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Formal Methods for Reactive Systems

Our area of interest is reactive systems and the search of languages,
methodologies and tools for guaranteeing their correct and efficient
behavior in all possible environment.

To achieve this goal we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems.

3 To develop verification tools and implementation techniques
underlying them.
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The basic approach

Processes and Process Description Languages

The chosen abstraction for modelling reactive systems is the notion of
process.

Systems evolution is based on processes transformation: A process
performs an action and becomes another process.

Everything is (or can be viewed as) a process. Buffers, memory cells,
tuple spaces, senders, receivers, . . . are all processes.

Labelled Transition Systems (LTS) describe process behaviour
(evolution from one stare to another), and permit directly modelling
systems interaction.

Languages are needed to describe concisely describe processes.
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Presentations of Labelled Transition Systems

Process Description Languages as denotations of LTS

LTS are represented by terms of a process description language,
sometimes also referred as process algebra or process calculus.

Terms of a process description language are rendered as LTS via
operational semantics.

Process Algebra Basic Principles

1 Define a few elementary (atomic) processes modelling the simplest
process behaviour;

2 Define appropriate composition operations to build more complex
process behaviour from (existing) simpler ones.
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Semantics of Process Calculi

Operational Semantics

An LTS is associated to each process term (built using the carefully
selected set of operators) by relying on structural induction and on
inference systems to define the meaning of each operator.

the states of the transition systems are just terms of the Process
Calculus (PC)

the labels of the transitions connecting states represent the possible
actions, or interactions, and their effects.

Behavioural Relations

PCs often come equipped with observational mechanisms that permit
relating (through behavioral equivalences or preorders) systems according
to their reactions to stimuli by external observers.

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 7 / 74



Semantics of Process Calculi

Definition (Inference Systems)

An inference system is a set of inference rules of the form

p1, · · · , pn

q

For a generic operator op we have one or more rules like:

Inference Rules

Ei1
α1−−→ E ′i1 · · · Eim

αm−−−→ E ′im

op(E1, · · · ,En)
α−−→ op(E ′1, · · · ,E ′n)

where {i1, · · · , im} ⊆ {1, · · · , n}.
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From Behaviours to Performances

Functional Specifications

Initially, PCs have been designed for modeling qualitative aspects of
concurrent systems:

to model functional (extensional) behavior

to assess whether two systems have comparable behaviors

Quantitative Specifications

However, it was soon noticed that other aspects of concurrent systems,
mainly related to systems performance, actions duration and probability,
are at least as important as the functional ones.
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Introduction

Many variants of PCs have been introduced to take into account
quantitative aspects of concurrent systems

deterministically timed PCs;

probabilistic PCs;

stochastically timed PCs.

The operational semantics of these calculi has then been rendered in terms
of richer LTSs quotiented with new (timed, probabilistic and stochastic)
behavioral relations.

Here, we will concentrate on some of these variants and will consider a few
proposals for Stocastic Process Calculi - SPC and then we will touch some
of the probabilistic variants.
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Stochastic Process Calculi: a solid research field
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Prominent Examples of SPCs

TIPP - Timed Processes and Performance Evaluation

[N. Götz et al. 1993, Hermanns et al. 1998]

PEPA - Performance Evaluation Process Algebra [Hillston 1996]

EMPA - Extended Markovian Process Algebra [Bernardo et al. 1996]

IML - Language of Interactive Markov Chains [Hermanns 2002]

are based on CSP multi-party process interaction framework

SπC - Stochastic π-Calculus [Priami, 1995]

sCCS - Stochastic CCS [Klin & Sassone, 2008]

are based on CCS binary process interaction framework
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SPC for Mobile / Service Oriented Computing

StoKLAIM - Stochastic KLAIM [De Nicola et al. 2005-9]

Kernel Language for Agents Interaction and Mobility[De Nicola et al. 1998]

MarCaSPiS - Markovian CaSPiS (RTS semantics) [De Nicola et al. 2008]

Calculus of Sessions and Pipelines [Bruni et al. 2008]

Stochastic COWS [Prandi et al. 2007]

Calculus for Orchestration of Web Services [Lapadula et al. 2007]
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Stochastically Timed Process Calculi

Goals:

Integration of

qualitative (behavioural, functional) system model descriptions with
quantitative (non-functional, e.g. performance/dependability) ones

in a single mathematical process algebraic framework with

Formal Syntax
Process Semantic Models

Pre-orders, Equivalence relations, Axiomatizations, etc.
Formal Analysis and Verification

Traditional Techniques, (Stochastic) Logics & Model-checking, etc.

