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6 1. Introduction

It is often argued that languages should be provided with more than one type

of semantics [8, 44]. The semantics are then related which implies that the

language has the properties of all of them. An operational semantics is defined

as an assistant for the implementor of the language, safe-guarding executability.

A denotational semantics is defined to guarantee that a language is compositional.

A lot of research has been carried out in this vein (see e.g. [1, 2, 8, 74]).

Structure in operational semantics has also been brought in along another

route. Around 1973 some examples emerged where the operational steps of a

term were defined using the steps of its subterms [9, 44]. This inspired Plotkin

to a more structured approach. In 1977 he introduced a notation that has now

become quite popular to give operational semantics to languages [74]. He defined

the operational semantics by rules of the form:

(p1, s1) −→ (p�
1, s

�
1) ... (pn, sn) −→ (p�

n, s�
n)

(p, s) −→ (p�, s�)

where pi (1 ≤ i ≤ n) are subterms of p. The meaning of such a rule is that the

step (now denoted by an arrow) in the conclusion may be done if all steps in

the premises can take place. Plotkin and Hennessy have applied operational

semantics of this kind to a simple programming language [38] and CSP [76]. In

1981 Plotkin wrote an overview of how structural operational semantics could

be applied in general on programming languages [75]. The term structural refers

to the use of smaller processes in the premises than in the conclusion (see also

[24]).

In order to give an operational semantics to CCS Hennessy and Plotkin [39]

used a slightly modified step relation. They wrote

p
a
−→ p�

meaning that process p transforms itself into process p�
by executing an atomic

action a. The a above the arrow represents the side effect that p causes by

executing a. Non-determinism is modelled by giving p the possibility to do several

steps, e.g. p
a
−→ p�

and p
b
−→ p��

which means that p can either do an a or a

b-step. An explicit data-state turned out not to be necessary and it is therefore

omitted. The operational rules now have the form:

p1

b1
−→ p�

1 ... pn

bn

−→ p�
n

p
a
−→ p�

where b1, ..., bn and a are atomic actions.

Since then structural operational semantics has become a subject of study

in itself. In [26] and [27] De Simone studied a format of rules, now called

the De Simone-format [36] and he proved a correspondence result with so-called

architectural expressions in Meije-SCCS [4, 64].

The De Simone-format has an important property; if processes are constructed

by operators defined in this format then each subprocess may be replaced by a

• Operational Semantics
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Reasoning about security
using process algebra

Model the system in your favourite process algebra

Formulate the desired property, perhaps in some modal logic.

Show that the property holds under all choices of scheduler.

But if the scheduler is omniscient and malicious
it can leak information.

We need to describe the scheduler explicitly,

and perhaps to restrict its behaviour.
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Two candidates: a,b.  Two voters: v,w.

The system must reveal the list of people who 
actually voted (in any order) and the total votes 
for the candidate.

It must not reveal who voted for whom; unless 
the vote is unanimous.

A scheduler can leak the votes!
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Figure 1: A scheduler that leaks the voting preferences. The relevant choices are represented by tick arrows.

This problem emerges dramatically in security, where some of the choices may be intended to be secret, but
they are bound to be revealed if the notion of scheduler is unrestricted. Consider for instance a voting system
which collects the votes (a or b) of a set of candidates, and also output in some arbitrary order the list of
the people who have voted (in some countries this has to be done because voting is mandatory). Among
the possible schedulers, there is the one which lists first all the people who have voted for a. (See Figure 1.)
Clearly, such scheduler would break completely the desired anonymity property. Usually when we want a
correctness property to hold for a nondeterministic system we require that it holds for all choices of the
scheduler: there is no way such universally quantified statements will be true if we permit such unrestricted
schedulers.

An approach to solve the above problem has been suggested in [CP07]: the interplay between the secret
choices of the process and the choices of the scheduler is expressed by introducing two kinds of schedulers
and a framework that allows one to switch between them.

A related issue arises in formalisms which allow one to express probabilistic choice (in addition to nonde-
terministic choice). In that case, the scheduler can leak the result of the probabilistic choices. Again, this
is a problem for security protocols that use randomization to achieve, for instance, anonymity or privacy. A
more detailed discussion of this phenomenon can be found in [CP07].

In this paper we propose a semantic analysis of the information flow between the processes and the schedulers.
We introduce a turn-based game that is played between two agents and define strategies for the agents. The
game is played with the process as the “playing field” and the effect of the players’ moves is to resolve the
choices that appear as nondeterministic choices in the process description. Now the information to which

2

A scheduler that leaks voting preferences.
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What do schedulers 
know?

The scheduler that resolves the nondeterminism 
in the order in which voters names are output 
should not “know” who voted for whom.

Chatzikokolakis and Palamidessi [CONCUR 07] 
described schedulers with an explicit syntax and 
operational semantics and used syntactic 
restrictions to control what scheduler knew.

They had two schedulers to resolve different 
choices.

They showed that certain equations hold.

Wednesday, June 8, 2011



Dining Cryptographers

Wednesday, June 8, 2011



Dining Cryptographers

Wednesday, June 8, 2011



Dining Cryptographers

Wednesday, June 8, 2011



T

T

T

T

H

H

Dining Cryptographers

Wednesday, June 8, 2011



T

T

T

T

H

H

not same not same

not same

not samesame

same

Dining Cryptographers

Wednesday, June 8, 2011



T

T

T

T

H

H

not same not same

not same

not samesame

same

Dining Cryptographers

Wednesday, June 8, 2011



T

T

T

T

H

H

not same

not same

not samesame

same

same

Dining Cryptographers

Wednesday, June 8, 2011



Why does it work?

Wednesday, June 8, 2011



Why does it work?
View H = 0 and T = 1, same = 0 and not same = 
1.

Wednesday, June 8, 2011



Why does it work?
View H = 0 and T = 1, same = 0 and not same = 
1.

Then each person announces (left coin + right 
coin) mod 2 so if no one lies, the sum should be 
0.

Wednesday, June 8, 2011



Why does it work?
View H = 0 and T = 1, same = 0 and not same = 
1.

Then each person announces (left coin + right 
coin) mod 2 so if no one lies, the sum should be 
0.

So the sum is 1 iff someone lies; i.e. there are an 
odd number of “not same” announcements iff 
someone is lying.

Wednesday, June 8, 2011



Why does it work?
View H = 0 and T = 1, same = 0 and not same = 
1.

Then each person announces (left coin + right 
coin) mod 2 so if no one lies, the sum should be 
0.

So the sum is 1 iff someone lies; i.e. there are an 
odd number of “not same” announcements iff 
someone is lying.

Wednesday, June 8, 2011



The role of the scheduler

Wednesday, June 8, 2011



The role of the scheduler
If we model this with process algebra then the 
scheduler has to schedule the order in which 
the announcements are made.

Wednesday, June 8, 2011



The role of the scheduler
If we model this with process algebra then the 
scheduler has to schedule the order in which 
the announcements are made.

An omniscient scheduler can decide always to 
schedule the liar (if there is one) last (or first).

Wednesday, June 8, 2011



The role of the scheduler
If we model this with process algebra then the 
scheduler has to schedule the order in which 
the announcements are made.

An omniscient scheduler can decide always to 
schedule the liar (if there is one) last (or first).

This is very unreasonable; the scheduler should 
not “know” the outcomes of the coin tosses when 
making the schedule.

Wednesday, June 8, 2011



The role of the scheduler
If we model this with process algebra then the 
scheduler has to schedule the order in which 
the announcements are made.

An omniscient scheduler can decide always to 
schedule the liar (if there is one) last (or first).

