Amending Contracts for Choreographies

Laura Bocchi Julien Lange Emilio Tuosto
Department of Computer Science, University of Leicester

ICE’'11
June 2011

Introduction

Project Well ted
! Endpoint Il\,sserted
Check ‘ Assertions - rocess
Global Well-asserted Well-asserted
Assertion ‘ Global Assertion ‘ Endpoint - I'\)sserted
‘ Assertions rocess
—
Well-asserted -
Endpoint Asserted
Assertions Process
S —

» Well-Assertedness

» Difficult to attain by hand
» Three algorithms:

» Strengthening)
> Propagation cf. Honda et al. in POPL 2008

s Bocchi et al. in CONCUR 2010
» Lifting

Background - Global Assertion

An example of global assertion:

A—B:{x|x>0}
B—C: {x>5}gt: C—oB:{y|Juy=ux2},
{x<5}le: CoB:{z|Auz=ux2+1}

» Logic needs to be decidable
» Global assertions have to be closed

» ... and they must obey two conditions

Background - Global Assertion

An example of global assertion:
A—>B:{x|x>0}

B—>C

/\

{x>5} gt {x <5} 1le

CoB:{ylJuy=ux2} C—>B:{z|Juz=ux2+1}

» Logic needs to be decidable
» Global assertions have to be closed

» ... and they must obey two conditions

Background - Well-Assertedness

» History Sensitivity (HS): a participant having an
obligation has enough information for choosing a set of
values that guarantees it,

Alice — Bob: {x]|true}.
Bob — Carol : {y | true}.
Carol — Alice:{z]|z > x}

Background - Well-Assertedness

» History Sensitivity (HS): a participant having an
obligation has enough information for choosing a set of
values that guarantees it,

Alice — Bob: {x]|true}.
Bob — Carol : {y | true}.
Carol — Alice:{z]|z > x}

» Temporal Satisfiability (TS): the values sent in each
interaction do not make predicates of future interactions
unsatisfiable,

Alice — Bob: {x|x > 10}.
Bob — Alice: {y|y <xAy> 10}

Outline

Recovering History Sensitivity
Strengthening
Propagation

History Sensitivity

A participant having an obligation has enough information
for choosing a set of values that guarantees it.

» A participant knows a variable if s/he either sends or
receives it,

» a sender must know all the variables which appear in a
predicate s/he guarantees,

» otherwise, history sensitivity is violated!

Strengthening

b W} lo » Assume no HS problems in ys,
A ‘ st does not know v (appearing in ¢).

S2 I {o1192} » Find a variable v

v

5 » v; is known to s;
Sn = In : {0 | U} > (Y1 A AL Py) A @lvi/v] = ¢ holds?
Replace ¢ by ¢[v;/v]

v

st—>rF:{x|(¢)}

Strengthening: Example

A — B: {vy| vy < 50}.

B — C:{v1|v1 > vl

C—>D:{vyvs|vy >0v1 Avg <70).

C—>D: {v1=0}pos: D— C:{vg|vg>vgl,
{v1 <0} neg: D — C: {vs|vs5 < vy}

Strengthening: Example

A — B: {vy| vy < 50}.

B — C:{v1|v1 > vl

C—>D:{vyvs|vy >0v1 Avg <70).

C—o>D: {1=0}pos: D— C:{vg|vg>vg},
{v1 <0} neg: D— C: {vs]|v5 < vy}

Strengthening: Example

A — B: {vy| vy < 50}.

B — C:{v1|v1 > vl

C—>D:{vyvs|vy >0v1 Avg <70).

C—o>D: {1=0}pos: D— C:{vg|vg>vg},
{v1 <0} neg: D— C: {vs]|v5 < vy}

Can we find v; such that D knows v; and

(vo <50 AV >19 Avp > 01 Avg <70) A (g > 0;) = (V4 > D)
——— —_———

Y1 AYIA. Dy Ploi/o] ¢
holds?

Strengthening: Example

A — B: {vy| vy < 50}.

B — C:{v1|v1 > vl

C—>D:{vyvs|vy >0v1 Avg <70).

C—o>D: {1=0}pos: D— C:{vg|vg>vg},
{v1 <0} neg: D— C: {vs]|v5 < vy}

Can we find v; such that D knows v; and

(vo <50 AV >19 Avp > 01 Avg <70) A (g > 0;) = (V4 > D)
——— —_———

Y1 AYIA. Dy ¢[vi/0] ¢

holds? Yes, D knows v; for which the equation above holds!

