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Aims of This Talk 

I will try to answer the following questions. 

•  What is quantum information processing? 

•  Why is it interesting? 

•  Why do I want to apply formal methods? 

•  What can be done with quantum process calculus? 
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What is Quantum Information Processing? 

The idea is to represent information by means of physical 
systems whose behaviour must be described by quantum 
physics, and to process information by means of operations 
that arise from quantum physics. 

Examples: the spin state of a single atom 
                   the polarization state of a single photon 



Concepts of Quantum Information 

Superposition 
The state of a classical bit is either 0 or 1. 
The state of a quantum bit (qubit) is 

where         and        are the basis states. 

For example:                             or 

A qubit may be in a basis state or it may be in a superposition 
state. 
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Concepts of Quantum Information 

Measurement 
It is not possible to inspect the components of a quantum 
state. We can only do a measurement. 

Measuring a qubit that is in state 

has a random result: 

 with probability       the result is  

 with probability       the result is 
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Concepts of Quantum Information 

Operations on a Superposition 
An operation acts on every basis state in the superposition. 
For example, if we have the state 

and we apply the operation “invert the second bit” 
then we get the state 

Note that a measurement does not allow us to discover the 
result of applying the operation to every basis state. 
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Concepts of Quantum Information 

No Cloning 
It is not possible to define an operation that reliably makes 
a duplicate of an unknown quantum state. 

(Contrast this with the classical situation, where the 
existence of uniform copying procedures is one of the 
main advantages of digital information.) 

It is possible to transfer an unknown quantum state from 
one physical carrier to another, but the process destroys 
the original. This is known as quantum teleportation. 



Concepts of Quantum Information 

Entanglement 
The states of two (or more) qubits can be correlated in a 
way that is stronger than any possible classical correlation. 
This is known as quantum entanglement. 

Many quantum algorithms and communication protocols 
make use of entanglement.  

€ 

1
2
00 +

1
2
11



Quantum Algorithms 

Deutsch-Jozsa Algorithm (David Deutsch / Richard Jozsa, 1992) 
Given a function                               that is either constant or 
balanced, works out which, with only one evaluation of     . 

A classical algorithm would require               evaluations 
in the worst case. € 
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Quantum Algorithms 

Shor’s Algorithm (Peter Shor, 1994) 
A quantum algorithm for factorising integers, which is more 
efficient than any known classical algorithm. 

The RSA cryptosystem used for internet security relies on 
the assumption that factorisation is difficult. A practical 
implementation of Shor’s algorithm would  
threaten current information security technology. 

However, factorisation is believed not to be 
a member of the class of intractable problems  
known as NP-complete problems. 
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Quantum Algorithms 

Grover’s Algorithm (Lov Grover, 1996) 
A quantum search algorithm. It requires         steps to find 
an item in an unstructured list of length      . 

Classically, every item must be inspected, requiring 
operations on average. € 
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Quantum Cryptography 

BB84 (Charles Bennett & Gilles Brassard, 1984) 
A protocol for generating shared cryptographic keys. Its 
security relies only on the laws of quantum physics, 
especially the no-cloning principle. It is secure against all  
possible future developments in quantum computing. 



Why is Quantum Computing Interesting? 

It is interesting to understand the information-processing 
power permitted by the laws of physics. 

Quantum algorithms might help to solve some classes of 
problem more efficiently. 

 But if NP-complete problems cannot be solved 
 efficiently even by a quantum computer, understanding 
 why not is also of fundamental interest. 

Quantum cryptography deals with any threat that quantum 
computing poses to classical cryptography. 



Why is Quantum Computing Interesting? 

As integrated circuit components become smaller, quantum 
effects become difficult to avoid. Quantum computing might 
be necessary in order to continue making computers smaller. 

Richard Feynman (1982) suggested that quantum computers 
could be used to simulate complex (quantum) physical 
systems, whose behaviour is difficult to analyse. 
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Will QIP Become Practically Significant? 

Most researchers are not convinced that  
D-Wave has built a quantum computer. 



Will QIP Become Practically Significant? 

Quantum cryptography is already practical. Whether there is 
real demand for it remains to be seen. 

Quantum computing seems feasible in principle, although 
there are formidable scientific and engineering problems. 

 Decoherence: loss of quantum state due to unwanted 
 interaction with the environment. 

BUT remember that in 1949, the statement “In the future, 
computers may weigh no more than 1.5 tonnes” was a 
speculative prediction. 



Why Consider Formal Methods? 

There is no doubt about the correctness of quantum 
algorithms and protocols. 

 Teleportation can be checked with a few lines of algebra. 

 Shor’s and Grover’s algorithms have been 
 thoroughly studied. 

 Mayers (2001) and others have proved the security of 
 quantum cryptography. 