Means:

Enriching process languages with random variables (RV) modeling

action durations or delays before instantaneous actions

Combining

Labeled Transition Systems (LTS) with
Continuous Time Markov Chains (CTMC)
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Continuous Time Markov Chains

Continuous Time Markov Chains are a successful mathematical framework
for modeling and analysing performance and dependability of systems that
rely on exponential distribution of states transitions.

CTMCs come with

Well established Analysis Techniques

Steady State Analysis
Transient Analysis

Efficient Software Tools based on:

Stochastic Timed/Temporal Logics
Stochastic Model Checking

A CTMC is a pair (S,R)

S: a countable set of states

R : S × S → R≥0, the rate matrix
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Stochastic process calculi

A CTMC is associated to each process term;

CTMCs model the stochastic behaviour of processes.

To get a CTMC from a term, one needs to. . .

compute synchronizations rate . . .

. . . while taking into account transition multiplicity, for determining
correct execution rate

Process Calculi:

α.P + α.P = α.P

recX α. X | recX α. X = recX α. X
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SPCs: Similarities & Differences

Most of SPA are based on the same Exponentially distributed RV, fully
characterized by their rate, but they differ significantly for

the process interaction paradigm (e.g CSP-like vs CCS-like)

the association of rates with actions

rate-action-prefix: (a, λ).P [e.g. TIPP, PEPA, EMPA, sCCS, SπC]

rate-prefix plus action-prefix: λ.P, a.P [e.g. IML]

the definition of the rate associated to synchronisations

the modelling of the choice between equal behaviours
multi-relations [e.g. PEPA, IML]

proved transition systems [e.g. TIPP, SπC]

LTS with numbered transitions [e.g. LCTMC]

unique rate names [e.g. StoKLAIM]
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Operators for Stochastic Process Calculi

A uniform syntax for many SPCs

P,Q ::= nil [inaction]
| λ.P [rate prefix]
| a.P [action prefix]
| 〈a, λ〉.P [rated-action prefix]
| 〈a, ∗ω〉.P [passive-action prefix]
| āλ.P [rated-output-action prefix]
| aλ.P [rated-input-action prefix]
| a∗ω .P [passive-input-action prefix]
| P + Q [choice composition]
| P ||L Q [multi-party synchronization composition]
| P | Q [binary synchronization composition]
| X [constant]
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Operators for Stochastic Process Calculi

Rate prefix: λ.P, delays execution of P by an interval δe , the duration
of which is an exponentially distributed RV with rate λ ∈ R>0.

Action prefix: a.P starts with the execution of action a and then
continues with that of P; the execution of a is duration-less or
instantaneous, i.e. takes no time.

In rated-action prefix: 〈a, λ〉.P the duration δea of the execution of
action a is an exponentially distributed RV with rate λ; after
completion of the execution of a, the behavior continues as in P.

The weight ω in passive-action prefix: operator 〈a, ∗ω〉.P is used for
determining a probabilistic distribution in case there is more than one
passive action which may synchronize with the same active one.
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Operators for Stochastic Process Calculi

Rated-input-action prefix: aλ.P, and rated-output-action prefix: āλ.P
are used to model CCS-like stochastic calculi, where a binary
synchronization paradigm is used. In this calculi duration rates are
associated to both to input and output actions.

The choice operator: P1 + P2 is interpreted according to the race
condition principle of CTMCs.

The multi-party parallel composition operator: P1 ||L P2 where
L ∈ (℘finA) is the synchronization (or cooperation) set, corresponds
to CSP parallel composition that requires actions in L to be
performed synchronously and the others independently.

The binary parallel composition: P1 | P2, is the parallel operator used
in the CCS-based calculi, that models synchronization of
complementary actions. For this composition also passive input action
prefix: a∗ω .P is used.
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SPCs: Headaches

Transition multiplicity (race condition)

The technicalities set up for dealing with transition multiplicity often
blur the conceptual understanding of the calculus.

