≤ 50}.
B→ C : {v1 | v1 > v0}.
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 70}.
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v0},

{v1 < 0} neg : D→ C : {v5 | v5 < v0}

Can we find vi such that D knows vi and

(v0 ≤ 50 ∧ v1 > v0 ∧ v2 > v1 ∧ v3 ≤ 70︸ ︷︷ ︸
ψ1∧ψ2∧...ψn

) ∧ (v4 > vi︸ ︷︷ ︸
φ[vi/v]

)⇒ (v4 > v0︸ ︷︷ ︸
φ

)

holds?

Yes, D knows v2 for which the equation above holds!

Strengthening: Example

A→ B : {v0 | v0 ≤ 50}.
B→ C : {v1 | v1 > v0}.
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 70}.
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v0},

{v1 < 0} neg : D→ C : {v5 | v5 < v0}

Can we find vi such that D knows vi and

(v0 ≤ 50 ∧ v1 > v0 ∧ v2 > v1 ∧ v3 ≤ 70︸ ︷︷ ︸
ψ1∧ψ2∧...ψn

) ∧ (v4 > vi︸ ︷︷ ︸
φ[vi/v]

)⇒ (v4 > v0︸ ︷︷ ︸
φ

)

holds?

Yes, D knows v2 for which the equation above holds!

Strengthening: Example

A→ B : {v0 | v0 ≤ 50}.
B→ C : {v1 | v1 > v0}.
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 70}.
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v0},

{v1 < 0} neg : D→ C : {v5 | v5 < v0}

Can we find vi such that D knows vi and

(v0 ≤ 50 ∧ v1 > v0 ∧ v2 > v1 ∧ v3 ≤ 70︸ ︷︷ ︸
ψ1∧ψ2∧...ψn

) ∧ (v4 > vi︸ ︷︷ ︸
φ[vi/v]

)⇒ (v4 > v0︸ ︷︷ ︸
φ

)

holds? Yes, D knows v2 for which the equation above holds!

Strengthening: Example

A→ B : {v0 | v0 ≤ 50}.
B→ C : {v1 | v1 > v0}.
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 70}.
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2},

{v1 < 0} neg : D→ C : {v5 | v5 < v0}

Can we find vi such that D knows vi and

(v0 ≤ 50 ∧ v1 > v0 ∧ v2 > v1 ∧ v3 ≤ 70︸ ︷︷ ︸
ψ1∧ψ2∧...ψn

) ∧ (v4 > vi︸ ︷︷ ︸
φ[vi/v]

)⇒ (v4 > v0︸ ︷︷ ︸
φ

)

holds? Yes, D knows v2 for which the equation above holds!

Strengthening: Example

A→ B : {v0 | v0 ≤ 50}.
B→ C : {v1 | v1 > v0}.
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 70}.
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2},

{v1 < 0} neg : D→ C : {v5 | v5 < v0}

Can we find vi such that D knows vi and

(v0 ≤ 50 ∧ v1 > v0 ∧ v2 > v1 ∧ v3 ≤ 70︸ ︷︷ ︸
ψ1∧ψ2∧...ψn

) ∧ (v5 < vi︸ ︷︷ ︸
φ[vi/v]

)⇒ (v5 < v0︸ ︷︷ ︸
φ

)

holds?

No, D doesn’t know any variable for which the equation
above holds...

Strengthening: Example

A→ B : {v0 | v0 ≤ 50}.
B→ C : {v1 | v1 > v0}.
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 70}.
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2},

{v1 < 0} neg : D→ C : {v5 | v5 < v0}

Can we find vi such that D knows vi and

(v0 ≤ 50 ∧ v1 > v0 ∧ v2 > v1 ∧ v3 ≤ 70︸ ︷︷ ︸
ψ1∧ψ2∧...ψn

) ∧ (v5 < vi︸ ︷︷ ︸
φ[vi/v]

)⇒ (v5 < v0︸ ︷︷ ︸
φ

)

holds? No, D doesn’t know any variable for which the equation
above holds...

Propagation

p1 → p2 : {v1 | ψ1}

p2 → p3 : {vk | ψk}

p4 → p5

{χ} l1 {ψk+1} l2

p3 → pn : {vn | ψn}

pn → p6 : {x | φ}

I Assume no HS problems in ψs,

I pn does not know v (appearing in φ),

I p1 knows v.

I Find a chain of interactions:

I the sender of the first
interaction knows v,

I the receiver of the last
interaction is pn,

I the sender of a node is the
receiver of the previous node in
the chain.

I “Propagate” v from the first node till
the last node of the chain,

I . . . and replace v in φ.