This is very unreasonable; the scheduler should 
not “know” the outcomes of the coin tosses when 
making the schedule.

There are two kinds of nondeterminism and 
there should be two schedulers.
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was for instance one of the main topics of discussion at the panel of CSFW 2006.
We illustrate it here with an example on anonymity. We use the standard CCS
notation, plus a construct of probabilistic choice P +p Q representing a process
that evolves into P with probability p and into Q with probability 1 − p.

The following system Sys consists of one receiver R and two senders S, T
which communicate via private channels a, b respectively. Which of the two
senders is successful is decided probabilistically by R. After reception, R sends
a signal ok.

R
∆
= a.ok .0 +0.5 b.ok .0 S

∆
= ā.0 T

∆
= b̄.0 Sys

∆
= (νa)(νb)(R | S | T )

The signal ok is not private, but since it is the same in both cases, in principle
an external observer should not be able to infer from it the identity of the sender
(S or T ). So the system should be anonymous. However, consider a team of two
attackers A and B defined as

A
∆
= ok .s̄.0 B

∆
= ok .t̄.0

and consider the parallel composition Sys | A | B . We have that, under certain
schedulers, the system is no longer anonymous. More precisely, a scheduler could
leak the identity of the sender via the channels s, t by forcing R to synchronize
with A on ok if R has chosen the first alternative, and with B otherwise. This
is because in general a scheduler can see the whole history of the computation,
in particular the random choices, even those which are supposed to be private.
Note that the visibility of the synchronization channels to the scheduler is not
crucial for this example: we would have the same problem, for instance, if S, T
were both defined as ā.0, R as a.ok .0, and Sys as (νa)((S +0.5 T ) | R).

The above example demonstrates that, with the standard definition of sched-
uler, it is not possible to represent a truly private random choice (or a truly
private nondeterministic choice, for the matter) with the current probabilistic
process calculi. This is a clear shortcoming when we want to use these formalisms
for the specification and verification of security protocols.

There is another issue related to verification: a private choice has certain
algebraic properties that would be useful in proving equivalences between pro-
cesses. In fact, if the outcome of a choice remains private, then it should not
matter at which point of the execution the process makes such choice, until it
actually uses it. Consider for instance A and B defined as follows

A
∆
= a(x).([x = 0]ok

+0.5

[x = 1]ok)

B
∆
=a(x).[x = 0]ok

+0.5

a(x).[x = 1]ok

Process A receives a value and then decides randomly whether it will accept the
value 0 or 1. Process B does exactly the same thing except that the choice is
performed before the reception of the value. If the random choices in A and B are
private, intuitively we should have that A and B are equivalent (A ≈ B). This is
because it should not matter whether the choice is done before or after receiving

2
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If we use the context a0|a1, then A can produce ok with probability 1
2 no

matter what the scheduler does.
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If we use the context a0|a1, then A can produce ok with probability 1
2 no

matter what the scheduler does.

But with B, a scheduler thatknows the outcome of the random choice can select
the synchronization and make the probability of ok be 1 or 0.

An example due to Chatzikokolakis and Palamidessi

Wednesday, June 8, 2011



A | ā0 | ā1
([0 = 0]ok +0.5 [0 = 1]ok) | ā1 ok

0

([1 = 0]ok +0.5 [1 = 1]ok) | ā0 0
ok

B | ā0 | ā1
a(x).[x = 0]ok | ā0 | ā1 ok

0

a(x).[x = 1]ok | ā0 | ā1 0
ok

Fig. 1. Execution trees for A | C and B | C

a message, as long as the outcome of the choice is completely invisible to any
other process or observer. However, consider the parallel context C = a0 | a1.
Under any scheduler A has probability at most 1/2 to perform ok . With B,
on the other hand, the scheduler can choose between a0 and a1 based on the
outcome of the probabilistic choice, thus making the maximum probability of ok
equal to 1. The execution trees of A | C and B | C are shown in Figure 1.

In general when +p represents a private choice we would like to have

C[P +p Q] ≈ C[τ.P ] +p C[τ.Q] (1)

for all processes P, Q and all contexts C not containing replication (or recursion).
In the case of replication the above cannot hold since !(P +p Q) makes available
each time the choice between P and Q, while (!τ.P ) +p (!τ.Q) chooses once and
for all which of the two (P or Q) should be replicated. Similarly for recursion.
The reason why we need a τ is explained in Section 5.

The algebraic property (1) expresses in an abstract way the privacy of the
probabilistic choice. Moreover, this property is also useful for the verification of
security properties. The interested reader can find in [14] an example of appli-
cation to a fair exchange protocol. In principle (1) should be useful for any kind
of verification in the process algebra style.

We propose a process-algebraic approach to the problem of hiding the out-
come of random choices. Our framework is based on a calculus obtained by
adding to CCS an internal probabilistic choice construct1. This calculus, to which
we refer as CCSp, is a variant of the one studied in [11], the main differences be-
ing that we use replication instead than recursion, and we lift some restrictions
that were imposed in [11] to obtain a complete axiomatization. The semantics
of CCSp is given in terms of Segala’s simple probabilistic automata [4, 7].

In order to limit the power of the scheduler, we extend CCSp with terms rep-
resenting explicitly the notion of scheduler. The latter interact with the original
processes via a labeling system. This will allow to specify at the syntactic level
(by a suitable labeling) which choices should be visible to schedulers, and which
ones should not.

1 We actually consider a variant of CCS where recursion is replaced by replication. The
two languages are not equivalent, but we believe that the issues regarding the dif-
ferences between replication and recursion are orthogonal to the topics investigated
in this paper.
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Fig. 1. Execution trees for A | C and B | C
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This is an algebraic way of capturing the limited knowledge
of the scheduler but it is very indirect.
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Chatterjee, Abramsky, Ong, Murawski,...

Games in economics: see, e.g. Adam 
Brandenburger’s review on epistemic games.

Game semantics: Abramsky, Jagadeesan, 
Malacaria, Hyland, Ong, Nickau, Laird, McCusker...

Games in logic: model theory, EF, Lorenzen,...

Games in hardware synthesis: Ghica

Wednesday, June 8, 2011



Games between 
schedulers.

Wednesday, June 8, 2011



Games between 
schedulers.

In order to make the epistemic aspects more 
explicit we can think of schedulers as playing 
games.

Wednesday, June 8, 2011



Games between 
schedulers.

In order to make the epistemic aspects more 
explicit we can think of schedulers as playing 
games.

The concurrent process is the “board” and the 
moves end up choosing the action.

Wednesday, June 8, 2011



Games between 
schedulers.

In order to make the epistemic aspects more 
explicit we can think of schedulers as playing 
games.

The concurrent process is the “board” and the 
moves end up choosing the action.

We control what the schedulers “know” by 
putting restrictions on the allowed strategies.
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Restricting Strategies
What can an agent “see” in formulating its 
strategy?  This controls what it “knows.”

One possible restriction: an agent knows what 
choices are available to it and what choices 
were available to it in the past.

This corresponds exactly to the CP syntactic 
restrictions [C,Knight, P 08].

Easy to impose epistemic restrictions on 
strategies.  
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Games and Concurrency

New direction in concurrency: Process algebras 
as defining interacting agents.

Games are already used in many ways in 
concurrency, semantics, logic and economics.