The transition multi-relation defined as the least multi-relation
induced by a set of SOS rules (unintentionally!) boils down to a
relation.

Interaction paradigm and synchronisation rate

Use of classical SOS for CCS-like interaction in combination with the
minimal apparent rate principle may lead to loss of associativity for
the parallel composition operator.
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Semantics of stochastic process calculi

We introduce a variant of Transition Systems (that we call RTS) and use
it for defining stochastic behaviour of a few process algebras. Our RTS
associates terms and actions to functions from terms to rates

Like most of the previous attempts we take a two steps approach: For a
given term, say T , we define an enriched LTS and then use it to determine
the CTMC to be associated to T .
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Semantics of stochastic process calculi

Stochastic semantics of process calculi is defined by means of a transition
relation � that associates to a pair (P, α) - consisting of process and an
action - a total function (P, Q,. . . ) that assigns a non-negative real
number to each process of the calculus. Value 0 is assigned to unreachable
processes.

P
α
� P means that, for a generic process Q:

if P(Q) = x (6= 0) then Q is reachable from P via the execution of α
with rate/(weight) x

if P(Q) = 0 then Q is not reachable from P via α

We have that if P
α
� P then

⊕P =
∑

Q P(Q) represents the total rate/weight of α in P.
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Rate transition systems

Definition

A rate transition system is a triple (S ,A,�) where:

S is a set of states;

A is a set of transition labels;

→⊆ S × A× [S → R≥0]

An example of RTS

s3 s1 s2 s4

α
λ1

βλ2

a
λ3λ4

b
λ5

λ6

γ λ7

δ
λ8
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Some Notation for Rate transition systems

RTS will be denoted by R, R1, R′, . . . ,

Elements of [S → R≥0] are denoted by P,Q,R, . . .

[s1 7→ v1, . . . , sn 7→ vn] denotes the function associating vi to si and 0
to all the other states.

[] denotes the constant function 0.

χs stands for [s 7→ 1].

P + Q denotes the function R such that: R(s) = P(s) + Q(s).

P · xy denotes the function R such that: R(s) = P(s) · xy if y 6= 0,
and ∅ if y = 0.
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Rate transition systems

Definition

Let R = (S ,A,→) be an RTS

R is total: ∀s ∈ S , ∀α ∈ A ∃P such that s
α
� P;

R is deterministic: ∀s ∈ S , ∀α ∈ A s
α
� P, s

α
� Q =⇒P = Q

R is a finite support: ∀s ∈ S , ∀α ∈ A if s
α
� P we then

{s ′|P(s ′) > 0} is finite

A deterministic RTS

s1

α

s2

λ2

s3

λ1

A general RTS

s4

s5 s6

α

λ1

α

λ2
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From RTS to CTMC. . .

Reachable Sets of States

For sets S ′ ⊆ S and A′ ⊆ A, the set of derivatives of S ′ through A′,
denoted Der(S ′,A′), is the smallest set such that:

S ′ ⊆ Der(S ′,A′),

if s ∈ Der(S ′,A′) and there exists α ∈ A′ and Q ∈ ΣS such that

s
α
� Q then {s ′ | Q(s ′) > 0} ⊆ Der(S ′,A′)

Mapping (S,A,→) into (Der(S ′,A′),R)

Let R = (S,A,→) be a functional RTS, for S ′ ⊆ S, the CTMC of S ′,
when one considers only actions A′ ⊆ A is defined as
CTMC [S ′,A′] =def (Der(S ′,A′),R) where for all s1, s2 ∈ Der(S ′,A′):

R[s1, s2] =def

∑
α∈A′

Pα(s2) with s1
α
� Pα.
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A translation from an RTS to a CTMC

An RTS:

s3 s1 s2 s4

α
λ1

βλ2

a
λ3λ4

b
λ5

λ6

c

λ7

γ λ7

δ
λ8

The corresponding CTMC:

s1 s2s3 s4

λ3 + λ7

λ4 λ6

λ5
λ2

λ1

λ8

λ7
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A Language for CTMCs - Hermanns et al. 2002

Syntax

P,Q ::= nil [inaction]
| λ.P [rate prefix]
| P + P [choice composition]
| X [constant]

with λ ∈ R>0 and with definition X := P such that all process constants
are guarded in P.

