Comparison of Formal Semantics of Reo Connectors: Coloring Models and Constraint Automata

Sung-Shik Jongmans¹ Farhad Arbab^{1,2}

¹Centrum Wiskunde & Informatica (CWI), the Netherlands ²Leiden Institute for Advanced Computer Science (LIACS), the Netherlands

9 June 2011

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

TABLE OF CONTENTS

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1 Reo
- **2** Coloring Models
- **3** Constraint Automata
- **4** DATA-AWARE COLORING MODELS
- 5 FROM DATA-AWARE CMS TO CA
- 6 FROM CA TO DATA-AWARE CMS
- **7** Concluding Remarks

IN A NUTSHELL...

- Introduced in the early 2000s [Arb04].
- Coordinators are called *connectors*.
 - Connectors are directed graphs.
 - Data items flow through edges (or *channels*).
 - Some nodes allow I/O-operations from components:
 - write(d,n) send d at n
 - d:=take(n) receive d at n
- Tool support: modeling, animating, simulating, verifying.

Connectors & composition

- Primitives: connectors without internal nodes.
 - Open ended collection.
 - Semantics freely definable:
 - Synchronous or asynchronous;
 - Lossless or lossy;
 - Buffered or non-buffered;
 - ...

- Composites: connectors obtained through composition.
 - Connectors have compositional semantics.
 - Example: *A o LossyFIFO* = *LossySync* × *FIFO*

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

BEHAVIORAL FORMALISMS

There exist many!

- Coalgebraic models based on streams [AR03].
- Operational models:
 - Constraint automata [BSAR06];
 - Intentional automata [Cos10];
 - Guarded automata [BCS09].
- Coloring models [CCA07]:
 - Two colors;
 - Three colors.

• ...

BEHAVIORAL FORMALISMS

There exist many!

- Coalgebraic models based on streams [AR03].
- Operational models:
 - Constraint automata [BSAR06];
 - Intentional automata [Cos10];
 - Guarded automata [BCS09].
- Coloring models [CCA07]:
 - Two colors;
 - Three colors.

•

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Folklore

CMs with two colors and CA are equally expressive.

- Yes, but...
- Our contribution:
 - We extend CMs with *data-awareness*.
 - Transformation operator: from data-aware CMs to CA.
 - Transformation operator: from CA to data-aware CMs.
 - Properties / proofs: correctness, compositionality, inverse.

Colorings

Let N be a set of nodes.

A coloring $c: N \to C$ olor over N...

- ...maps nodes to colors.
- ...describes a single computation step.

COLORING TABLE MAPS Let N be a set of nodes and Λ a set of indexes. A coloring table map $S : \Lambda \to 2^{\{N \to Color\}}$ over $[N, \Lambda]$...

- ...maps indexes to coloring tables (= sets of colorings).
- ...describes all computation steps in a state.

NEXT FUNCTIONS Let S be a CTM over $[N, \Lambda]$. A next function $\eta : \Lambda \times 2^{\{N \to Color\}} \to \Lambda$ over S...

- ...maps [indexes, coloring]-pairs to indexes.
- ...describes how the state of a connector evolves over time.

INITIALIZED NEXT FUNCTIONS

Let η be a next function over S with S defined over $[N, \Lambda]$. An initialized next function ϵ over S...

- ...associates a next function with an index.
- ...describes the initial state.

Constraint Automata

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー つくで

Automata

Let N be a set of nodes and G a set of *data constraints*.

A constraint automaton α over [N, G] is a tuple $\langle Q, R, q_0 \rangle$ with:

- Q a set of states;
- $R \subseteq Q \times 2^N \times G \times Q$ a transition relation;
- $q_0 \in Q$ an initial state.

DATA-AWARE COLORING MODELS

MOTIVATION

- CA are data-aware; CMs are not.
- Transformation issue: what to do with constraints?
- One-to-one versus many-to-one.

DATA-AWARE COLORING MODELS

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー つくで

EXTENSION

- Associate each coloring with a data constraint.
- Constraint coloring $\mathbf{c} = \langle c, g \rangle$ over [N, G] with:
 - $c: N \rightarrow Color$ a coloring;
 - $g \in G$ a data constraint.
- (Update other constituents of CMs accordingly.)