Propagation

p1 → p2 : {v1 u1 | ψ1 ∧ v = u1}

��p2 → p3 : {vk u2 | ψk ∧ u1 = u2}

��

p4 → p5

{χ} l1 {ψk+1} l2

p3 → pn : {vn u3 | ψn ∧ u2 = u3}

pn → p6 : {x | φ[u3/v]}

I Assume no HS problems in ψs,

I pn does not know v (appearing in φ),

I p1 knows v.

I Find a chain of interactions:

I the sender of the first
interaction knows v,

I the receiver of the last
interaction is pn,

I the sender of a node is the
receiver of the previous node in
the chain.

I “Propagate” v from the first node till
the last node of the chain,

I . . . and replace v in φ.

Propagation: Example

A→ B : {v0 | v0 ≤ 50}. (1)
B→ C : {v1 | v1 > v0}. (2)
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 50}. (3)
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2}, (4)

{v1 < 0} neg : D→ C : {v5 | v5 < v0} (5)

Find a chain of interactions such that:

I the sender of the first interaction knows v0, e.g. (1)
I the receiver of the last interaction is D, e.g. (3), and
I the sender for each interaction is the receiver of the

previous interaction in the chain, e.g. (1)→ (2)→ (3)

Propagation: Example

A→ B : {v0 | v0 ≤ 50}. (1)
B→ C : {v1 | v1 > v0}. (2)
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 50}. (3)
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2}, (4)

{v1 < 0} neg : D→ C : {v5 | v5 < v0} (5)

Find a chain of interactions such that:
I the sender of the first interaction knows v0, e.g. (1)
I the receiver of the last interaction is D, e.g. (3), and
I the sender for each interaction is the receiver of the

previous interaction in the chain, e.g. (1)→ (2)→ (3)

Propagation: Example

A→ B : {v0 | v0 ≤ 50}. (1)
B→ C : {v1 | v1 > v0}. (2)
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 50}. (3)
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2}, (4)

{v1 < 0} neg : D→ C : {v5 | v5 < v0} (5)

In the chain (1)→ (2)→ (3):

I u1 = v0 is added to the predicate of the first interaction,
I ui = ui−1 is added the ith interaction’s predicate (1 < i ≤ 3),
I u3 replaces v0 in the “problematic” interaction’s predicate

Propagation: Example

A→ B : {v0 u1 | v0 ≤ 50∧u1 = v0}. (1)
B→ C : {v1 | v1 > v0}. (2)
C→ D : {v2 v3 | v2 > v1 ∧ v3 ≤ 50}. (3)
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2}, (4)

{v1 < 0} neg : D→ C : {v5 | v5 < v0} (5)

In the chain (1)→ (2)→ (3):
I u1 = v0 is added to the predicate of the first interaction,

I ui = ui−1 is added the ith interaction’s predicate (1 < i ≤ 3),
I u3 replaces v0 in the “problematic” interaction’s predicate

Propagation: Example

A→ B : {v0 u1 | v0 ≤ 50∧u1 = v0}. (1)
B→ C : {v1 u2 | v1 > v0∧u2 = u1}. (2)
C→ D : {v2 v3 u3 | v2 > v1 ∧ v3 ≤ 50∧u3 = u2}. (3)
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2}, (4)

{v1 < 0} neg : D→ C : {v5 | v5 < v0} (5)

In the chain (1)→ (2)→ (3):
I u1 = v0 is added to the predicate of the first interaction,
I ui = ui−1 is added the ith interaction’s predicate (1 < i ≤ 3),

I u3 replaces v0 in the “problematic” interaction’s predicate

Propagation: Example

A→ B : {v0 u1 | v0 ≤ 50∧u1 = v0}. (1)
B→ C : {v1 u2 | v1 > v0∧u2 = u1}. (2)
C→ D : {v2 v3 u3 | v2 > v1 ∧ v3 ≤ 50∧u3 = u2}. (3)
C→ D : {v1 ≥ 0} pos : D→ C : {v4 | v4 > v2}, (4)

{v1 < 0} neg : D→ C : {v5 | v5 < u3} (5)

In the chain (1)→ (2)→ (3):
I u1 = v0 is added to the predicate of the first interaction,
I ui = ui−1 is added the ith interaction’s predicate (1 < i ≤ 3),
I u3 replaces v0 in the “problematic” interaction’s predicate

Outline

Introduction

Recovering History Sensitivity
Strengthening
Propagation

Recovering Temporal Satisfiability
Lifting

A Methodology

Conclusions

Temporal Satisfiability

The values sent in each interaction do not make predicates
of future interactions unsatisfiable.

I All the values satisfying the predicates before an
interaction must allow to instantiate its interaction
variables.

I At least one branch can be chosen, and each branch must
satisfy temporal satisfiability.