Semantics Rules

Label set is LCTMC =def {δe}

nil
δe
� []R λ.P

δe
� [P 7→λ]

P
δe

�P,Q
δe

�Q

P +Q
δe
�P+Q

P
δe

�P,X :=P

X
δe
�P

Table 1: Transition Rules for the Language for CTMCs
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Choice and Transition Multiplicity

P
δe

� P, Q
δe

� Q

P + Q
δe

� P + Q

Take λ.R1 + µ.R2

if R1 6= R2:

then λ.R1 + µ.R2
δe

� [R1 7→ λ,R2 7→ µ]

if R1 = R2 = R then λ.R + µ.R
δe

� [R 7→ λ+ µ]

thus, we obviously have

if R1 = R2 = R and λ = µ then λ.R + λ.R
δe

� [R 7→ 2 · λ]

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 34 / 74



Choice and Transition Multiplicity

P
δe

� P, Q
δe

� Q

P + Q
δe

� P + Q

Take λ.R1 + µ.R2

if R1 6= R2:

then λ.R1 + µ.R2
δe

� [R1 7→ λ,R2 7→ µ]

if R1 = R2 = R then λ.R + µ.R
δe

� [R 7→ λ+ µ]

thus, we obviously have

if R1 = R2 = R and λ = µ then λ.R + λ.R
δe

� [R 7→ 2 · λ]

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 34 / 74



Choice and Transition Multiplicity

P
δe

� P, Q
δe

� Q

P + Q
δe

� P + Q

Take λ.R1 + µ.R2

if R1 6= R2:

then λ.R1 + µ.R2
δe

� [R1 7→ λ,R2 7→ µ]

if R1 = R2 = R then λ.R + µ.R
δe

� [R 7→ λ+ µ]

thus, we obviously have

if R1 = R2 = R and λ = µ then λ.R + λ.R
δe

� [R 7→ 2 · λ]

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 34 / 74



Choice and Transition Multiplicity

P
δe

� P, Q
δe

� Q

P + Q
δe

� P + Q

Take λ.R1 + µ.R2

if R1 6= R2:

then λ.R1 + µ.R2
δe

� [R1 7→ λ,R2 7→ µ]

if R1 = R2 = R then λ.R + µ.R
δe

� [R 7→ λ+ µ]

thus, we obviously have

if R1 = R2 = R and λ = µ then λ.R + λ.R
δe

� [R 7→ 2 · λ]

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 34 / 74



Choice and Transition Multiplicity

P
δe

� P, Q
δe

� Q

P + Q
δe

� P + Q

Take λ.R1 + µ.R2

if R1 6= R2: then λ.R1 + µ.R2
δe

� [R1 7→ λ,R2 7→ µ]

if R1 = R2 = R then λ.R + µ.R
δe

� [R 7→ λ+ µ]

thus, we obviously have

if R1 = R2 = R and λ = µ then λ.R + λ.R
δe

� [R 7→ 2 · λ]

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 34 / 74



Choice and Transition Multiplicity

P
δe

� P, Q
δe

� Q

P + Q
δe

� P + Q

Take λ.R1 + µ.R2

if R1 6= R2: then λ.R1 + µ.R2
δe

� [R1 7→ λ,R2 7→ µ]

if R1 = R2 = R then λ.R + µ.R
δe

� [R 7→ λ+ µ]

thus, we obviously have

if R1 = R2 = R and λ = µ then λ.R + λ.R
δe

� [R 7→ 2 · λ]

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 34 / 74



Choice and Transition Multiplicity

P
δe

� P, Q
δe

� Q

P + Q
δe

� P + Q

Take λ.R1 + µ.R2

if R1 6= R2: then λ.R1 + µ.R2
δe

� [R1 7→ λ,R2 7→ µ]

if R1 = R2 = R then λ.R + µ.R
δe

� [R 7→ λ+ µ]

thus, we obviously have

if R1 = R2 = R and λ = µ then λ.R + λ.R
δe

� [R 7→ 2 · λ]

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 34 / 74



Choice and Transition Multiplicity, pictorially

λ.R1 + µ.R2 λ.R + µ.R λ.R + λ.R

R1 R2 R R

δe

λ µ

δe

λ + µ

δe

2λ

(a) (b) (c)
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Handling parallel composition

Let us consider a generic process language PC providing a process parallel
composition operator, denoted by, say, × :

reachable states of P1 × P2 are obtained via a suitable composition
of P1, P2, the states reachable from P1, and the states reachable
from P2.

