
 

 

On the Reaction Time of Some Synchronous
Systems

Ilias Garnier, Christophe Aussagès, Vincent
David, Guy Vidal-Naquet

June 9, 2011



Plan

Context

Formal model

Reaction time

Compositionality of reaction time

Applications to refinement

June 9, 2011 — 2 / 23



Context: real-time embedded systems

Real-time embedded systems: computer systems interacting with
the physical environment under strong timing constraints.

Studied systems: synchronous system

Study of delay of significant reaction time, called here
reaction time

June 9, 2011 — 3 / 23



Motivation: introducing reaction time

Analogy: wave through a physical medium

t t+d

Reaction time ≈ delay between input and functionally dependent
output.

June 9, 2011 — 4 / 23



Introducing synchronous systems

Our study concentrates on the Moore model of synchronous
computation.

Synchronous round of computation

Observable output part of the state

Next state depends on input and current state

Synchronous computation = (possibly infinite) succession of
rounds. When state space is finite, defines a Moore machine.

0

in1

↓
out0 1

in2

↓
out1 2

in3

↓
out2 3

June 9, 2011 — 5 / 23



Investigating reaction time

What does it mean to react to an input ?

existence of an “observable effect”
observable state is a function of the input
⇒ need a formal notion of observational equivalence

What is a reaction time ?

in our case, number of transitions until observable effect

Is it compositional ?

in this presentation, study of sequential composition

June 9, 2011 — 6 / 23



Moore machines

Moore machine = FSM where states are labelled with output. Let
In set of inputs, Out set of outputs, M = 〈In,Out,Q,E , out〉.

Q finite set of states,

E ⊆ Q × In× Q edges, Input-enabled

out : Q → Out outputs.

Quick example: outputs 0 on ff, outputs 1 on tt:

qa : 0 qb : 1

tt

ff

ff tt

0
tt
↓

0

1
ff
↓

1

2
ff
↓

0

3
tt
↓

0

4
ff
↓

1

June 9, 2011 — 7 / 23



Bigger example

A synchronous program and its corresponding machine

x0 := true;
x1 := true;
next(true);
while true do

next(x0);
x0 := x1;
x1 := input

done

q0 : tt
x0 = tt
x1 = tt

q1 : tt
x0 = tt
x1 = ff

q2 : tt
x0 = ff
x1 = tt

q3 : ff
x0 = tt
x1 = tt

q4 : tt
x0 = ff
x1 = ff

q5 : ff
x0 = tt
x1 = ff

q6 : ff
x0 = ff
x1 = tt

q7 : ff
x0 = ff
x1 = ff

tt

ff

ff tt tt

ff

tt

ff

ttff

tt
ff

ffff

tt

tt

June 9, 2011 — 8 / 23



Observational equivalence

In order to define observational difference, we need to define
observational equivalence. We choose bisimilarity (finest-grained).
Let p, q be two states.

p ∼ q ↔ out(p) = out(q) ∧
∀a,∀p

a−→ p′, ∃q
a−→ q′, p′ ∼ q′ ∧

∀a,∀q
a−→ q′, ∃p

a−→ p′, p′ ∼ q′

Intuitive view: p ∼ q is simply equality on infinite unfoldings
starting from p and q.

June 9, 2011 — 9 / 23



Reaction time: case of total functions

Recall that reaction time ≈ delay between input and related
output. “Related” means functional dependency between input
and output.
f : D → E a total function. We have:

f constant ↔ f (D) = {e}

f non-constant ↔ ∃d1, d2, d1 6= d2 ∧ f (d1) 6= f (d2)

(d1, d2) allows to prove f non-constant: separating pair.

June 9, 2011 — 10 / 23



Reaction time: states of Moore machines

state = function from inputs to set of states

init

p1

p2 p3

q1 q2

in1

in2

reached sets P,Q not equivalent when ∃ pi ∈ P s.t. ∀qj ∈ Q,
pi � qj (or the other way around).

Reaction time

Given p � q, we want to study how many transitions are needed to
have an observable effect.

June 9, 2011 — 11 / 23



Observable effects

Observable effects extracted from proofs of non-bisimilarity
Inductive definition of p � q:

base
out(p) 6= out(q)→ p � q

ind
∃p

a−→ p′,∀q
a−→ q′, p′ � q′ ∨ ∃q

a−→ q′,∀p
a−→ p′, p′ � q′

p � q

p = p0
a0→ p1

a1→ p2 . . . pn

q = q0
a0→ q1

a1→ q2 . . . qn
s.t. out(pn) 6= out(qn).

Observable effect, separator

The pair (out(pn), out(qn)) is an observable effect. The word
a0.a1 . . . an−1 is called a separator.

June 9, 2011 — 12 / 23



Observable effects example

Unfolding of state q0 of delay program.

q0 : tt

q0 : tt

q0 : tt

q0 : tt

. . .

q1 : tt

. . .

q1 : tt

q2 : tt

. . .

q4 : tt

. . .

q1 : tt

q2 : tt

q3 : ff

. . .

q5 : ff

. . .

q4 : tt

q6 : ff

. . .

q7 : ff

. . .

ff

ff

fftt

tt

fftt

tt

ff

fftt

tt

fftt

In this case, every word of length 2 is a separator.

June 9, 2011 — 13 / 23



Observable effects example (cont.)