But we still do not have a systematic way of 
describing and reasoning about interacting 
agents algebraically.
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Processes with labels

a, b actions
ā, b̄ co-actions

τ silent action
α, β generic actions, co-actions, or silent action

P,Q ::= 0 | l : α.P | P |Q | P + Q | (νa)P | l : {P}
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ACT
l:α.P

α−−→P
RES P

α−−→P � α�=a,ā

(νa)P
α−−→(νa)P �

SUM1 P
α−−→P �

P+Q
α−−→P �

SUM2 Q
α−−→Q�

P+Q
α−−→Q�

PAR1 P
α−−→P �

P |Q
α−−→P �|Q

PAR2 Q
α−−→Q�

P |Q
α−−→P |Q�

COM P
a−−→P � Q

ā−−→Q�

P |Q
τ−−→P �|Q�

SWITCH P
τ−−→P �

l:{P}
τ−−→P �

Operational Semantics
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SWITCH
P

τ−−→P �

l:{P}
τ−−→P �
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The SWITCH rule

SWITCH
P

τ−−→P �

l:{P}
τ−−→P �

Represents the choices made independently
of other choices in the process
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The SWITCH rule

SWITCH
P

τ−−→P �

l:{P}
τ−−→P �

Represents the choices made independently
of other choices in the process

Required to do a silent action because otherwise
the outcome of the protected choice would be
visible to the scheduler.
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6 · Chatzikokolakis et al.

ACT
l : α . P

α
−−−→

lX
P

RES
P

α
−−→

s
P ′ α #= a, ā

(νa)P
α

−−→
s

(νa)P ′
SUM1

P
α

−−→
s

P ′

P + Q
α

−−→
s

P ′

PAR1
P

α
−−→

s
P ′

P |Q
α

−−→
s

P ′|Q
COM

P
a

−−−→
lX

P ′ Q
ā

−−−→
jX

Q′

P |Q
τ

−−−−−−→
(l, j)X

P ′|Q′
SWITCH

P
τ

−−−→
jX

P ′

l : {P}
τ

−−−−−→
lX .jY

P ′

Fig. 1. Operational semantics

Definition 2.1. P is deterministically labelled if the following conditions hold:

(1 ) It is impossible for P to make two different transitions with the same labels:

for all strings s, if P
α

−−→
s

P ′ and P
β

−−→
s

P ′′ then α = β and P ′ = P ′′.

(2 ) If P
τ

−−−−−→
lX .jY

P ′ then there is no transition P
α

−−−→
lX

P ′′ for any α or P ′′.

(3 ) If P
α

−−→
s

P ′ then P ′ is deterministically labelled.

Note that any blocked2 process is deterministically labelled, so since we only con-
sider finite processes without recursion, this concept is well defined.

Roughly, this means that two enabled actions never have the same label. For
example, P = l : a + l : b is not deterministically labelled because P

a
−−→

lX
0 and

P
b

−−→
lX

0 but a #= b, violating the first condition. Also, P = l1 : a + l1 : {l2 : τ}

is not deterministically labelled since P
τ

−−−−−−→
l1X .l2Y

0 and P
a

−−→
l1

0, violating the

second condition. Further, no process with this as a (reachable) subprocess is
deterministically labelled. However, l1 : a . l3 : b + l2 : c . l3 : d is deterministically
labelled even though l3 occurs twice, since there is no series of transitions that will
result in both l3’s being available simultaneously.

Also, l1 :a | l2 : b . l1 : c is not deterministically labelled because it can transition to
l1 :a | l1 :c which is not deterministically labelled.

Note, however, that l : a . P + l : a . P is deterministically labelled. Even though l
is available twice, l : a . P + l : a . P

a
−−→

l
P is the only transition available labelled

with l, so P is deterministically labelled.

3. GAMES AND STRATEGIES

In this section we define two player games on deterministically labelled processes.
One game is defined for each deterministically labelled process. The two players
are called X and Y . The moves in the game are labels and pairs of labels. Moves
represent an action being taken by the process. The player X controls all the
unprotected actions, and the player Y is in charge of all the top level actions within

2A process is blocked if it cannot make any transition.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.
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second condition. Further, no process with this as a (reachable) subprocess is
deterministically labelled. However, l1 : a . l3 : b + l2 : c . l3 : d is deterministically
labelled even though l3 occurs twice, since there is no series of transitions that will
result in both l3’s being available simultaneously.
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is available twice, l : a . P + l : a . P
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l
P is the only transition available labelled

with l, so P is deterministically labelled.

3. GAMES AND STRATEGIES

In this section we define two player games on deterministically labelled processes.
One game is defined for each deterministically labelled process. The two players
are called X and Y . The moves in the game are labels and pairs of labels. Moves
represent an action being taken by the process. The player X controls all the
unprotected actions, and the player Y is in charge of all the top level actions within

2A process is blocked if it cannot make any transition.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

l : a.0 + l : b.0 not deterministically labelled
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labelled even though l3 occurs twice, since there is no series of transitions that will
result in both l3’s being available simultaneously.

Also, l1 :a | l2 : b . l1 : c is not deterministically labelled because it can transition to
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Note, however, that l : a . P + l : a . P is deterministically labelled. Even though l
is available twice, l : a . P + l : a . P
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−−→

l
P is the only transition available labelled
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3. GAMES AND STRATEGIES

In this section we define two player games on deterministically labelled processes.
One game is defined for each deterministically labelled process. The two players
are called X and Y . The moves in the game are labels and pairs of labels. Moves
represent an action being taken by the process. The player X controls all the
unprotected actions, and the player Y is in charge of all the top level actions within

2A process is blocked if it cannot make any transition.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

l : a.0 + l : b.0 not deterministically labelled

l1 : a.0 + l1 : {l2 : τ.0} is not deterministically labelled
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sider finite processes without recursion, this concept is well defined.
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example, P = l : a + l : b is not deterministically labelled because P

a
−−→

lX
0 and

P
b

−−→
lX

0 but a #= b, violating the first condition. Also, P = l1 : a + l1 : {l2 : τ}

is not deterministically labelled since P
τ

−−−−−−→
l1X .l2Y

0 and P
a

−−→
l1

0, violating the

second condition. Further, no process with this as a (reachable) subprocess is
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3. GAMES AND STRATEGIES
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2A process is blocked if it cannot make any transition.

ACM Transactions on Computational Logic, Vol. 1, No. 1, 01 2010.

Wednesday, June 8, 2011



Games

Wednesday, June 8, 2011



Games

A game is defined for each specific process: the process 
is the game board.

Wednesday, June 8, 2011



Games

A game is defined for each specific process: the process 
is the game board.

Two-player games

Wednesday, June 8, 2011



Games

A game is defined for each specific process: the process 
is the game board.

Two-player games

two players are sufficient to model interaction

Wednesday, June 8, 2011



Games

A game is defined for each specific process: the process 
is the game board.

Two-player games

two players are sufficient to model interaction

the players are called X and Y

Wednesday, June 8, 2011



Games

A game is defined for each specific process: the process 
is the game board.

Two-player games

two players are sufficient to model interaction

the players are called X and Y

Players are independent and act according to their 
strategies.

Wednesday, June 8, 2011



Games

A game is defined for each specific process: the process 
is the game board.

Two-player games

two players are sufficient to model interaction

the players are called X and Y

Players are independent and act according to their 
strategies.

Players interact to determine how process will execute.

Wednesday, June 8, 2011



Valid Positions

Wednesday, June 8, 2011



Valid Positions

Players’ moves are labels in the process.

Wednesday, June 8, 2011



Valid Positions

Players’ moves are labels in the process.

A string of allowable moves is called a valid position.

Wednesday, June 8, 2011



Valid Positions

Players’ moves are labels in the process.

A string of allowable moves is called a valid position.

A valid position is like a trace, but with labels instead 
of actions.