If × is the interleaving operator then the continuation functions of
P1 × P2 on α-labelled transitions are obtained by composing

the α-continuations of P1 in parallel with P2.

P1 in parallel with the α-continuations of P2.

To provide a uniform description of the stochastic semantics of parallel
composition, we have introduced a set of basic operators that can be
composed to capture the semantics of the operators of each SPC.
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Handling parallel composition

Parallel aggregation: P ⊗× Q

(P ⊗× Q) s =def


(P s1) · (Q s2), if ∃s1, s2 ∈ S . s = s1 × s2

[], otherwise

Renormalization: P · x
y(

P · x

y

)
s =def


(P s) · (x/y), if y 6= 0

0, otherwise

Characteristic functions: (X s)

X s = [s 7→ 1]
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Parallel Composition of CTMCs

To show how the operators introduced can be used, we extend the
language of CTMC with the parallel operator || , where P1 || P2 identifies
the interleaving between P1 and P2.

In P1 || P2, P1 and P2 do not cooperate and the reachable states are
those reachable from P1 (respectively, P2) composed in parallel with P2

(respectively P1).

If P1
δe

� P and P2
δe

� Q, the states reachable from P1 || P2 are obtained
by combining P and Q respectively with P2 and P1:

P ⊗ || (XR≥0
P2)

the states reachable from P1 in parallel with P2

(XR≥0
P1)⊗ || Q

P1 in parallel with the states reachable from P2.
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Parallel Composition of CTMCs

The rule governing behaviour of parallel composed processes is the
following:

P1
δe

� P P2
δe

� Q

P1 || P2
δe

� (P ⊗ || (XR P2)) + ((XR P1)⊗ || Q)
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Parallel Composition of CTMCs

An example: λ1.nil || λ2.nil

λ1.nil
δe

� [nil 7→ λ1] λ2.nil
δe

� [nil 7→ λ2]

λ1.nil || λ2.nil
δe

� [nil 7→ λ1]⊗ || (XRλ2.nil)
+R
(XRλ1.nil)⊗ || [nil 7→ λ2]

where:

[nil 7→ λ1]⊗ || (XRλ2.nil) +R (XRλ1.nil)⊗ || [nil 7→ λ2]
= [nil 7→ λ1]⊗ || [λ2.nil 7→ 1R] +R [λ1.nil 7→ 1R]⊗ || [nil 7→ λ2]
= [nil || λ2.nil 7→ λ1] +R [λ1.nil || nil 7→ λ2]
= [nil || λ2.nil 7→ λ1 , λ1.nil || nil 7→ λ2]
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Parallel Composition of CTMCs

λ1.nil || λ2.nil

nil || λ2.nil λ1.nil || nil

nil || nil

δe

λ1 λ2

δe δe

λ1λ2
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Parallel Composition of CTMCs

Example: X || X where X := λ.X

X
δe

� [X 7→ λ] X
δe

� [X 7→ λ]

X || X
δe

� [X 7→ λ]⊗ || (XRX ) +R (XRX )⊗ || [X 7→ λ]

X || X

δe

2λ
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TIPP - Hermanns et al. 2002

TIPP Operators

inaction: nil

rated-action prefix: 〈a, λ〉.P
choice: P + Q

multi-party synchronization P ||L Q

constant: X (where X := P)

The rate of a synchronization is obtained as the product of the rates of
involved actiions.
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TIPP - Hermanns et al. 2002

Operational Semantics:

〈a, λ〉.P
δea
� [P 7→ λ]

α 6= δea

〈a, λ〉.P
α
� []R≥0

P
α
� P Q

α
� Q (nα) 6∈ L

P ||L Q
α
� (P ⊗ ||L (XR Q)) + ((XR P)⊗ ||L Q)

P
α
� P Q

α
� Q (nα) ∈ L

P ||L Q
α
� P ⊗ ||L Q
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PEPA - Hillston 1996

PEPA Operators

inaction: nil

rated-action prefix: 〈a, λ〉.P
choice: P + Q

multi-party synchronization P ||L Q

constant: X (where X := P)

The principle regulating the synchronization rate of PEPA processes is the
so called minimal rate

the rate of a synchronization is the min of the rates of synchronizing
actions.
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PEPA - Hillston 1996

From TIPP. . .