Strengthening: Example

A — B: {vy| vy < 50}.

B — C:{v1|v1 > vl

C—>D:{vyvs|vy >0v1 Avg <70).

C—o>D: {11=20}pos: D— C:{vg|vg> vy},
{v1 <0} neg: D— C: {vs]|v5 < vy}

Can we find v; such that D knows v; and

(vo <50 AV >19 Avp > 01 Avg <70) A (g > 0;) = (V4 > D)
——— —_———

Y1 AYIA. Dy ¢[vi/0] ¢

holds? Yes, D knows v; for which the equation above holds!

Strengthening: Example

A — B: {vy| vy < 50}.

B—)C:{01|01>Uo}.

C—>D:{vyvs|vy >0v1 Avg <70).

C—>D: {v11=0}pos: D— C:{vg|vg> vy},
{v<0}neg: D— C:{vs]|v5 < v}

Can we find v; such that D knows v; and

(vo <50 AV >19 Avp > 11 Avg <70) A (U5 < 0;) = (U5 < D)
~——— ———

LplAlJ)z/\...lpn q5[’01‘/"0] (P
holds?

Strengthening: Example

A — B: {vy| vy < 50}.

B—)C:{01|01>Uo}.

C—>D:{vyvs|vy >0v1 Avg <70).

C—>D: {v11=0}pos: D— C:{vg|vg> vy},
{v<0}neg: D— C:{vs]|v5 < v}

Can we find v; such that D knows v; and

(vo <50 AV >19 Avp > 11 Avg <70) A (U5 < 0;) = (U5 < D)
~——— ———

1P1/\1P2/\~-~1Pn q5[’01‘/"0] q)

holds? No, D doesn’t know any variable for which the equation
above holds...

Propagation

v

5 Assume no HS problems in ¢s,
p1 — b2 {v1 [P} ,

Pn does not know v (appearing in ¢),

‘ > p; knows v.
P2 = b3 : {ok [P}

v

Find a chain of interactions:

» the sender of the first
P4 — Ps interaction knows v,
» the receiver of the last
interaction is py,
» the sender of a node is the
receiver of the previous node in
the chain.

xth {lPk+:1} I
P3 = Pn (v | ¢n}

pn—>pe::{xl¢}

Propagation

» Assume no HS problems in ys,

v

= P01 U ANv=1u L
P1— Pz {0 ; ¥1 il pn does not know v (appearing in ¢),

v

p1 knows v.

P2 — B i {Uk un | Py A U = uo}

Ps — Ps

\4

Find a chain of interactions:

» the sender of the first
interaction knows v,

» the receiver of the last
interaction is py,

» the sender of a node is the
receiver of the previous node in
the chain.

xth {#Jk+:1} I

P3 = Dn {0y Us | Yy L 1 = us}

» “Propagate” v from the first node till

the last node of the chain,
Pn = D6 : {x [P[us/v]}
» ...and replace v in ¢.

Propagation: Example

A — B: {vg|vg < 50}. (1)
B— C:{v1|v1 > vl 2)
C—>D:{vyvs|vy >0 Avg <50). (3)

C—oD: {v720}pos: D—C:{vg|lvg >}, (4)
{vy<0}neg: D—C:{vs|us<vg} (5)

Propagation: Example

A — B: {vg | vy < 50}. (1)
B— C:{v1|v1 > vl 2)
C—>D:{vyvs|vy >0 Avg <50). (3)
C—D: {p1>0lpos: D— C:{vg|vg >0}, (4)
{vy <0}neg: D—C:{uvs|vs <vy} (5)
Find a chain of interactions such that:
» the sender of the first interaction knows vy, e.g. (1)
> the receiver of the last interaction is D, e.g. (3), and

» the sender for each interaction is the receiver of the
previous interaction in the chain, e.g. (1) — (2) — (3)

Propagation: Example

A — B:{yy|vg <50}

B— C:{v1|v1 > vl

C—>D:{vyv3|vy > 01 Avg <50).

