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Reo

In a nutshell...

• Introduced in the early 2000s [Arb04].

• Coordinators are called connectors.
• Connectors are directed graphs.
• Data items flow through edges (or channels).
• Some nodes allow I/O-operations from components:

• write(d,n) — send d at n
• d:=take(n) — receive d at n

• Tool support: modeling, animating, simulating, verifying.




Reo

Connectors & composition

• Primitives: connectors without internal nodes.
• Open ended collection.
• Semantics freely definable:

• Synchronous or asynchronous;
• Lossless or lossy;
• Buffered or non-buffered;
• ...

• Examples:
A B A B A B

Sync LossySync FIFO

• Composites: connectors obtained through composition.
• Connectors have compositional semantics.

• Example:
A B

LossyFIFO = LossySync × FIFO



Reo

Behavioral formalisms
There exist many!

• Coalgebraic models based on streams [AR03].

• Operational models:
• Constraint automata [BSAR06];
• Intentional automata [Cos10];
• Guarded automata [BCS09].

• Coloring models [CCA07]:
• Two colors;
• Three colors.

• ...
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Reo

Folklore
CMs with two colors and CA are equally expressive.

• Yes, but...

• Our contribution:
• We extend CMs with data-awareness.
• Transformation operator: from data-aware CMs to CA.
• Transformation operator: from CA to data-aware CMs.
• Properties / proofs: correctness, compositionality, inverse.



Coloring Models

A B A B

c1 c1
c2 c2

c ′1 c ′1
c2 c2

S =

{
FIFO-E 7→ {c1, c2} ,
FIFO-F 7→ {c ′1, c2}

}

η =


〈FIFO-E , c1〉 7→ FIFO-F ,
〈FIFO-E , c2〉 7→ FIFO-E ,

〈FIFO-F , c ′1〉 7→ FIFO-E ,
〈FIFO-F , c2〉 7→ FIFO-F


ε = 〈η, FIFO-E〉

Colorings
Let N be a set of nodes.
A coloring c : N → Color over N...

• ...maps nodes to colors.

• ...describes a single computation step.
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Coloring table maps
Let N be a set of nodes and Λ a set of indexes.
A coloring table map S : Λ→ 2{N→Color} over [N,Λ]...

• ...maps indexes to coloring tables (= sets of colorings).

• ...describes all computation steps in a state.



Coloring Models
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Next functions
Let S be a CTM over [N,Λ].
A next function η : Λ× 2{N→Color} → Λ over S ...

• ...maps [indexes, coloring]-pairs to indexes.

• ...describes how the state of a connector evolves over time.



Coloring Models
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Initialized next functions
Let η be a next function over S with S defined over [N,Λ].
An initialized next function ε over S ...

• ...associates a next function with an index.

• ...describes the initial state.



Constraint Automata

FIFO-E FIFO-F

{A},#A = “foo”

∅,>

{B},#B = “foo”

∅,>

Automata
Let N be a set of nodes and G a set of data constraints.
A constraint automaton α over [N,G ] is a tuple 〈Q,R, q0〉 with:

• Q a set of states;

• R ⊆ Q × 2N × G × Q a transition relation;

• q0 ∈ Q an initial state.



Data-Aware Coloring Models

Motivation

• CA are data-aware; CMs are not.

• Transformation issue: what to do with constraints?

• One-to-one versus many-to-one.



Data-Aware Coloring Models

A B A B

c1 c1
c2 c2

, #A =“foo”
, >

c ′1 c ′1
c2 c2

, #B =“foo”
, >

Extension

• Associate each coloring with a data constraint.

• Constraint coloring c = 〈c, g〉 over [N,G ] with:
• c : N → Color a coloring;
• g ∈ G a data constraint.

• (Update other constituents of CMs accordingly.)



From Data-Aware CMs to CA

L(ε) = 〈Λ,R, λ0〉
with: R = { 〈λ,F , g ,η(λ, 〈c , g〉)〉 |λ ∈ Λ and 〈c , g〉 ∈ S(λ) and F = { n ∈ N | c(n) = } }

Definition of L
Let ε = 〈η, λ0〉 be an initialized (constraint) next function over S
with S defined over [N,G ,Λ].

• Set of states is the set of indexes Λ over which S is defined.

• Transition relation includes for each 〈λ, 〈c, g〉〉 7→ λ′ ∈ η:

• a transition from λ to λ′,
• labeled with g as its data constraint and
• with the set of nodes to which c assigns the flow color.

• Initial state is λ0.
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From Data-Aware CMs to CA

Correctness (informal)

We wish to show that a data-aware CM ε and its L-transformation
are equivalent: for each mapping in ε, there exists a corresponding
transition in L(ε) with respect to...

• the change of state;

• the data items that flow;

• the nodes that fire.

Compositionality (informal)

We wish to show that it does not matter whether we first compose
two coloring models and then apply L or first apply L to two
coloring models and then compose them.



From CA to Data-Aware CMs

1
L(α) = 〈η, q0〉

with: η = { 〈q, c〉 7→ q′ | 〈q,F , g , q′〉 ∈ R }
and: c = 〈c , g〉

and: c =

{
n 7→ κ

∣∣∣∣ n ∈ N and κ =

(
if n ∈ F
otherwise

)}

Definition of 1
L

Let α = 〈Q,R, q0〉 be a deterministic CA over [N,G ].

• Paper: 1
L is correct and compositional.

• Inverse:
• Lemma: 1

L (L(ε)) = ε.
• Lemma: L( 1

L (α)) = α
• (The latter cannot hold if we consider data-unaware CMs!)



Concluding Remarks

Possible applications

• Verification of context-sensitivity with Vereofy [BBKK09].

1 Transform 3CM to 2CM [JKA11].
2 Transform 2CM to CA with L.
3 Verify!

• Animation of counterexamples.
• Vereofy can visualize counterexamples if there is a CM.
• Problem: this is not always the case...
• Solution: use 1

L to generate unavailable CMs.



Concluding Remarks

Summary

• We extended coloring models with data-awareness.

• We defined transformation operators.

• The operators are correct, compositional, and inverse.

Future work

• Implement operators.

• Implement proposed extensions to Vereofy.

• Investigate other semantic models of Reo.
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