Lifting: Example

A→ B : {x | x < 10}. (1)
A→ B : {y | y > 8}. (2)
B→ A : {z | x > z ∧ z > 6 ∧ y , z} (3)

I Identify which part of the predicate is in conflict with the
previous predicates . . .

Lifting: Example

A→ B : {x | x < 10}. (1)
A→ B : {y | y > 8}. (2)
B→ A : {z | x > z ∧ z > 6 ∧ y , z} (3)

I Identify which part of the predicate is in conflict with the
previous predicates . . .

Lifting: Example

A→ B : {x | x < 10}. (1)
A→ B : {y | y > 8}. (2)
B→ A : {z | x > z ∧ z > 6 ∧ y , z} (3)

I Identify which part of the predicate is in conflict with the
previous predicates . . .

Lifting: Conflict

I Assume that z is introduced at the node where TS is
violated, and φ is its predicate.

I Search for β such that
I φ ⇐⇒ γ ∧ β, and
I β is in conflict on z with γ in ψ1 ∧ . . . ∧ ψk.

Conflict
The predicate β is in conflict on z with γ in ψ1 ∧ . . . ∧ ψk iff

ψ1 ∧ . . . ∧ ψk ⇒ ∃z.γ and ψ1 ∧ . . . ∧ ψk ; ∃z.(γ ∧ β)

Lifting: Example

A→ B : {x | x < 10}. (1)
A→ B : {y | y > 8}. (2)
B→ A : {z | x > z ∧ z > 6 ∧ y , z} (3)

I In our case we have that
I (x < 10 ∧ y > 8︸ ︷︷ ︸

ψ1∧...∧ψk

)⇒ ∃z. y , z︸︷︷︸
γ

and

I (x < 10 ∧ y > 8︸ ︷︷ ︸
ψ1∧...∧ψk

); ∃z. x > z ∧ z > 6︸ ︷︷ ︸
γ∧β

I Thus, x > z ∧ z > 6 is in conflict, and we have to “lift” it . . .

Lifting: Example

A→ B : {x | x < 10}. (1)
A→ B : {y | y > 8}. (2)
B→ A : {z | x > z ∧ z > 6 ∧ y , z} (3)

I “Lift” the predicate z > 6 ∧ x > z:

I For each interaction above (3) which introduces a variable
appearing in z > 6 ∧ x > z,

I add z > 6 ∧ x > z in the predicate and quantify the
variables accordingly:

I ∀: the variables that A doesn’t know and are introduced
before (→ none)

I ∃: the variables that are introduced later (→ z)

I . . . and check that the updated predicate is satisfiable
(otherwise the algorithm is not applicable)

I . . . repeat the algorithm.

Lifting: Example

A→ B : {x | x < 10}. (1)
A→ B : {y | y > 8}. (2)
B→ A : {z | x > z ∧ z > 6 ∧ y , z} (3)

I “Lift” the predicate z > 6 ∧ x > z:
I For each interaction above (3) which introduces a variable

appearing in z > 6 ∧ x > z,
I add z > 6 ∧ x > z in the predicate and quantify the

variables accordingly:
I ∀: the variables that A doesn’t know and are introduced

before (→ none)
I ∃: the variables that are introduced later (→ z)

I . . . and check that the updated predicate is satisfiable
(otherwise the algorithm is not applicable)

I . . . repeat the algorithm.

Lifting: Example

A→ B : {x | x < 10 ∧ ∃z.x > z > 6}. (1)
A→ B : {y | y > 8}. (2)
B→ A : {z | x > z ∧ z > 6 ∧ y , z} (3)

I “Lift” the predicate z > 6 ∧ x > z:
I For each interaction above (3) which introduces a variable

appearing in z > 6 ∧ x > z,
I add z > 6 ∧ x > z in the predicate and quantify the

variables accordingly:
I ∀: the variables that A doesn’t know and are introduced

before (→ none)
I ∃: the variables that are introduced later (→ z)

I . . . and check that the updated predicate is satisfiable
(otherwise the algorithm is not applicable)

I . . . repeat the algorithm.

Lifting: Example

A→ B : {x | x < 10 ∧ ∃z.x > z > 6}. (1)
A→ B : {y | y > 8}. (2)
B→ A : {z | x > z ∧ z > 6 ∧ y , z} (3)

I “Lift” the predicate z > 6 ∧ x > z:
I For each interaction above (3) which introduces a variable

appearing in z > 6 ∧ x > z,
I add z > 6 ∧ x > z in the predicate and quantify the

variables accordingly:
I ∀: the variables that A doesn’t know and are introduced

before (→ none)
I ∃: the variables that are introduced later (→ z)

I . . . and check that the updated predicate is satisfiable
(otherwise the algorithm is not applicable)

I . . . repeat the algorithm.

