Innocent strategies as presheaves, and interactive equivalences for CCS

Tom Hirschowitz and Damien Pous

ICE, Reykjavik, June 2011

UMR 5127

Programming languages: a technology

Claim

Research in programming languages is mainly technological.

Applies a non-formalised method, e.g.:

- Syntax.
- Quotienting by some structural congruence.
- Reduction relation to model program execution.
- Reasoning on reduction.

Goal

Find semantic frameworks for

- defining programming languages,
- reasoning about them,
- comparing them.

Leads to stupid questions like:

- What is a programming language?
- What is an observational equivalence?
- What is a compilation?

Related work

Higher-order rewriting (Nipkow, 1991)

- Models in cartesian closed 2-categories (Hirscho, 2010).
- Caveat: not yet shown to work with process calculi.

Bialgebraic semantics (Plotkin & Turi, 1997), Tile model (Gadducci & Montanari, 1996)

- Caveat: starts from syntax + labelled transition system.
- Notoriously hard to derive from structural congruence + reduction.

Outline part 1

- A category of plays $\mathbb E,$ with
 - \blacktriangleright a subcategory $\mathbb V$ of views,
 - \blacktriangleright a subcategory $\mathbb W$ of closed-world plays.
- Innocent strategies as presheaves on $\mathbb V.$
- Simple categorical tools \rightsquigarrow
 - global behaviour and
 - ▶ interaction.

Outline part 2

- Interactive equivalence of S_1 and S_2 :
 - ▶ let interact with tests *T*,
 - observe global behaviour.
- Several notions of observation, in particular:

Fair testing = must testing.

Positions

- •'s = players,
- o's = channels.
- Close to (multi-hole) active contexts in CCS:

$$\nu abc.X_1(a,c)|X_2(a,b,c)|X_3(b,c)$$

up to structural congruence.

Moves and plays

- Moves: 'elementary string diagrams'.
- Plays: certain glueings and embeddings of moves.

Moves from natural deduction: in/out

$$\frac{a, b \vdash P}{a, b \vdash a.P} \qquad \text{and} \qquad \frac{a, b \vdash P}{a, b \vdash \overline{b}.P}$$

become the following elementary string diagrams:

(and similarly for all 'typing' contexts).

Formally

String diagrams are presheaves over a certain category $\mathbb{C}.$

Moves from natural deduction: forking

Views: left and right half-forking

Moves from natural deduction: name creation

$$\frac{\textit{a, b, c} \vdash \textit{P}}{\textit{a, b} \vdash \nu c.P}$$

Moves from natural deduction: tick

Synchronisation

Derived from the only reduction rule, not from the LTS!

Works because positions are 'up to structural congruence'.

Plays	
 Moves are plays. Embedding plays into larger posi Piling up plays together yields plays 	tions yields plays. ays, possibly denumerably.
$ \begin{array}{c} \\ \hline \\ $	

Plays

The category $\mathbb E$ of plays

- Objects: $X \hookrightarrow U$, where X is the base position.
- Morphisms:

i.e., embedding of base position and play.

Example

Two embeddings

only one if embedding of base fixed.

The full subcategory $\mathbb{V} \hookrightarrow \mathbb{E}$ of views

Example

Strategies as functors

In standard 2-player games

Strategy \approx prefix-closed set of plays.

The functorial approach

- Plays and embeddings form a poset \mathbb{E} .
- Strategy \approx functor $S \colon \mathbb{E}^{op} \to 2$, where 2 is the poset $0 \leq 1$.
 - Play U accepted iff S(U) = 1.
 - ▶ For prefixes $V \hookrightarrow U$, no map $1 \to 0$, hence S(V) = 1 too.

Finer strategies

Naive $\mathbb{E}^{op} \to 2$.

Branching Joyal et al.: to account for branching-time subtleties.

- Switch to $\mathbb{E}^{op} \to \mathsf{Set}$, or FinSet...
- S(U) is a set of 'states', reachable after playing U.

Sight Moves of a player should only depend on its view.

• Switch to $\mathbb{V}^{op} \to \mathsf{Set}$:

Questions

- How to recover the global behaviour?
- How do strategies interact?

Right Kan extension

• End formula:
$$S'(U) = \int_{V \in \mathbb{V}} S(V)^{\mathbb{E}(V,U)}$$
.

• Global state = tuple of compatible local states.

Closed-world

• So right Kan extension yields a 'semantics' for strategies:

$$\widehat{\mathbb{V}}\to\widehat{\mathbb{E}},$$

where $\widehat{\mathbb{V}} = \mathsf{Set}^{\mathbb{V}^{op}}$.

- But in $\mathbb E$ some plays
 - contain half-forkings, or
 - 'communicate with the outside'.
- Full subcat $j \colon \mathbb{W} \hookrightarrow \mathbb{E}$ of closed-world plays.
- Restriction along j, notation j^* .

Definition (Global behaviour)

G is the composite
$$\widehat{\mathbb{V}} \xrightarrow{\text{Ran}_i} \widehat{\mathbb{E}} \xrightarrow{j^*} \widehat{\mathbb{W}}$$
.

Context		Strategies	
Interact	tion		
• i • f [,]	ied: categories $\mathbb{E}_X, \mathbb{V}_X,$ we glue two positions a	relative to base position X . long certain names	
		$ \begin{array}{c} I \longrightarrow Y \\ \downarrow & $	
• WE	e have $\mathbb{V}_Z \cong \mathbb{V}_X + \mathbb{V}_Y$:	x^{\bullet} $1^{\bullet}y^{\bullet}Y$.	

Interaction

• Because $\mathbb{V}_Z \cong \mathbb{V}_X + \mathbb{V}_Y$, copairing yields

$$\widehat{\mathbb{V}_Z} \cong \widehat{\mathbb{V}_X} \times \widehat{\mathbb{V}_Y}.$$

• For strategies S_X and S_Y on X and Y, the copairing

 $[S_X, S_Y]$

lets S_X and S_Y play together.

Summary

- Strategies as functors $\mathbb{V}_X^{op} \to \text{Set.}$
- Global behaviour G(S) = right Kan extension to general plays ; restriction to closed-world.
- Interaction by copairing $[S_X, S_Y]$.

Now: tests.

Notion of success

Our testing semantics relies on a notion of success.

Definition

A play is successful when it contains \heartsuit .

Definition

A global behaviour $G: \mathbb{W}^{op} \to \text{Set}$ is must-successful when all its maximal executions are successful; fair-successful when all its executions extend to successful ones.

Theorem

For all strategies S, G(S) must-successful iff G(S) fair-successful.

Of course there are other possibilities, e.g., only demanding that all finite executions extend to successful ones.

Tests

Definition

For a strategy S on X, a test is given by

- a diagram $X \leftarrow I \rightarrow Y$, where
 - I consists of names and
 - Y is any position,
- a test strategy T.

S passes the test iff G[S, T] is successful.

Definition

S and S' are equivalent when they pass the same tests.

The theorem says: must and fair are the same.

Conclusion

- A graphical notion of play, including views and closed-world plays.
- Strategies as presheaves on views.
- Interaction and global behaviour as standard categorical operations.
- \rightsquigarrow testing equivalences and interpretation of CCS (not shown).

Perspectives

Short term:

- We have a translation of CCS processes into this model.
- Identify the equivalence induced by this translation.

Link with:

- graph rewriting,
- computad-based rewriting.

Longer term:

- Treat π, λ, . . .
- Understand the abstract structure.
- What is a compilation?