〈a, λ〉.P
δea
� [P 7→ λ]

α 6= δea

〈a, λ〉.P
α
� []R≥0

P
α
� P Q

α
� Q (nα) 6∈ L

P ||L Q
α
� (P ⊗ ||L (XR Q)) + ((XR P)⊗ ||L Q)

P
α
� P Q

α
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α
� P ⊗ ||L Q

R. De Nicola (DSIUF) Modeling Behaviors and Performances ICE-PaCo Wkshop June 2011 48 / 74



PEPA - Hillston 1996

. . . to PEPA
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P
α
� P Q

α
� Q (nα) 6∈ L

P ||L Q
α
� (P ⊗ ||L (XR Q)) + ((XR P)⊗ ||L Q)

P
α
� P Q

α
� Q (nα) ∈ L

P ||L Q
α
� P ⊗ ||L Q · min{⊕P,⊕Q}
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Stochastic CCS

CCS Operators

inaction: nil,

rated-output-action prefix: āλ.P,

passive-input-action prefix: a∗ω .P,

choice: P + Q, and

binary synchronization: P | Q.

The duration of a synchronization is determined by the rate assigned
to the participating output action.

Input actions are annotated with weights, used for determining the
probability that a specific input is selected.

This approach is inspired by the notion of passive actions of EMPA
and PEPA.
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Stochastic CCS

Operational semantics:

āλ.P
δeā
� [P 7→ λ]

α 6= δeā

āλ.P
α
� []R≥0

a∗ω .P
δea
� [P 7→ ω]

α 6= δea

a∗ω .P
α
� []N≥0

P
δe~a
� P P

δea
� Pi P

δeā
� Po Q

δe~a
� Q Q

δea
� Qi Q

δeā
� Qo

P | Q
δe~a
�

(P⊗|(XR≥0
Q))·⊕Pi

⊕Pi+⊕Qi
+

((XR≥0
P)⊗|Q)·⊕Qi

⊕Pi+⊕Qi
+

Pi⊗|Qo

⊕Pi+⊕Qi
+

Po⊗|Qi

⊕Pi+⊕Qi
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Stochastic CCS

Synchronization rule:

P
δe~a
� P P

δea
� Pi P

δeā
� Po Q

δe~a
� Q Q

δea
� Qi Q

δeā
� Qo

P | Q
δe~a
�

(P⊗|(XR≥0
Q))·⊕Pi

⊕Pi+⊕Qi
+

((XR≥0
P)⊗|Q)·⊕Qi

⊕Pi+⊕Qi
+

Pi⊗|Qo

⊕Pi+⊕Qi
+

Po⊗|Qi

⊕Pi+⊕Qi

1 the continuations of P after ~a, in parallel with Q (rates are
recomputed in order to take into account inputs in Q);

2 the continuations of Q after ~a, in parallel with P (rates are
recomputed in order to take into account inputs in P);

3 the continuations of P after a in parallel with the continuations of Q
after ā, renormalized w.r.t. the total weight of inputs in Q;

4 the continuations of P after ā in parallel with the continuations of Q
after a, renormalized w.r.t. the total weight of inputs in P.
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A uniform account of quantitative PCs

To provide a uniform general account of the many quantitative extensions
of PCs we have introduced a generalization of RTSs named FuTSs for
Function Labelled Transition Systems.

the transition relation associates to a state and a given transition
label a function mapping each state into an element of a
commutative semi-ring C

By appropriately changing the set C we can capture different models of
concurrent systems:

B consisting of the two boolean values true and false we can capture
classical LTS;

R[0,1] we do capture probabilistic models;

R≥0 we do capture stochastic models.
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FuTS: Function Labelled Transition Systems
Basic definitions. . .

Semi-ring

A semi-ring is a set S equipped with two binary operations +S (sum) and
·S (multiplication) such that:

(S,+S) is a commutative monoid with neutral element 0S ∈ S;

(S, ·S) is a monoid with neutral element 1S ∈ S;

multiplication distributes over sum

0S annihilates S with respect to moltiplication

Binary operation /S is the inverse of ·S:

s3 = s1/
Ss2 ⇔ s1 = s2 ·S s3 (s2 6= 0S)
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FuTS: Function Labelled Transition Systems
Notations. . .