C—>D: {v1=20}pos: D— C:{vg|vy> vy},
{v <0}neg: D — C:{us|vs5 < vy}

In the chain (1) — (2) — (3):

Propagation: Example

A — B: {vg up | vg <50Au; = vg}. 1)
B—>CZ{01|01>Z70}. (2)
C—>D:{vyv3|vy >v1 Avs <50} 3)
CoD: {v7=20}pos: D—C:{vg|lvg >y}, (4)

{vi1 <0}neg: D— C:{vs|uvs <1y} (B)

In the chain (1) — (2) — (3):

> uy = vy is added to the predicate of the first interaction,

Propagation: Example

A — B: {vg up | vg <50Au; = vg}. (
B — C:{v1 up | vy > vgAuta = uq}. (
C—oD:{vyvsus|vy>v1 Avg <50Au3 =up}. (3)
C—oD: {v=20}pos: D—C:{vg|vg >0}, (
{v <0}neg: D— C:{us|us <vg} (
In the chain (1) — (2) — (3):
> uy = vy is added to the predicate of the first interaction,
» u; = uj_q is added the i interaction’s predicate (1 <i < 3),

Propagation: Example

A — B: {vg up | vg <50Au; = vg}. (
B — C:{v1 up | vy > vgAuta = uq}. (
C—oD:{vyvsus|vy>v1 Avg <50Au3 =up}. (3)
C—oD: {v=20}pos: D—C:{vg|vg >0}, (
{v <0}neg: D— C:{us|us <usz} (
In the chain (1) — (2) — (3):
> uy = vy is added to the predicate of the first interaction,
» u; = uj_q is added the i interaction’s predicate (1 <i < 3),

» u3 replaces vp in the “problematic” interaction’s predicate

Outline

Recovering Temporal Satisfiability
Lifting

Temporal Satisfiability

The values sent in each interaction do not make predicates
of future interactions unsatisfiable.

» All the values satisfying the predicates before an
interaction must allow to instantiate its interaction
variables.

» At least one branch can be chosen, and each branch must
satisfy temporal satisfiability.

Lifting: Example

A— B:{x|x <10} 1
A—B:{yly>8}L 2)
BoA:{z|lx>zAz>6 AN y#2z} (3)

Lifting: Example

A — B:{x|x<10}. 1
A—B:{yly>8}L 2)
B—A:{z|lx>zAz>6 AN y#z] (3)

Lifting: Example

A— B:{x|x <10} 1
A—B:{yly>8}L 2)
B—A:{z|lx>zAz>6 AN y#z] (3)

» Identify which part of the predicate is in conflict with the
previous predicates . . .

Lifting: Conflict

» Assume that z is introduced at the node where TS is
violated, and ¢ is its predicate.
» Search for ff such that
» ¢ &= yAB,and
» Bis in conflict on z with y in Y1 A ... A Y.

Contflict
The predicate 8 is in conflict on z with y in 1 A ... Ay iff

Y1 A AYr=>Tzy and P AL A Y= Az(y AP)

Lifting: Example

A—B:{x]|x <10} (@)
A—B:{y|ly>8}. 2
B—oA:{z|lx>zAz>6 ANy#z} (3)

» In our case we have that
» (x<10Ay>8)=Jz.y#z and

N—— N——
l[)q/\.../\gbk Y
» (x<10Ay>8)=»dzx>zA z2>6
N e’ S—
YA AP YAB

» Thus, x > z A z > 6 s in conflict, and we have to “lift” it ...

Lifting: Example
A — B:{x|x<10}. 1
A—B:{y|ly>8}. 2

B—A:{z|lx>zAz>6 ANy#z} (3)

» “Lift” the predicate z > 6 A x > z:

Lifting: Example

A — B:{x|x<10}. 1
A—B:{y|ly>8}. 2
B—A:{z|lx>zAz>6 AN y#z] (3)

» “Lift” the predicate z > 6 A x > z:
» For each interaction above (3) which introduces a variable
appearinginz > 6 Ax > z,
» add z > 6 A x > z in the predicate and quantify the
variables accordingly:
» V: the variables that A doesn’t know and are introduced

before (— none)
» 1: the variables that are introduced later (— z)

Lifting: Example

A->B:{x|x<10ATzx>z>6}). (1)
A—B:{yly>8}. 2
B—A:{z|lx>zAz>6 AN y#z} (3)

» “Lift” the predicate z > 6 A x > z:
» For each interaction above (3) which introduces a variable
appearinginz > 6 Ax > z,
» add z > 6 A x > z in the predicate and quantify the
variables accordingly:
» V: the variables that A doesn’t know and are introduced

before (— none)
» 1: the variables that are introduced later (— z)