Wednesday, June 8, 2011



Epistemic Strategies and Games on Concurrent Processes · 7

the protected subprocesses. This makes it possible to represent the independent
resolution of the two kinds of choice, by carefully defining the appropriate strategies
for these games. A strategy is for one player and determines the moves the player
will choose within the game. Games and strategies are both made up of valid
positions, discussed in the next section.

3.1 Valid Positions

Valid positions are defined on a process and represent valid plays or executions
for that process, with player X moving first. Every valid position is a string of
moves (labels or pairs of labels from the process), each of which is assigned to a
player X or Y , with player X moving first. The set of all valid positions for a pro-
cess represents all possible executions of the process, including partial, unfinished
executions.

Definition 3.1. A move is anything of the form lX , lY , (l, j)X , or (l, j)Y where
l, and j are labels. lX and (l, j)X are called X-moves and lY and (l, j)Y are called
Y -moves

To define valid positions, we must define an extension of the transition relation.

Definition 3.2. This extends the transition relation to multiple transitions, ig-
noring the actions for the transitions but keeping track of the labels.

(1 ) For any process P , P −−→
ε

P .

(2 ) If P
α

−−→
s

P ′ and P ′ −−→
s′

P ′′ then P −−−→
s.s′

P ′′.

Now we define valid positions.

Definition 3.3. If P −−→
s

P ′ then every prefix of s (including s) is a valid

position for P .

In order for the set of valid positions to be prefix closed, we must explicitly include
prefixes in the definition because of the SWITCH rule. For example, for the process
l : {j : τ}, the set of valid positions is {ε, lX , lX .jy}, but if the condition about
prefixes were not included in the definition of valid positions, lX would not be a
valid position, because the process does not have any transition with this label
alone.

Example 3.4. Consider the process

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)
)

.

Here are some of the valid positions for P :

l1X .k1Y .l2X .(l3, l4)X .l5X

l1X .k1Y .l2X .(l3, l4)X .l6X

l1X .k2Y .l2X .(l3, l4)X .l5X

l1X .k2Y .l2X .(l3, l4)X .l6X
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The prefixes of these valid positions are also valid positions.

3.2 Strategies

A strategy for a certain player is a subset of the valid positions, each valid position
ending with a move made by that player. The idea behind a strategy is that if, for
example, player X finds himself in position s and s.m is in his strategy, then he
will do move m.3

From now on, when we use m without a subscript to denote a move, it will mean a
move including its player: a move of the form lX , (l1, l2)X , lY , or (l1, l2)Y . When
we use mX , mY , or mZ to denote a move, it means a move with the specified
subscript, where Z represents X or Y .

Definition 3.5. Let Z stand for either X or Y . In the game for P , a strategy
for Z is a set S of valid positions such that ε is in S and if s.m ∈ S, then m is a Z
move (m = lZ for some label or pair of labels l), and every prefix of s ending with
a Z move is in S.

Example 3.6. For

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)
)

,

one strategy for X is:

ε
l1X

l1X .k2Y .l2X

l1X .k2Y .l2X .(l3, l4)X

l1X .k2Y .l2X .(l3, l4)X .l6X

Another strategy for X is:

ε
l1X

l1X .k1Y .l2X

l1X .k2Y .l2X

One strategy for Y is:

ε
l1X .k1Y

l1X .k2Y

This is not a strategy:

ε
l1X

l1X .k2Y .l2X .(l3, l4)X

3Unlike the usual game theoretic definition of strategy, our strategies are not functional, that
is, they do not necessarily specify one move for the player to make in every situation. We can,
however, put simple conditions on our strategies so that they are functional.
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move (m = lZ for some label or pair of labels l), and every prefix of s ending with
a Z move is in S.

Example 3.6. For

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)
)

,

one strategy for X is:

ε
l1X

l1X .k2Y .l2X

l1X .k2Y .l2X .(l3, l4)X

l1X .k2Y .l2X .(l3, l4)X .l6X

Another strategy for X is:

ε
l1X

l1X .k1Y .l2X

l1X .k2Y .l2X

One strategy for Y is:

ε
l1X .k1Y

l1X .k2Y

This is not a strategy:

ε
l1X

l1X .k2Y .l2X .(l3, l4)X

3Unlike the usual game theoretic definition of strategy, our strategies are not functional, that
is, they do not necessarily specify one move for the player to make in every situation. We can,
however, put simple conditions on our strategies so that they are functional.
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It is not a strategy because it contains l1X .k2Y .l2X .(l3, l4)X , which is a valid position
ending in an X move, but does not contain l1X .k2Y .l2X , a prefix of the aforemen-
tioned valid position ending in an X move, so it would have to be included for this
set to be a strategy.

3.3 Execution of Processes According to Strategies

In this section we define the execution of a process with two strategies- one for
each player. However, not every pair of strategies defines a unique execution of a
process. We define two simple restrictions on strategies, which together imply that
executions are unique.

Definition 3.7. A strategy S is deterministic if: s.m1 ∈ S, s.m2 ∈ S implies
m1 = m2.

Example 3.8. For

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)
)

,

the above strategy for X,

ε,

l1X ,

l1X .k2Y .l2X ,

l1X .k2Y .l2X .(l3, l4)X ,

l1X .k2Y .l2X .(l3, l4)X .l6X

is deterministic. The strategy for Y , {ε, l1X .k1Y , l1X .k2Y }. is not deterministic,
because l1X .k1Y and l1X .k2Y are both included in the strategy.

The second restriction is called completeness; it means that a strategy prescribes
a move for the player whenever the player has a move available. In order to define
completeness, we start with two subsidiary definitions.

Definition 3.9. Let V denote the set of valid positions for a process P . If s is a
valid position for P , enabled(s) represents the set of moves available after s: define
enabled(s) = {m|s.m ∈ V }. Also, define the X and Y moves available after s as,
respectively, enabledX(s) = {mX |s.mX ∈ V } and enabledY (s) = {mY |s.mY ∈ V }.

Note that a position can have X moves enabled or Y moves enabled, but not both.
This is clear from the operational semantics.

Definition 3.10. If s is a valid position for P and Z is a player, let Z̄ denote
the other player. We define Z(s), the string of Z moves in s, inductively as follows:

(1 ) Z(ε) = ε.

(2 ) Z(s.mZ) = Z(s).mZ .

(3 ) Z(s.mZ̄) = Z(s).

Example 3.11. Continuing the example from above, X(l1X .k1Y .l2X .(l3, l4)X .l5X) =
l1X .l2X .(l3, l4)X .l5X , and Y (l1X .k1Y .l2X .(l3, l4)X .l5X) = k1Y .
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Definition 3.12. For a nonblocked process with valid positions V , a strategy S
for player Z is complete if for all s ∈ S, for every string s′ such that Z(s′) = ε
and s.s′ ∈ V and enabledZ(s.s′) "= ∅, then s.s′.m ∈ S for some move m.

Completeness captures the idea that a player’s strategy always dictates a move
whenever it is that player’s turn to play and a move is available. Note that if a
deterministic strategy chooses a move m1 at a particular point and another move
m2 is available to it, there is no need for a complete strategy to specify what
happens after an m2 move, since this move will not be chosen. The condition
Z(s′) = ε means that all the moves in s′ were opponent moves, so that a complete
strategy can respond to any sequence of moves made by the opponent. On the other
hand, we of course do not want to quantify over moves made by the strategy’s own
player.