TF(S ,C) denote the set of total functions from S to C
elements are ranged over by P,Q,R, . . .
FTF(S ,C) denotes the set of total functions with finite support

[s1 7→ γ1, . . . , sm 7→ γm]C denotes the function associating γi to si
and 0C

[]C denotes the 0C constant function

functions in TF(S ,C) can be composed with +:

(P + Q) s =def (P s) +C (Q s)⊕
P denotes: ⊕

P S ′ =def

∑
s∈S ′

C(Ps)
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FuTS: Function Labelled Transition Systems

An A-labelled function transition system (FuTS) over C is a tuple
(S ,A,C,�) where S is a countable, non-empty, set of states, A is a
countable, non-empty, set of transition labels, C is a commutative
semi-ring, and �⊆ S × A× TF(S ,C) is the transition relation.

Transition relation � in a FuTS associates to each state s and transition
label α a total function (P, Q,. . . ) that assigns a value of a commutative
semi-ring C to each process of the calculus.

s1
α
� P means that, for a generic state s2:

if P(s2) = x ( 6= 0C) then s2 is reachable from s2 via the execution of
α

if P(s2) = 0 then s2 is not reachable from s1 via α
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FuTS: Function Labelled Transition Systems

Let R = (S ,A,C,�) be a FuTS, then:

1 R is total if for all s ∈ S and α ∈ A there exists P ∈ TF(S ,C) such

that s
α
� P;

2 R is deterministic if for all s ∈ S , α ∈ A, and P,Q ∈ TF(S ,C) we

have that the following holds: s
α
� P, s

α
� Q =⇒P = Q;

3 R is a finite support FuTS (FuTSFS for short) if
�⊆ S × A× FTF(S ,C). •

N.B. Deterministic FuTS can model non-deterministic behaviours!
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FuTS: Function Labelled Transition Systems
LTS as FuTS

A Labeled Transition System (LTS) is a triple (S ,A,�) where:

S is a countable set of states.

A is a countable set of transition-labeling actions.

� ⊆ S × A× S is a transition relation.

A LTS is a total and deterministic FuTS over B where:

B = {⊥,>} is the Boolean algebra

s
a
� P: P(s ′) = > ⇔ s

a
� s ′
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FuTS: Function Labelled Transition Systems
ADTMC as FuTS

An action-labeled discrete-time Markov chain (ADTMC) is a triple
(S ,A,�) where:

S is a countable set of states.

A is a countable set of transition-labeling actions.

� ⊆ S × A× R(0,1] × S is a transition relation.

(s, a, p1, s
′), (s, a, p2, s

′) ∈� =⇒ p1 = p2.∑
{| p ∈ R(0,1] | ∃a ∈ A, s ′ ∈ S . (s, a, p, s ′) ∈� |} ∈ {0, 1}.

An ADTMC is a total and deterministic FuTS R[0,1] such that∑
s

a
�P

∑
s′∈S P(s ′) ∈ {0, 1}

s
a
� P, Ps ′ = p > 0⇔ (s, a, p, s ′) ∈�
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FuTS: Function Labelled Transition Systems
ACTMC as FuTS

An action-labeled continuous-time Markov chain (ACTMC) is a triple
(S ,A,�) where:

S is a countable set of states.

A is a countable set of transition-labeling actions.

� ⊆ S × A× R>0 × S is a transition relation.

(s, a, λ1, s
′), (s, a, λ2, s

′) ∈� =⇒ λ1 = λ2.

An ACTMC is a total and deterministic FuTS over R≥0 such that:

s
a
� P: P = v > 0⇔ (s, a, v , s ′) ∈�
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Behavioral Equivalences on FuTS

Let R = (S ,A,C,�) be a FuTS over C. A trace w for R is a finite
sequence of transition labels in A∗, where w = ε denotes the empty
sequence while operation “ ◦ ” denotes sequence concatenation.