An unfolding where ff∗ does not contain separators.

init

q0 : 0

q1 : 1

T

q2 : 0

q3 : 3

T

q4 : 0

q5 : 5

T

q6 : 0

...

p0 : 0

p1 : 2

T

p2 : 0

p3 : 4

T

p4 : 0

p5 : 6

T

p6 : 0

...

ff

ff

ff

fftt

tt

tt

tt

ff

ff

fftt

tt

tt

June 9, 2011 — 14 / 23



From obs. effects to reaction time

1 Reactivity of a state q (≡ non-constantness) ↔ ∃ separating

pair of inputs in1 6= in2 s.t. q
in1−→ Q1, q

in2−→ Q2 and set Q1

not equivalent to set Q2

2 Any proof of qi � qj yields an observable effect triggered by
a particular input word called separator;

in a non-deterministic fashion: may-separator
for all runs of the separator: must-separator

Reaction time

Exists iff all infinite input words are prefixed by a must-separator.
It is the worst-case number of transitions necessary to obtain the
first observable effect.

June 9, 2011 — 15 / 23



Compositionality

Computing separators and observable effects in order to obtain
reaction time is costly.

Compositionality property

Given machines M1,M2 and binary composition operation C, can
we compute the observable effects of the composed machine
C(M1,M2) without performing the whole state-space exploration ?

I.e. how easily can we compute the observable effects of
C(M1,M2) given those of M1 and M2 ?
In our case, C = ◦, the sequential composition.

June 9, 2011 — 16 / 23



Sequential composition of states

Compound state space = cartesian product. Compound transition
exists iff receiving transition labelled by output of sending state.

qf
inf−→ q′

f qg
out(qf )−−−−→ q′

g

(qf , qg )
inf−→ (q′

f , q′
g ) out(qg ◦ qf ) = out(qg )

p0 : x

p1 : 0 p2 : 0 p3 : 1

p4 : 0 p5 : 0 p6 : −1

tt
∗ ∗

∗

ff
∗ ∗

∗

q0 : a q1 : a q2 : a q3 : a

q4 : a q5 : a . . .

q6 : a q7 : b . . .

∗ ∗ ∗
1

∗

-1
∗

p0, q0 : x

p1, q1 : a p2, q2 : a p3, q3 : a p3, q4 : a p4, q5 : a . . .

p4, q1 : a p5, q2 : a p6, q3 : a p6, q6 : a p6, q7 : b . . .

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

June 9, 2011 — 17 / 23



Necessity of a well-behaved composition

p0 : 0

p1 : 1 p3 : 0

p2 : 0 p4 : 0

A

B

∗

∗

∗

∗

q0 : tt q1 : tt

q2 : tt q4 : tt

q3 : tt

q5 : tt

q6 : ff

∗

0

{0, 1}

1 0

1

∗

∗

∗

States q6 becomes unreachable in composition, states q2 and q3

no more separable. Sequential composition yields

tt

∗

Moore machines: to compute all compound obs. effects, full state
space search necessary.
Possible solution: under-approximate obs. effects until they are
compositional.

June 9, 2011 — 18 / 23



Approximating obs. effects

Core idea: reduce branching property to a linear one.

init1

qa : o

qi : oi

. . .

...

qb : o

qj : oj

. . .

...

qc : o

qk : ok

. . .

incinbina

⋃
obs.eff.

init2

p1

SP (p1)

. . .

pu

SP (pu)

. . .

pv

SP (pv)

⋂
i∈[1;v]

SP (pi)

linear time criterion: init2 ◦ init1 reactive if⋃
obs.effects ⊆

⋂
SP(qi )

Problem: sets of separating pairs and obs. effects can be complex.

June 9, 2011 — 19 / 23



Determinism and separability

Solution 2: restriction to sep. pairs and obs. effects present for all
input words, i.e. deterministic sep. pairs and obs. effects.

p0 : 0

p1 : 0

p2 : 1

p3 : 0 . . .
tt

ff

∗
∗

. . .

q0 : 0

q1 : 1

q2 : 2

q3 : 1 . . .
tt

ff

∗
∗

. . .

context tt.bool∗, obs. effect ∅.(0, 1).(0, 1) . . .
context ff.bool∗, obs. effect ∅.(1, 2).(0, 1) . . .

deterministic obs. effect: ∅.∅.(0, 1) . . .

June 9, 2011 — 20 / 23



Refinement

We aim at developing real-time embedded systems by validated
stepwise refinement, s.t. the refinement step i) preserves reaction
time and ii) is a congruence.

Simulation as refinement, i.e. p refines q ↔ p has less
possible behaviours than q (= tree inclusion)

Problem: does simulation preserve observable effects ? Is it
compositional ?

June 9, 2011 — 21 / 23



Observable effect preservation

Simulation doesn’t preserve non-deterministic separators.

init

q0 : 0

p0 : 0

q1 : 1 T

q2 : 2 T

q3 : 2 T

p1 : 2 T

p2 : 2 T

p3 : 2 T

B

B

A

A

A B

A

A

Corollary: observable effects and reaction time not preserved in
general. Solution: consider a subset of observable effects generated
by proofs of non-bisimulation which do not rely on
non-determinism. I.e. Deterministic obs. effects are preserved by
refinement.

June 9, 2011 — 22 / 23



Conclusion

Reaction time can be defined in terms of observable effects,
which correspond to proofs of non-bisimulation

In general,

not preserved by sequential composition
not preserved by refinement.

Det. obs. effects preserved

June 9, 2011 — 23 / 23


	Introduction
	Formal model
	Reaction time
	Applications to refinement-based development
	Conclusion