Example 3.13. The strategy S given above for X,

ε
l1X

l1X .k2Y .l2X

l1X .k2Y .l2X .(l3, l4)X

l1X .k2Y .l2X .(l3, l4)X .l6X

is not complete, because X cannot respond to Y choosing k1: l1X ∈ S, and
l1X .k1Y ∈ V and enabledX(l1X .k1Y ) "= ∅, but there is no move m such that
l1X .k1Y .m ∈ S. The strategy would be complete if, for example, the valid position
l1X .k1Y .l2X .(l3, l4)X .l5X and all appropriate prefixes were added to the strategy.

Now we define the execution of a process with deterministic, complete strategies
as the execution corresponding to the maximal execution that the two strategies
“agree” on.

Definition 3.14. Define the execution of a process P with deterministic, com-
plete X and Y strategies S1 and S2 as follows: Let s be the maximal element in
S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}. The execution of P according
to S1 and S2 is the sequence of processes P, P1...Pn such that s = s1s2...sn where
each si is either a single X move or an X move followed by a Y move, and

P −−→
s1

P1 −−→
s2

P2 −−→
s3

... −−−−→
sn−1

Pn−1 −−→
sn

Pn.

This represents the sequence of moves that will be chosen and processes that will be
reached if labels are chosen according to the strategies S1 and S2.

In order to check that the string s in this definition exists and is unique, we need
the following proposition.

Proposition 3.15. Consider a process P , S1 a deterministic, complete X strat-
egy for P , and S2 a deterministic, complete Y strategy for P . Let

S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}

Then the prefix ordering is a total order on S.
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ending in an X move, but does not contain l1X .k2Y .l2X , a prefix of the aforemen-
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3.3 Execution of Processes According to Strategies

In this section we define the execution of a process with two strategies- one for
each player. However, not every pair of strategies defines a unique execution of a
process. We define two simple restrictions on strategies, which together imply that
executions are unique.

Definition 3.7. A strategy S is deterministic if: s.m1 ∈ S, s.m2 ∈ S implies
m1 = m2.

Example 3.8. For

P = (νb)
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l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)
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,
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l1X .k2Y .l2X .(l3, l4)X .l6X

is deterministic. The strategy for Y , {ε, l1X .k1Y , l1X .k2Y }. is not deterministic,
because l1X .k1Y and l1X .k2Y are both included in the strategy.

The second restriction is called completeness; it means that a strategy prescribes
a move for the player whenever the player has a move available. In order to define
completeness, we start with two subsidiary definitions.

Definition 3.9. Let V denote the set of valid positions for a process P . If s is a
valid position for P , enabled(s) represents the set of moves available after s: define
enabled(s) = {m|s.m ∈ V }. Also, define the X and Y moves available after s as,
respectively, enabledX(s) = {mX |s.mX ∈ V } and enabledY (s) = {mY |s.mY ∈ V }.

Note that a position can have X moves enabled or Y moves enabled, but not both.
This is clear from the operational semantics.

Definition 3.10. If s is a valid position for P and Z is a player, let Z̄ denote
the other player. We define Z(s), the string of Z moves in s, inductively as follows:

(1 ) Z(ε) = ε.

(2 ) Z(s.mZ) = Z(s).mZ .

(3 ) Z(s.mZ̄) = Z(s).

Example 3.11. Continuing the example from above, X(l1X .k1Y .l2X .(l3, l4)X .l5X) =
l1X .l2X .(l3, l4)X .l5X , and Y (l1X .k1Y .l2X .(l3, l4)X .l5X) = k1Y .
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Definition 3.12. For a nonblocked process with valid positions V , a strategy S
for player Z is complete if for all s ∈ S, for every string s′ such that Z(s′) = ε
and s.s′ ∈ V and enabledZ(s.s′) "= ∅, then s.s′.m ∈ S for some move m.

Completeness captures the idea that a player’s strategy always dictates a move
whenever it is that player’s turn to play and a move is available. Note that if a
deterministic strategy chooses a move m1 at a particular point and another move
m2 is available to it, there is no need for a complete strategy to specify what
happens after an m2 move, since this move will not be chosen. The condition
Z(s′) = ε means that all the moves in s′ were opponent moves, so that a complete
strategy can respond to any sequence of moves made by the opponent. On the other
hand, we of course do not want to quantify over moves made by the strategy’s own
player.

Example 3.13. The strategy S given above for X,

ε
l1X

l1X .k2Y .l2X

l1X .k2Y .l2X .(l3, l4)X

l1X .k2Y .l2X .(l3, l4)X .l6X

is not complete, because X cannot respond to Y choosing k1: l1X ∈ S, and
l1X .k1Y ∈ V and enabledX(l1X .k1Y ) "= ∅, but there is no move m such that
l1X .k1Y .m ∈ S. The strategy would be complete if, for example, the valid position
l1X .k1Y .l2X .(l3, l4)X .l5X and all appropriate prefixes were added to the strategy.

Now we define the execution of a process with deterministic, complete strategies
as the execution corresponding to the maximal execution that the two strategies
“agree” on.

Definition 3.14. Define the execution of a process P with deterministic, com-
plete X and Y strategies S1 and S2 as follows: Let s be the maximal element in
S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}. The execution of P according
to S1 and S2 is the sequence of processes P, P1...Pn such that s = s1s2...sn where
each si is either a single X move or an X move followed by a Y move, and

P −−→
s1

P1 −−→
s2

P2 −−→
s3

... −−−−→
sn−1

Pn−1 −−→
sn

Pn.

This represents the sequence of moves that will be chosen and processes that will be
reached if labels are chosen according to the strategies S1 and S2.

In order to check that the string s in this definition exists and is unique, we need
the following proposition.

Proposition 3.15. Consider a process P , S1 a deterministic, complete X strat-
egy for P , and S2 a deterministic, complete Y strategy for P . Let

S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}

Then the prefix ordering is a total order on S.
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The prefixes of these valid positions are also valid positions.

3.2 Strategies

A strategy for a certain player is a subset of the valid positions, each valid position
ending with a move made by that player. The idea behind a strategy is that if, for
example, player X finds himself in position s and s.m is in his strategy, then he
will do move m.3

From now on, when we use m without a subscript to denote a move, it will mean a
move including its player: a move of the form lX , (l1, l2)X , lY , or (l1, l2)Y . When
we use mX , mY , or mZ to denote a move, it means a move with the specified
subscript, where Z represents X or Y .

Definition 3.5. Let Z stand for either X or Y . In the game for P , a strategy
for Z is a set S of valid positions such that ε is in S and if s.m ∈ S, then m is a Z
move (m = lZ for some label or pair of labels l), and every prefix of s ending with
a Z move is in S.

Example 3.6. For

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)
)

,

one strategy for X is:

ε
l1X

l1X .k2Y .l2X

l1X .k2Y .l2X .(l3, l4)X

l1X .k2Y .l2X .(l3, l4)X .l6X

Another strategy for X is:

ε
l1X

l1X .k1Y .l2X

l1X .k2Y .l2X

One strategy for Y is:

ε
l1X .k1Y

l1X .k2Y

This is not a strategy:

ε
l1X

l1X .k2Y .l2X .(l3, l4)X

3Unlike the usual game theoretic definition of strategy, our strategies are not functional, that
is, they do not necessarily specify one move for the player to make in every situation. We can,
however, put simple conditions on our strategies so that they are functional.
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Definition 3.12. For a nonblocked process with valid positions V , a strategy S
for player Z is complete if for all s ∈ S, for every string s′ such that Z(s′) = ε
and s.s′ ∈ V and enabledZ(s.s′) "= ∅, then s.s′.m ∈ S for some move m.