Let R = (S ,A,C,�) be a FuTS C and M be a lattice. A measure
function for R is a function MM : S × A∗ × 2S → M.
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Behavioral Equivalences on FuTS

Trace Equivalence

Let R = (S ,A,C,�) be a FuTS over C and MM be a measure function
for R.
Two states s1, s2 ∈ S are MM -trace equivalent iff for all traces w ∈ A∗:

MM(s1,w ,S) = MM(s2,w ,S)

Bisimulation Equivalence

Let R = (S ,A,C,�) be a FuTS over C and MM be a measure function
for R. An equivalence relation B over S is an MM -bisimulation iff, when-
ever (s1, s2)∈B, for all traces w ∈A∗ and equivalence classes C ∈S/B:

MM(s1,w ,C ) = MM(s2,w ,C )

Two states s1, s2 ∈ S are MM -bisimilar iff there exists an MM -bisimul-
ation B over S such that (s1, s2) ∈ B.
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Behavioral Equivalences on FuTS
Correspondence: LTS

Measure Function for LTSs

Let R = (S ,A,B,�) be a total and deterministic FuTS over B.
Function MB : S × A∗ × 2S → B for R is inductively defined as follows:

MB(s,w , S ′) =


∨

s′∈S
Ps,a(s ′) ∧MB(s ′,w ′, S ′) if w = α ◦ w ′, s

α
� P

> if w = ε and s ∈ S ′

⊥ if w = ε and s /∈ S ′

MB(s,w , S ′) = > if and only if s reaches an element in S ′ with trace w .

Trace and Bisimulation equivalences on LTS coincide with MB-trace and
MB-bisimulation on FuTS over B.
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Behavioral Equivalences on FuTS
Correspondence: ADTMC

Measure Function for ADTMC

Let R = (S ,A,R[0,1],�) be a total and deterministic FuTS over R[0,1].

Function MR[0,1]
: S × A∗ × 2S → R[0,1] for R is inductively defined by:

MR[0,1]
(s,w , S ′) =



∑
s′∈S

P(s ′) · MR[0,1]
(s ′,w ′, S ′)

if w = α ◦ w ′, s
α
� P

1 if w = ε and s ∈ S ′

0 if w = ε and s /∈ S ′

MR[0,1]
(s,w , S ′) gives the probability that s reaches an element in S ′ with

trace w .

Trace and Bisimulation equivalences on ADTMC coincides with
MR[0,1]

-trace and MR[0,1]
-bisimulation on FuTS over R[0,1].
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Behavioral Equivalences on FuTS
Correspondence: ACTMC

Measure Function for ACTMC

Let R = (S ,A,R≥0,�) be a total and deterministic FuTS over R≥0.
The end-to-end measure function Mete : S × A∗ × 2S → [R≥0 → R[0,1]]
for R is inductively defined as follows:

Mete(s, α,S ′)(t) =



t∫
0

E(s) · e−E(s)·x ·
∑
s′∈S

P(s′)
E(s)

· Mete(s ′, α′, S ′)(t − x)dx

if α = a ◦ α′ and E(s) > 0
1 if α = ε and s ∈ S ′

0 if α = ε and s /∈ S ′ or
α 6= ε and E(s) = 0

Mete(s,w ,S ′)(t) gives the probability that s reaches an element in S ′

with trace w within t time units.

Trace and Bisimulation equivalences on ACTMC coincide with Mete-trace
and Mete-bisimulation on FuTS over R≥0.
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Additional work done

FuTSs have been used to give stochastic semantics of a large class of
Stochastic Process Calculi also with non determinism:

EMPA

Stochastic-π

StoKlaim

Language for Interactive Markov Chains (IM)

A general notion of testing equivalence have been defined on FuTS:

FuTSs are composed with a test;

function M gives a measure of the test-success.
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Summing Up

We have:

introduced first RTSs then FuTS and have used them as the basic
model for defining stochastic behaviours of a number of process
calculi:

A language for CTMC
TIPP
PEPA
Stochastic CCS

identified a uniform formalization of standard equivalences:

trace and bisimulation equivalences
based on the notion of measure functions
capture usual notions on classical computational models
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Future Work

General FuTS over generic Commutativa Semirings;

Taxonomy of existing behavioural relations;

Consider FuTS with explicit representation of non-determinism;

FuTS and co-algebras;

FuTS and weighted automata.
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Thank you for your attention!
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