Outline

Introduction

Recovering History Sensitivity
Strengthening
Propagation

Recovering Temporal Satisfiability
Lifting

A Methodology

Conclusions

A Methodology

1. An architect designs a choreography

2. The architect is notified if there are any HS or TS problems
3. Using one of the 3 algorithms, solutions or hints of solution

may be offered

4. The architect chooses which problem should be solved first
5. Steps 2 to 4 are repeated until all the problems have been

solved

Outline

Introduction

Recovering History Sensitivity
Strengthening
Propagation

Recovering Temporal Satisfiability
Lifting

A Methodology

Conclusions

Conclusions and Future Work

I Properties
I Branching and recursion
I Correctness
I TS/HS preservation
I Underlying type preservation

I Relation between algorithms
I Strengthening vs Propagation
I Strengthening vs Lifting

I Implementation

Thanks!

Any Questions?

Assertion Tree
We often consider Global Assertions as trees, e.g. the global
assertion A→ B : {x | x > 0}.

B→ C : {x ≥ 5} gt : C→ B : {y | ψ}
{x < 5} le : C→ B : {z | φ}

can be represented by its parsing tree (called Assertion Tree)

A→ B : {x | x > 0}

B→ C

{x ≥ 5} gt {x < 5} le

C→ B : {y | ψ} C→ B : {z | φ}

In the following, G ranges over global assertions, T over assertion
trees, n over nodes, and n ∈ T denotes that n is a node of T.

Some Definitions

We will use the following functions:
I sndT(n) returns the sender/selector for n ∈ T
I rcvT(n) returns the receiver for n ∈ T
I varT(n) returns the set of variables introduced at node n ∈ T
I cstT(n) returns the predicate of n ∈ T
I PREDT(n) returns the conjunction of all the predicates on

the path from the root of T until the parent of n.

Strengthening: In General

I Let n ∈ T, where HS is violated for the variable v and let
ψ = cstT(n).

I Strengthening consists in trying to find a variable v′ such
that

I v′ is known to sndT(n), and
I PREDT(n) ∧ ψ[v′/v]⇒ ψ holds.

I If such v′ can be found, then Strengthening returns a new
tree T′, obtained from T by replacing ψ by ψ[v′/v] in n.

Propagation: In General

I Let n ∈ T a node where HS is violated for the variable v.
I Propagation consists in finding a chain of (ordered)

interaction nodes n1 . . . nt such that:
I sndT(n1) knows v,
I rcvT(nt) = rcvT(n), and
I for 1 ≤ i < t, rcvT(ni) = sndT(ni+1)

I and returning a new tree T′, updated from T such that
I cstT′ (n1) = cstT(n1) ∧ (u1 = v)
I for 2 ≤ i < t, cstT′ (ni) = cstT(ni) ∧ (ui = ui−1)
I cstT′ (nt) = cstT(nt)[ut−1/u]
I all the other nodes of T remain unchanged.

where each ui variable is fresh and added in the corresponding
node.

Propagation: In General

I Let n ∈ T a node where HS is violated for the variable v.
I Propagation consists in finding a chain of (ordered)

interaction nodes n1 . . . nt such that:
I sndT(n1) knows v,
I rcvT(nt) = rcvT(n), and
I for 1 ≤ i < t, rcvT(ni) = sndT(ni+1)

I and returning a new tree T′, updated from T such that
I cstT′ (n1) = cstT(n1) ∧ (u1 = v)
I for 2 ≤ i < t, cstT′ (ni) = cstT(ni) ∧ (ui = ui−1)
I cstT′ (nt) = cstT(nt)[ut−1/u]
I all the other nodes of T remain unchanged.

where each ui variable is fresh and added in the corresponding
node.

Propagation: In General

I Let n ∈ T a node where HS is violated for the variable v.
I Propagation consists in finding a chain of (ordered)

interaction nodes n1 . . . nt such that:
I sndT(n1) knows v,
I rcvT(nt) = rcvT(n), and
I for 1 ≤ i < t, rcvT(ni) = sndT(ni+1)

I and returning a new tree T′, updated from T such that
I cstT′ (n1) = cstT(n1) ∧ (u1 = v)
I for 2 ≤ i < t, cstT′ (ni) = cstT(ni) ∧ (ui = ui−1)
I cstT′ (nt) = cstT(nt)[ut−1/u]
I all the other nodes of T remain unchanged.

where each ui variable is fresh and added in the corresponding
node.

	Introduction
	Recovering History Sensitivity
	Strengthening
	Propagation

	Recovering Temporal Satisfiability
	Lifting

	A Methodology
	Conclusions