 $\mathbb{L}(\boldsymbol{\epsilon}) = \langle \Lambda, R, \lambda_0 \rangle$ with: $R = \{ \langle \lambda, F, g, \eta(\lambda, \langle c, g \rangle) \rangle | \lambda \in \Lambda \text{ and } \langle c, g \rangle \in \mathbf{S}(\lambda) \text{ and } F = \{ n \in N \mid c(n) = ---- \} \}$

DEFINITION OF \mathbb{L} Let $\epsilon = \langle \boldsymbol{\eta}, \lambda_0 \rangle$ be an initialized (constraint) next function over **S** with **S** defined over $[N, G, \Lambda]$.

- Set of states is the set of indexes Λ over which \boldsymbol{S} is defined.
- Transition relation includes for each $\langle \lambda, \langle c, g \rangle \rangle \mapsto \lambda' \in \eta$:
 - a transition from λ to λ' ,
 - labeled with g as its data constraint and
 - with the set of nodes to which *c* assigns the flow color.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 $\mathbb{L}(\epsilon) = \langle \mathbf{\Lambda}, R, \lambda_0 \rangle$

with: $R = \{ \langle \lambda, F, g, \eta(\lambda, \langle c, g \rangle) \rangle | \lambda \in \Lambda \text{ and } \langle c, g \rangle \in \mathbf{S}(\lambda) \text{ and } F = \{ n \in N | c(n) = ---- \} \}$

Definition of \mathbb{L}

Let $\epsilon = \langle \eta, \lambda_0 \rangle$ be an initialized (constraint) next function over **S** with **S** defined over $[N, G, \Lambda]$.

- Set of states is the set of indexes Λ over which \boldsymbol{S} is defined.
- Transition relation includes for each $\langle \lambda, \langle c, g \rangle \rangle \mapsto \lambda' \in \eta$:
 - a transition from λ to λ' ,
 - labeled with g as its data constraint and
 - with the set of nodes to which *c* assigns the flow color.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 $\mathbb{L}(\epsilon) = \langle \Lambda, R, \lambda_0 \rangle$

with: $R = \{ \langle \lambda, F, g, \eta(\lambda, \langle c, g \rangle) \rangle | \lambda \in \Lambda \text{ and } \langle c, g \rangle \in \mathbf{S}(\lambda) \text{ and } F = \{ n \in N | c(n) = ---- \} \}$

Definition of \mathbb{L}

Let $\boldsymbol{\epsilon} = \langle \boldsymbol{\eta}, \lambda_0 \rangle$ be an initialized (constraint) next function over **S** with **S** defined over $[N, G, \Lambda]$.

- Set of states is the set of indexes Λ over which \boldsymbol{S} is defined.
- Transition relation includes for each $\langle \lambda, \langle c, g \rangle \rangle \mapsto \lambda' \in \eta$:
 - a transition from λ to λ' ,
 - labeled with g as its data constraint and
 - with the set of nodes to which *c* assigns the flow color.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー つくで

Initial state is λ₀.

 $\mathbb{L}(\epsilon) = \langle \Lambda, R, \lambda_0 \rangle$ with: $R = \{ \langle \lambda, F, g, \eta(\lambda, \langle c, g \rangle) \rangle | \lambda \in \Lambda \text{ and } \langle c, g \rangle \in \mathbf{S}(\lambda) \text{ and } F = \{ n \in N | c(n) = ---- \} \}$

Definition of \mathbb{L}

Let $\boldsymbol{\epsilon} = \langle \boldsymbol{\eta}, \lambda_0 \rangle$ be an initialized (constraint) next function over **S** with **S** defined over $[N, G, \Lambda]$.