Completeness captures the idea that a player’s strategy always dictates a move
whenever it is that player’s turn to play and a move is available. Note that if a
deterministic strategy chooses a move m1 at a particular point and another move
m2 is available to it, there is no need for a complete strategy to specify what
happens after an m2 move, since this move will not be chosen. The condition
Z(s′) = ε means that all the moves in s′ were opponent moves, so that a complete
strategy can respond to any sequence of moves made by the opponent. On the other
hand, we of course do not want to quantify over moves made by the strategy’s own
player.

Example 3.13. The strategy S given above for X,

ε
l1X

l1X .k2Y .l2X

l1X .k2Y .l2X .(l3, l4)X

l1X .k2Y .l2X .(l3, l4)X .l6X

is not complete, because X cannot respond to Y choosing k1: l1X ∈ S, and
l1X .k1Y ∈ V and enabledX(l1X .k1Y ) "= ∅, but there is no move m such that
l1X .k1Y .m ∈ S. The strategy would be complete if, for example, the valid position
l1X .k1Y .l2X .(l3, l4)X .l5X and all appropriate prefixes were added to the strategy.

Now we define the execution of a process with deterministic, complete strategies
as the execution corresponding to the maximal execution that the two strategies
“agree” on.

Definition 3.14. Define the execution of a process P with deterministic, com-
plete X and Y strategies S1 and S2 as follows: Let s be the maximal element in
S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}. The execution of P according
to S1 and S2 is the sequence of processes P, P1...Pn such that s = s1s2...sn where
each si is either a single X move or an X move followed by a Y move, and

P −−→
s1

P1 −−→
s2

P2 −−→
s3

... −−−−→
sn−1

Pn−1 −−→
sn

Pn.

This represents the sequence of moves that will be chosen and processes that will be
reached if labels are chosen according to the strategies S1 and S2.

In order to check that the string s in this definition exists and is unique, we need
the following proposition.

Proposition 3.15. Consider a process P , S1 a deterministic, complete X strat-
egy for P , and S2 a deterministic, complete Y strategy for P . Let

S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}

Then the prefix ordering is a total order on S.
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A pair of complete, deterministic strategies

one for each player 
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Executions

A pair of complete, deterministic strategies

one for each player 

defines an execution of the process.
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usual (Kripke) way.
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strategy if and only if s2.m is in the strategy.
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Epistemic restrictions

We define two equivalences on valid positions, one for 
each player.

These equivalences capture what players “know” in the 
usual (Kripke) way.

If s1 and s2 are equivalent for Z then s1.m is in Z’s 
strategy if and only if s2.m is in the strategy.

We are saying that strategies can only be based on what 
players know.  

One can design different equivalences to “engineer” the 
appropriate epistemic concept.
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Introspection

An example epistemic restriction: introspection.

The player knows his own history and what moves 
were available to him at every point in the past.  

Wednesday, June 8, 2011



12 · Chatzikokolakis et al.

Definition 3.16. For player Z, positions s1 and s2 are called Z indistinguish-
able if they satisfy the following conditions:

(1 ) Z(s1) = Z(s2)

(2 ) enabledZ(s1) = enabledZ(s2).

(3 ) For all prefixes s′1 of s1 and s′2 of s2, if Z has a move available at both s′1
and s′2 and Z(s′1) = Z(s′2), then enabled(s′1) = enabled(s′2).

In this definition, two positions are indistinguishable if the player made the same
series of moves to arrive at both positions, and at any point in the past where he
had made a certain series of moves in both positions and had moves available, he
had the same set of moves available in both positions.

Definition 3.17. Given a process P , and S a strategy for player Z on P , S
is introspective if for every Z indistinguishable pair of valid positions s1 and s2,
s1.m ∈ S if and only if s2.m ∈ S.

In other words, the player chooses the move he makes at each step based on his
past moves, the moves that are available to him, and the moves that were available
to him at each point in the past. If these conditions are all the same at two
positions, the player cannot distinguish them, so he makes the same move at both
positions.

Example 3.18. For

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)
)

the deterministic strategy given above for X,

S = {ε,

l1X ,

l1X .k1Y .l2Y ,

l1X .k2Y .l2X ,

l1X .k1Y .l2X .(l3, l4)X ,

l1X .k2Y .l2X .(l3, l4)X ,

l1X .k1Y .l2X .(l3, l4)X .l5X ,

l1X .k2Y .l2X .(l3, l4)X .l6X}

is not introspective. This is because in order to satisfy the introspection condition,
l1X .k1Y .l2X .(l3, l4)X and l1X .k2Y .l2X .(l3, l4)X should have the same moves ap-
pended to them in S, since they are X indistinguishable. However, l1X .k1Y .l2X .(l3, l4)X .l5X ∈
S and l1X .k2Y .l2X .(l3, l4)X .l5X "∈ S, and similarly, l1X .k2Y .l2X .(l3, l4)X .l6X ∈ S
and l1X .k2Y .l2X .(l3, l4)X .l5X "∈ S.

An example of an introspective strategy for X is the set consisting of the strings
l1X .k1Y .l2X .(l3, l4)X .l5X and l1X .k2Y .l2X .(l3, l4)X .l5X as well as the appropriate
prefixes of either of these two strings. Here is an example showing why the prefixes
of the valid positions are discussed in the definition of introspective. For readability,
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is introspective if for every Z indistinguishable pair of valid positions s1 and s2,
s1.m ∈ S if and only if s2.m ∈ S.

In other words, the player chooses the move he makes at each step based on his
past moves, the moves that are available to him, and the moves that were available
to him at each point in the past. If these conditions are all the same at two
positions, the player cannot distinguish them, so he makes the same move at both
positions.

Example 3.18. For

P = (νb)
(

l1 :{k1 :τ . l2 :a . l3 :b + k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d + l6 :e)
)

the deterministic strategy given above for X,

S = {ε,

l1X ,

l1X .k1Y .l2Y ,

l1X .k2Y .l2X ,

l1X .k1Y .l2X .(l3, l4)X ,

l1X .k2Y .l2X .(l3, l4)X ,

l1X .k1Y .l2X .(l3, l4)X .l5X ,

l1X .k2Y .l2X .(l3, l4)X .l6X}

is not introspective. This is because in order to satisfy the introspection condition,
l1X .k1Y .l2X .(l3, l4)X and l1X .k2Y .l2X .(l3, l4)X should have the same moves ap-
pended to them in S, since they are X indistinguishable. However, l1X .k1Y .l2X .(l3, l4)X .l5X ∈
S and l1X .k2Y .l2X .(l3, l4)X .l5X "∈ S, and similarly, l1X .k2Y .l2X .(l3, l4)X .l6X ∈ S
and l1X .k2Y .l2X .(l3, l4)X .l5X "∈ S.

An example of an introspective strategy for X is the set consisting of the strings
l1X .k1Y .l2X .(l3, l4)X .l5X and l1X .k2Y .l2X .(l3, l4)X .l5X as well as the appropriate
prefixes of either of these two strings. Here is an example showing why the prefixes
of the valid positions are discussed in the definition of introspective. For readability,
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labels are replaced with superscript numbers preceding actions: 1a.P represents
l1 :a . P .

Example 3.19. Consider

P = 0{ 1τ .( 3c .( 6f + 7g ) + 4d ) + 2τ .( 3c .( 6f + 7g ) + 5e )}.

Let X’s strategy be

S = {ε,

l0X ,

l0X .l1Y .l3X ,

l0X .l2Y .l3X ,

l0X .l1Y .l3X .l6X ,

l0X .l2Y .l3X .l7X .