But what about systems – combinations of classical and 
quantum communication and computation? 



Why Consider Formal Methods? 

Raja Nagarajan and I (2002) suggested applying formal  
methods to quantum systems, with the same motivation  
as for classical systems: 

 Formal modelling languages, for unambiguous 
 definitions. 

 Analysis of systems, rather than idealized situations. 

 Systematic verification methodology, rather than 
 ad hoc reasoning. 

 Tool support.  



Quantum Formal Methods Programme 

I have been working on the following strands: 

 Process calculus for quantum systems 
 (with Raja Nagarajan and Tim Davidson) 

 Model-checking for quantum systems 
 (with Raja Nagarajan and Nick Papanikolaou) 

 Formal description of physics experiments 
 (with Sonja Franke-Arnold and Ittoop Vergheese Puthoor)  

For the rest of this talk, I will focus on process calculus. 



Quantum Teleportation 

A protocol for transferring an unknown quantum state from 
Alice to Bob, making use of classical communication and 
some pre-existing shared entanglement. 

€ 

x,y = 00 + 11

x y 

unknown u 

apply CNot to u,x 

apply H to x 

measure u,x 
Alice sends 2-bit classical result r to Bob 

y has the initial 
state of u, up to 
an isomorphism 
determined by r 



Quantum Process Calculus: CQP 

We have developed the process calculus  
Communicating Quantum Processes (CQP) for modelling 
combined quantum/classical systems 
(SG + Nagarajan, 2005, 2006). 

CQP has a formal syntax, a formal operational semantics,  
and a type system. 

(Other approaches: QPAlg (Jorrand+Lalire 2004), 
qCCS (Ying et al. 2006-2011) ) 



Teleport(a,b) = (qbit x, y)( { x *= H } . { x,y *= CNot } .  
                                (new c)( Alice(x,a,c) | Bob(y,c,b) ) ) 

Quantum Teleportation in CQP 

Alice Bob 
a b c 

Alice(q,in,out) = in?[u] . { u,q *= CNot } . { u *= H } . out![measure u,q] . Stop 

quantum quantum classical 

creates the 
entangled pair 

Bob(q,in,out)  = in?[r] . { q *= Paulir } . out![q] . Stop 



Running the Teleportation Protocol 

A configuration consists of a quantum state and a process. 

The semantics of CQP specifies transitions between 
configurations. 

Each transition is a communication or an operation on the 
quantum state. 

w = α|0⟩+β|1⟩  ;  a![w] . Stop  |  Teleport(a,b)  |  b?[v] . Stop 

= 

w = α|0⟩+β|1⟩  ;  a![w] . Stop  |  (qbit x, y)( { x *= H } . { x,y *= CNot } .  
                                                         (new c)( Alice(x,a,c) | Bob(y,c,b) ))   
                                               |  b?[v] . Stop 



Running the Teleportation Protocol 

w,x,y = (α|0⟩+β|1⟩)|00⟩  ;   

a![w] . Stop  |  { x *= H } . { x,y *= CNot } . (new c)( Alice(x,a,c) | Bob(y,c,b) )   
                                               |  b?[v] . Stop 

"

w,x,y = (α|0⟩+β|1⟩)(|00⟩+|11⟩)  ;   

a![w] . Stop  |  (new c)( Alice(x,a,c) | Bob(y,c,b) )  |  b?[v] . Stop 

= 

w,x,y = (α|0⟩+β|1⟩)(|00⟩+|11⟩)  ;   

a![w] . Stop  |  a?[u] . { u,x *= CNot } . { u *= H } . c![measure u,x] . Stop  
                         | Bob(y,c,b)   
|  b?[v] . Stop 



Running the Teleportation Protocol 

w,x,y = (α|0⟩+β|1⟩)(|00⟩+|11⟩)  ;   

{ w,x *= CNot } . { w *= H } . c![measure w,x] . Stop  |  Bob(y,c,b)  |  b?[v] . Stop 

"

w,x,y = α(|000⟩+|011⟩+|100⟩+|111⟩)+β(|001⟩+|010⟩-|101⟩-|110⟩)  ;   

c![measure w,x] . Stop  |  Bob(y,c,b)  |  b?[v] . Stop 

 

    ¼( w,x,y = α|000⟩+β|001⟩  ;  c![0] . Stop  |  Bob(y,c,b)  |  b?[v] . Stop ) 
✚ ¼( w,x,y = α|011⟩+β|010⟩  ;  c![1] . Stop  |  Bob(y,c,b)  |  b?[v] . Stop ) 
✚   ¼( w,x,y = α|100⟩-β|101⟩  ;  c![2] . Stop  |  Bob(y,c,b)  |  b?[v] . Stop ) 
 ✚  ¼( w,x,y = α|111⟩-β|110⟩  ;  c![3] . Stop  |  Bob(y,c,b)  |  b?[v] . Stop ) 