- Set of states is the set of indexes Λ over which \boldsymbol{S} is defined.
- Transition relation includes for each $\langle \lambda, \langle c, g \rangle \rangle \mapsto \lambda' \in \eta$:
 - a transition from λ to λ' ,
 - labeled with g as its data constraint and
 - with the set of nodes to which *c* assigns the flow color.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 $\mathbb{L}(\epsilon) = \langle \Lambda, R, \lambda_0 \rangle$

with: $R = \{ \langle \lambda, F, g, \eta(\lambda, \langle c, g \rangle) \rangle | \lambda \in \Lambda \text{ and } \langle c, g \rangle \in S(\lambda) \text{ and } F = \{ n \in N | c(n) = ---- \} \}$

Definition of \mathbb{L}

Let $\epsilon = \langle \eta, \lambda_0 \rangle$ be an initialized (constraint) next function over **S** with **S** defined over $[N, G, \Lambda]$.

- Set of states is the set of indexes Λ over which \boldsymbol{S} is defined.
- Transition relation includes for each $\langle \lambda, \langle c, g \rangle \rangle \mapsto \lambda' \in \eta$:

• a transition from λ to λ' ,

- labeled with g as its data constraint and
- with the set of nodes to which *c* assigns the flow color.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 $\mathbb{L}(\epsilon) = \langle \Lambda, R, \lambda_0 \rangle$

with: $R = \{ \langle \lambda, F, g, \eta(\lambda, \langle c, g \rangle) \rangle | \lambda \in \Lambda \text{ and } \langle c, g \rangle \in \mathbf{S}(\lambda) \text{ and } F = \{ n \in N | c(n) = ---- \} \}$

Definition of \mathbb{L}

Let $\epsilon = \langle \eta, \lambda_0 \rangle$ be an initialized (constraint) next function over **S** with **S** defined over $[N, G, \Lambda]$.

- Set of states is the set of indexes Λ over which \boldsymbol{S} is defined.
- Transition relation includes for each $\langle \lambda, \langle c, g \rangle \rangle \mapsto \lambda' \in \eta$:
 - a transition from λ to λ' ,
 - labeled with g as its data constraint and
 - with the set of nodes to which *c* assigns the flow color.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 $\mathbb{L}(\epsilon) = \langle \Lambda, R, \lambda_0 \rangle$

with: $R = \{ \langle \lambda, F, g, \eta(\lambda, \langle c, g \rangle) \rangle | \lambda \in \Lambda \text{ and } \langle c, g \rangle \in \mathbf{S}(\lambda) \text{ and } F = \{ n \in N | c(n) = ---- \} \}$

Definition of \mathbb{L}

Let $\epsilon = \langle \eta, \lambda_0 \rangle$ be an initialized (constraint) next function over **S** with **S** defined over $[N, G, \Lambda]$.

- Set of states is the set of indexes Λ over which \boldsymbol{S} is defined.
- Transition relation includes for each $\langle \lambda, \langle c, g \rangle \rangle \mapsto \lambda' \in \eta$:
 - a transition from λ to λ' ,
 - labeled with g as its data constraint and
 - with the set of nodes to which *c* assigns the flow color.

 $\mathbb{L}(\boldsymbol{\epsilon}) = \langle \Lambda, R, \lambda_0 \rangle$ with: $R = \{ \langle \lambda, F, g, \eta(\lambda, \langle c, g \rangle) \rangle | \lambda \in \Lambda \text{ and } \langle c, g \rangle \in \mathbf{S}(\lambda) \text{ and } F = \{ n \in N \mid c(n) = ---- \} \}$

DEFINITION OF \mathbb{L} Let $\epsilon = \langle \boldsymbol{\eta}, \lambda_0 \rangle$ be an initialized (constraint) next function over **S** with **S** defined over $[N, G, \Lambda]$.

- Set of states is the set of indexes Λ over which \boldsymbol{S} is defined.
- Transition relation includes for each $\langle \lambda, \langle c, g \rangle \rangle \mapsto \lambda' \in \eta$:
 - a transition from λ to λ' ,
 - labeled with g as its data constraint and
 - with the set of nodes to which *c* assigns the flow color.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

<□▶ <□▶ < □▶ < □▶ < □▶ = □ - つへで

Correctness (informal)

We wish to show that a data-aware CM ϵ and its \mathbb{L} -transformation are equivalent: for each mapping in ϵ , there exists a corresponding transition in $\mathbb{L}(\epsilon)$ with respect to...

- the change of state;
- the data items that flow;
- the nodes that fire.