This strategy is introspective. Even though X(l0X .l1Y .l3X) = X(l0X .l2Y .l3X) and
enabledX(l0X .l1Y .l3X) = enabledX(l0X .l2Y .l3X), it is acceptable that the two strings
have different moves appended to them, because enabledX(l0X .l1Y ) = {l3X , l4X}
and enabledX(l0X .l2Y ) = {l3X , l5X}. This can be thought of as X being able to
distinguish between the two positions l0X .l1Y .l3X and l0X .l2Y .l3X because he re-
members what moves were available to him earlier and is able to use this informa-
tion to tell apart the two positions.

The essence of the introspection condition is that a player knows what moves it has
made in the past and knows what moves, if any, were available to it at each point
in the past, but cannot see any moves that its opponent has made. Thus, each
player must choose its moves based solely on its own past moves, the past moves
that were available to it, and the moves available to it now.

4. CORRESPONDENCE BETWEEN STRATEGIES AND SCHEDULERS

In this section, we first review the syntactic schedulers defined in [Chatzikokolakis
and Palamidessi 2007] and then prove that deterministic complete introspective
strategies correspond exactly to these schedulers. This result is important because
these schedulers are defined purely syntactically, without any explicit reference
to knowledge or equivalence between executions. Since the players’ knowledge is
explicit in the definition of introspective strategies, this equivalence explains the
knowledge requirements underlying the syntactic schedulers, which had not been
discussed before.

4.1 Background on Schedulers

The process calculus with schedulers uses the syntax for processes discussed above,
with the protection operator, but also adds a new ingredient: explicit syntax for
a pair of independent schedulers. The schedulers use labels, rather than actions,
to interact with a process, making it possible to use labels to control a scheduler’s
“view” of a process. The schedulers choose a sequence of labels, to execute actions,
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or pairs of labels, to synchronize processes, and also can check whether a label
or synchronization is available, using an if... then... else... construct. The two
schedulers operate independently and do not communicate with one another, and
each scheduler controls certain choices in the process. This makes it possible to
represent independent choices in the process calculus. A complete process is an
ordinary process augmented with a pair of schedulers. In this section, we also add
the notion of general labels, either a single ordinary label or a pair of ordinary labels.
This convention is useful because an ordinary label and a pair of synchronizing
ordinary labels both represent a single action by a scheduler. We let l and k
represent ordinary labels and L and K represent general labels. The notations σ(L),
σ(l), and σ(l, k) are used to designate a choice made by a scheduler: σ(l) means
a single action will be executed, σ(l, k) means that the scheduler will synchronize
two actions, and σ(L) can represent either of these cases. We let a and b represent
actions, ā and b̄ co-actions, τ the silent action, α and β generic actions, co-actions,
or silent action, P and Q processes, and ρ and η schedulers. The syntax for a
complete process is as follows:

P, Q ::= l : α.P | P |Q | P + Q | (νa)P | l : {P} | 0

L ::= l | (l, k)

ρ, η ::= σ(L).ρ | if L then ρ else η | 0

CP ::= P ‖ ρ, η

The first scheduler is called the primary scheduler and the second scheduler is the
secondary scheduler. The rules for the operational semantics of the process calculus
with schedulers are in Fig. 2. Using the if then else construct (rules IF1, IF2),
the scheduler can check whether a move is available and choose what to do based
on that information. The SWITCH rule says that the curly brackets indicate a
point where the secondary scheduler makes the next choice. After making this
choice, control reverts to the primary scheduler. The choice made by the secondary
scheduler must result in a τ observation because the process is encapsulated and
cannot interact with the environment at this point. Of course, once control reverts
to the primary scheduler, interactions with the external environment can indeed
take place. The order in which the schedulers are written indicates which one is
to be regarded as primary. In the rules SUM1 and PAR1, we require that the
primary scheduler not be of the form if L then ρ1 else ρ2 because the if then

else construct allows a scheduler to check whether a label is available. Thus, the
behaviour of a process P with primary scheduler if L then ρ1 else ρ2 may be
different than the behaviour of process P + Q with the same scheduler if the label
L is available in process Q. The same condition applies to PAR1. The rules IF1 and
IF2 check whether a process can execute any transition with the one step primary
scheduler σ(L) and any secondary scheduler. If there is any transition that can
occur for this complete process, then the first branch of the primary scheduler is
activated, otherwise, the second branch occurs.

Clearly, if a process is blocked, then no transition is possible with any schedulers.
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ACT
l : α.P ‖σ(l).ρ, η

α
−−−→

lX
P ‖ ρ, η

RES
P ‖ ρ, η

α
−−→

s
P ′ ‖ ρ′, η′ α $= a, ā

(νa)P ‖ ρ, η
α

−−→
s

(νa)P ′ ‖ ρ′, η′

SUM1
P ‖ ρ, η

α
−−→

s
P ′ ‖ ρ′, η′ ρ $= if L then ρ1 else ρ2

P + Q ‖ ρ, η
α

−−→
s

P ′ ‖ ρ′, η′

PAR1
P ‖ ρ, η

α
−−→

s
P ′ ‖ ρ′, η′ ρ $= if L then ρ1 else ρ2

P |Q ‖ ρ, η
α

−−→
s

P ′|Q ‖ ρ′, η′

SWITCH

P ‖ η, 0
τ

−−−→
jX

P ′||η′, 0

l : {P} ‖σ(l).ρ, η
τ

−−−−−→
lX .jY

P ′ ‖ ρ, η′

COM

P ‖σ(l).0, 0
a

−−−→
lX

P ′ ‖ 0, 0 Q ‖σ(j).0, 0
ā

−−−→
jX

Q′ ‖ 0, 0

P |Q‖σ(l, j).ρ,η
τ

−−−−−−→
(l, j)X

P ′|Q′ ‖ ρ, η

IF1
P ‖ ρ1, η

α
−−→

s
P ′ ‖ ρ′1, η′ P ‖ σ(L).0, θ

β
−−→

s′

P ′′ ‖ 0, θ′ for some scheduler θ

P ‖ if L then ρ1 else ρ2, η
α

−−→
s

P ′ ‖ ρ′1, η′

IF2
P ‖ ρ2, η

α
−−→

s
P ′ ‖ ρ′2, η′ P ‖ σ(L).0, θ $−→ for all schedulers θ

P ‖ if L then ρ1 else ρ2, η
α

−−→
s

P ′ ‖ ρ′2, η′

Fig. 2. Operational semantics for processes with schedulers

On the other hand, it is possible for a process that is not blocked to have no
transitions available with certain schedulers. For example, the process l : a is not
blocked, but no transitions are available for the complete process l : a ‖ σ(j), 0.
Thus, it is useful to define the notion of a pair of schedulers being nonblocking for
a certain process.

Definition 4.1. For a process P which is not blocked, a pair of schedulers ρ, η
are inductively defined as nonblocking if P ‖ ρ, η

α
−−→ P ′ ‖ ρ′, η′ for some α, P ′, ρ′,

and η′, and if P is not blocked, then ρ′ and η′ are non-blocking for P ′.

Since we consider only finite processes, this inductive definition characterizes all
nonblocking scheduler pairs for processes that are not blocked.

We have defined a nonblocking scheduler pair as, essentially, a pair of schedulers
that choose a move for the process whenever one is available. Now we define the
concept of a single scheduler being nonblocking. We would like to say that a single
primary or secondary scheduler for a process is nonblocking if it can be paired with
any nonblocking secondary or primary scheduler (respectively) for the process and
not cause the process to be blocked. Obviously, this would be a circular definition,
so we define nonblocking first inductively for a secondary scheduler, and then for a
primary scheduler, with reference to nonblocking secondary schedulers.