Lifting: Example

A->B:{x|x<10ATzx>z>6}). (1)
A—B:{yly>8}. (2)
B—A:{z|lx>zAz>6 AN y#z} (3)

» “Lift” the predicatez > 6 A x > z:

» For each interaction above (3) which introduces a variable
appearinginz > 6 Ax > z,
» add z > 6 A x > z in the predicate and quantify the
variables accordingly:
» V: the variables that A doesn’t know and are introduced
before (— none)
» 1: the variables that are introduced later (— z)
...and check that the updated predicate is satisfiable
(otherwise the algorithm is not applicable)

v

> ...repeat the algorithm.

Outline

A Methodology

A Methodology

1. An architect designs a choreography
2. The architect is notified if there are any HS or TS problems

3. Using one of the 3 algorithms, solutions or hints of solution
may be offered
4. The architect chooses which problem should be solved first

5. Steps 2 to 4 are repeated until all the problems have been
solved

Outline

Conclusions

Conclusions and Future Work

» Properties

» Branching and recursion

» Correctness

» TS/HS preservation

> Underlying type preservation
> Relation between algorithms

» Strengthening vs Propagation
» Strengthening vs Lifting

» Implementation

Thanks!

Any Questions?

Assertion Tree

We often consider Global Assertions as trees, e.g. the global

assertion A—B:{x|x>0)
B—C: {x>5lgt:C—B:{y|y)
{x<5}le:C—B:{z|}}

can be represented by its parsing tree (called Assertion Tree)

A—>B:{x|x>0}

B—>C

/\

{x>5} gt {x <5} 1e

C—B:{yly} C—B:{z|¢p}

In the following, G ranges over global assertions, T over assertion
trees, n over nodes, and #n € T denotes that n is a node of T.

Some Definitions

We will use the following functions:
» sndr(n) returns the sender/selector forn € T
» rcur(n) returns the receiver forn € T
» varp(n) returns the set of variables introduced atnoden € T
» cstr(n) returns the predicate of n € T

» PRED7(n) returns the conjunction of all the predicates on
the path from the root of T until the parent of n.

Strengthening: In General

» Letn € T, where HS is violated for the variable v and let
Y = cstr(n).
» Strengthening consists in trying to find a variable v such
that
» v’ is known to sndr(n), and
» PREDr(n) A Y[v'/v] = 1p holds.
» If such v’ can be found, then Strengthening returns a new
tree T’, obtained from T by replacing ¢ by ¢[v’/v] in n.

Propagation: In General

» Letn € T a node where HS is violated for the variable v.
» Propagation consists in finding a chain of (ordered)
interaction nodes ny ... n; such that:
» sndr(n1) knows v,
» rcor(ny) = rcop(n), and
» for 1 <i<t, rcor(n;) = sndr(nizq)

Propagation: In General

» Letn € T a node where HS is violated for the variable .
» Propagation consists in finding a chain of (ordered)
interaction nodes ny ... n; such that:
» sndr(n1) knows v,
» rcor(ny) = rcop(n), and
» for 1 <i<t, rcor(n;) = sndr(nizq)
» and returning a new tree T’, updated from T such that
cstr(n1) = estr(ny) A (uq =)
for 2 <i<t, cstp(n;) = cstr(n) A (; = ui—q)
cstr () = estr(ng)[u-1/u]
all the other nodes of T remain unchanged.

v v v v

Propagation: In General

» Letn € T a node where HS is violated for the variable .
» Propagation consists in finding a chain of (ordered)
interaction nodes ny ... n; such that:
» sndr(n1) knows v,
» rcor(ny) = rcop(n), and
» for 1 <i<t, rcor(n;) = sndr(nizq)
» and returning a new tree T’, updated from T such that
cstr(n1) = estr(ny) A (uq =)
for 2 <i<t, cstp(n;) = cstr(n) A (; = ui—q)
cstr () = estr(ng)[u-1/u]
all the other nodes of T remain unchanged.

>
>
>
>

where each u; variable is fresh and added in the corresponding
node.

	Introduction
	Recovering History Sensitivity
	Strengthening
	Propagation

	Recovering Temporal Satisfiability
	Lifting

	A Methodology
	Conclusions