   ¼ 



Running the Teleportation Protocol 

w,x,y = α|011⟩+β|010⟩  ;  c![1] . Stop  |  Bob(y,c,b)  |  b?[v] . Stop  

= 

w,x,y = α|011⟩+β|010⟩  ;   

c![1] . Stop  |  c?[r] . { y *= Paulir } . b![y] . Stop  |  b?[v] . Stop 

"

w,x,y = α|011⟩+β|010⟩  ;  { y *= Pauli1 } . b![y] . Stop  |  b?[v] . Stop 

"

w,x,y = α|010⟩+β|011⟩  ;  b![y] . Stop  |  b?[v] . Stop 

= 

w,x,y = |01⟩(α|0⟩+β|1⟩) ;  b![y] . Stop  |  b?[v] . Stop 



Specifying Correctness of Teleportation 

We defined Teleport(a,b), which receives a qubit on channel a  
and sends a qubit on channel b, using teleportation in between. 

The following process has the same effect, and we regard it 
as a specification of teleportation.  

Identity(a,b) = a?[x] . b![x] . Stop 

Now we want to state the requirement that 

Teleport(a,b) ≈ Identity(a,b) 

and prove that it is satisfied. So we need a theory that defines 
≈ and provides some proof techniques. 



Behavioural Equivalence 

The relation ≈ is a behavioural equivalence: if P ≈ Q then 
P and Q have indistinguishable behaviour.  

It is a form of probabilistic branching bisimulation, where the  
observations take into account the amount of information that  
a transition reveals about the quantum state. 
(Matching of transitions considers the reduced density matrix w.r.t. input/output qubits). 

P ≈ Q  =>  C[P] ≈ C[Q]  

The aspiration for behavioural equivalence is congruence: 

for all process contexts C. This supports equational reasoning. 
Congruence properties are sometimes known as 
composability properties. 



Congruence for CQP 

Obtaining a congruence relation for a quantum process 
calculus was an open problem for a while. 

We have solved it for CQP (Tim Davidson’s PhD thesis, 2011) 
and Ying et al. have independently solved it for qCCS  
(POPL 2011). (The details are quite complicated and require changes to the semantics).  

We can show that   Teleport(a,b) ≈ Identity(a,b) 
and therefore this equivalence holds in all contexts. 

Although correctness of teleportation is standard, this  
formulation is (we claim!) a valuable new perspective. 



Mixed Configurations 

A mixed quantum state is a probability distribution over 
pure quantum states, representing classical uncertainty.  

We introduce mixed CQP configurations, distinct from 
probabilistic configurations. A measurement produces a 
mixed configuration. If the measurement result is output 
then a probabilistic configuration is produced. 

Internal communication of a measurement result, however, 
does not remove mixedness. 

In teleportation, with this new semantics, there are no 
probabilistic configurations, because the measurement 
result is never output. 



No Mixed Configurations => No Congruence 

P = a?[x] . {measure x} . Stop 
Q = a?[x] . {x *= H} . {measure x}. Stop 

Consider 

They are equivalent, in all quantum states, just because they 
produce no output. 

Put them in parallel with R = b![q] . Stop 
in the state  p,q = |00⟩+|11⟩ . 

If the measurement produces a probabilistic configuration, 
and R outputs afterwards, then the possible reduced density 
matrices for q, produced by P | R and Q | R, are different. 

This means that P | R and Q | R do not have matching output 
transitions. 



Mixed Configurations => Congruence 

P = a?[x] . {measure x} . Stop 
Q = a?[x] . {x *= H} . {measure x}. Stop 

Consider 

They are equivalent, in all quantum states, just because they 
produce no output. 

Put them in parallel with R = b![q] . Stop 
in the state  p,q = |00⟩+|11⟩ . 

In the modified semantics, the measurement produces a 
mixed configuration and because the result is not output, 
it never becomes a probabilistic configuration.  

Then the output of q has the same reduced density matrix 
for both P | R and Q | R . 



Next Steps for Quantum Process Calculus 

To make reasoning about processes easier and more practical: 

  equational axiomatization of equivalence 

  automated equivalence checking  

More substantial applications, e.g. cryptography. 



Conclusion 

Quantum information processing is a fascinating research 
area which might lead to important computational and 
cryptographic technologies.  

In any case, seeking to understand the computational 
power of quantum systems is a basic research question  
that approaches fundamental physics from an interesting 
new angle.   

The formal methods approach, and process calculus in 
particular, will be needed for assurance of practical systems, 
and gives an interesting new perspective on quantum 
behaviour. 