Compositionality (informal)

We wish to show that it does not matter whether we first compose two coloring models and then apply \mathbb{L} or first apply \mathbb{L} to two coloring models and then compose them.

FROM CA TO DATA-AWARE CMS

$$\frac{1}{\mathbb{L}}(\alpha) = \langle \boldsymbol{\eta}, \boldsymbol{q}_0 \rangle$$
with: $\boldsymbol{\eta} = \{ \langle \boldsymbol{q}, \mathbf{c} \rangle \mapsto \boldsymbol{q}' \mid \langle \boldsymbol{q}, \boldsymbol{F}, \boldsymbol{g}, \boldsymbol{q}' \rangle \in R \}$
and: $\mathbf{c} = \langle \boldsymbol{c}, \boldsymbol{g} \rangle$
and: $\boldsymbol{c} = \left\{ n \mapsto \kappa \mid n \in N \text{ and } \kappa = \left(\underbrace{-\cdots}_{\text{otherwise}} \right) \right\}$

DEFINITION OF $\frac{1}{\mathbb{L}}$ Let $\alpha = \langle Q, R, q_0 \rangle$ be a *deterministic* CA over [N, G].

- Paper: $\frac{1}{\mathbb{L}}$ is correct and compositional.
- Inverse:
 - Lemma: $\frac{1}{\mathbb{L}}(\mathbb{L}(\epsilon)) = \epsilon$.
 - Lemma: $\overline{\mathbb{L}}(\frac{1}{\mathbb{L}}(\alpha)) = \alpha$
 - (The latter cannot hold if we consider data-unaware CMs!)

Concluding Remarks

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Possible applications

- Verification of *context-sensitivity* with Vereofy [BBKK09].
 - 1 Transform 3CM to 2CM [JKA11].
 - 2 Transform 2CM to CA with \mathbb{L} .
 - 3 Verify!
- Animation of counterexamples.
 - Vereofy can visualize counterexamples *if* there is a CM.
 - Problem: this is not always the case...
 - Solution: use $\frac{1}{\mathbb{L}}$ to generate unavailable CMs.

Concluding Remarks

SUMMARY

- We extended coloring models with data-awareness.
- We defined transformation operators.
- The operators are correct, compositional, and inverse.

FUTURE WORK

- Implement operators.
- Implement proposed extensions to Vereofy.
- Investigate other semantic models of Reo.

References I

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[AR03] Farhad Arbab and Jan Rutten. A coinductive calculus of component connectors. In Marin Wirsing, Dirk Pattinson, and Rolf Hennicker, editors, *Recent Trends in Algebraic Development Techniques*, volume 2755 of *LNCS*, pages 34–55. 2003.

[Arb04]

Farhad Arbab.

Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science,

14:329-366, 2004.

References II

[BBKK09] Christel Baier, Tobias Blechmann, Joachim Klein, and Sascha Klüppelholz.

A uniform framework for modeling and verifying components and connectors.

In John Field and Vasco Vasconcelos, editors, *Coordination Models and Languages*, volume 5521 of *Lecture Notes in Computer Science*, pages 247–267. 2009.

 [BCS09] Marcello M. Bonsangue, Dave Clarke, and Alexandra Silva.
 Automata for context-dependent connectors.
 In John Field and Vasco Vasconcelos, editors, *Coordination Models and Languages*, volume 5521 of *LNCS*, pages 184–203. 2009.

References III

 [BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten.
 Modeling component connectors in Reo by constraint automata.
 Science of Computer Programming, 61(2):75–113, 2006.

[CCA07] Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency. Science of Computer Programming, 66(3):205–225, 2007.

[Cos10] David Costa. Formal Models for Component Connectors. PhD thesis, Vrije Universiteit Amsterdam, 2010.

References IV

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 [JKA11] Sung-Shik Jongmans, Christian Krause, and Farhad Arbab.
 Encoding context-sensitivity in Reo into non-context-sensitive semantic models.
 In Wolfgang de Meuter and Catalin Roman, editors, Proceedings of the 13th International Conference on Coordination Models and Languages, volume 6721 of LNCS. Springer, 2011.
 To appear.