Definition 4.2. If P is a deterministically labelled process and is not blocked,
then a scheduler η is a nonblocking secondary scheduler for P if for every general
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label L such that for some η1,

P ‖ σ(L), η1
α

−−→
s

P ′ ‖ 0, η′

1

(for some α, s, P ′, and η′
1), then

P ‖ σ(L), η
β

−−→
s′

P ′′ ‖ 0, η′

(for some β, s′, P ′′ and η′), and if P ′′ is not blocked, η′ is a nonblocking secondary
scheduler for P ′′.

If P is blocked, then any secondary scheduler is defined to be nonblocking.

First, note that this is a complete inductive definition because we only consider
finite processes, so any process will be blocked after some finite number of steps.
The meaning of this definition is the following: if there is a label that can be chosen
by the primary scheduler and execute an action in conjunction with some arbitrary
secondary scheduler, then a nonblocking secondary scheduler must also be able
to execute an action in conjunction with the primary scheduler that chooses this
label.

For a blocked process, all schedulers are considered to be nonblocking because it
is not the scheduler that is preventing an action from occurring, but the process
itself, so the scheduler is nonblocking.

Definition 4.3. If P is a deterministically labelled process that is not blocked,
then primary scheduler ρ is primary nonblocking if for any nonblocking secondary
scheduler η,

P ‖ ρ, η
α

−−→
s

P ′ ‖ ρ′, η′

(for some α, s, P ′, ρ′, η′) and if P ′ is not blocked, then ρ′ is a nonblocking primary
scheduler for P ′.

In other words, a primary scheduler is one that will schedule an action for the
process no matter what nonblocking secondary scheduler it is paired with.

4.2 Correspondence Theorem

The main correspondence theorem can now be stated.

Theorem 4.4. Given a deterministically labelled process P , a nonblocking pri-
mary scheduler ρ for P , and a nonblocking secondary scheduler η for P , there is a
deterministic, complete, introspective X strategy S depending only on P and ρ, and
a deterministic, complete, introspective Y strategy T depending only on P and η,
such that the execution of P ‖ ρ, η is identical to the execution of P with S and T .

Furthermore, given a deterministically labelled process P , a deterministic, complete,
introspective X strategy S for P , and a deterministic, complete, introspective Y
strategy T for P , there is a nonblocking primary scheduler ρ depending only on S
and P and a nonblocking secondary scheduler η depending only on T and P such
that the execution of P with S and T is identical to the execution of P ‖ ρ, η.
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Knowledge

Usually modelled with an equivalence relation on 
the set of states (possible worlds), which 
represents what the agents thinks is possible.

If St is the set of states then the agent knows 
phi in state s if for all states t with s~t, phi is 
true in t.
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Axioms for Knowledge

1. All propositional tautologies

2. (Kiφ) ∧ (Ki(φ⇒ ψ))⇒ Kiψ

3. Kiφ⇒ φ

4. Kiφ⇒ KiKiφ

5. ¬Kiφ⇒ Ki(¬Kiφ)

6. Modus Ponens

7. From φ infer Kiφ
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the possibility relation is an equivalence relation.

The axioms given are for a static situation.
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Furthermore,

µP (l.li ! final(Si)) =
∑

s′∈final(Si)

µP (l.li.s
′),

but since P −−−→
l.li pi

Pi, by definition 5.2, we have that µP (l.li.s′) = pi · µPi
(s′). So

altogether,
∑

s∈final(S) µP (s) =
∑n

i=1 µP (l.li ! final(Si))
=

∑n
i=1 pi · µPi

(final(Si))
=

∑n
i=1 pi by induction hypothesis

= 1 by definition

6. A MODAL LOGIC FOR STRATEGIES

In this section we present a modal logic intended to reason about games on pro-
cesses, particularly knowledge, information flow, and the effects of actions on knowl-
edge. This is not intended to be the final word on the subject; this is a version
developed for this particular game-semantics application.

We consider two-player processes with a switch operator rather than probabilistic
processes because we wish to avoid probabilistic logic the subtleties of which are
largely orthogonal to our present considerations. We take the set of all valid po-
sitions for a process as our set of states. Our logic will allow us to discuss several
aspects of any given valid position:

—Which player made the last move and what the last move was,

—What moves are available and what player they belong to,

—What formulas are satisfied by specific continuations of the current valid position,

—What formulas are satisfied by specific prefixes of the current valid position,

—The knowledge of each player in the current state, according to the introspective
indistinguishability condition discussed in section 3, and

—What formulas were satisfied by the state immediately after either player’s last
move.

Our logic not only allows us to discuss players’ knowledge according to the cor-
rect equivalence relation on states, but also allows us to characterize logically the
introspective indistinguishability relation itself.

6.1 Syntax and Semantics

As mentioned above, we take the valid positions for a certain process as our states.
For a valid position s and a formula φ, we say that s |= φ if φ is true at s.
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Let L represent a general label (a single label or a synchronizing pair of labels), m
a move (a general label together with a player), let X and Y be the two players,
and let Z represent either X or Y .

φ ::= CZ(L) | AZ(L) | ©m φ | ©- φ | KZφ | @Zφ | φ ∧ φ | ¬φ | #.

The formula CZ(L) means that the last move taken was LZ (general label L was
chosen by player Z). AZ(L) means that move LZ is available at the current valid
position. ©mφ means that m is an available move at the current valid position and
φ will be true after m is played. ©- φ means that φ was true at the previous valid
position before this one. KZφ means that φ is true at every state that player Z
considers equivalent to the current state- the usual Kripke interpretation of knowl-
edge, as in Kripke [1963]. If a fact is true at every state equivalent to the current
one, then it is true at every state that the agent considers to be possible, so the
agent is said to know the fact. Finally, @Zφ means that φ was true immediately
after player Z’s last move. These meanings are formalized in the semantics:

(1) s.LZ |= CZ(L).

(2) s |= AZ(L) if s.LZ ∈ V .

(3) s |= ©mφ if s.m ∈ V and s.m |= φ.

(4) s.m |= ©- φ if s |= φ.

(5) s |= KZφ if for all s′ ∼Z s, s′ |= φ.

(6) s |= @Zφ if s = s′.LZ and s |= φ or s = s′.LZ .L1
Z̄
.L2

Z̄
...Ln

Z̄
and s′.LZ |= φ.

(7) s |= φ1 ∧ φ2 if s |= φ1 and s |= φ2.

(8) s |= ¬φ if it is not the case that s |= φ.

(9) s |= # for all s.

Most of the connectives are straightforward, but the knowledge operator requires
more discussion. Its semantics requires the definition of the equivalence relation
∼Z , which is given as part of the model. In fact, any equivalence relation on
valid positions would be consistent with our syntax, but we will use the specific
indistinguishability relation discussed in the definition of an introspective strategy.
In the following definition, recall that Z(s) means the string of Z moves from the
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The formula CZ(L) means that the last move taken was LZ (general label L was
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position. ©mφ means that m is an available move at the current valid position and
φ will be true after m is played. ©- φ means that φ was true at the previous valid
position before this one. KZφ means that φ is true at every state that player Z
considers equivalent to the current state- the usual Kripke interpretation of knowl-
edge, as in Kripke [1963]. If a fact is true at every state equivalent to the current
one, then it is true at every state that the agent considers to be possible, so the
agent is said to know the fact. Finally, @Zφ means that φ was true immediately
after player Z’s last move. These meanings are formalized in the semantics:
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position before this one. KZφ means that φ is true at every state that player Z
considers equivalent to the current state- the usual Kripke interpretation of knowl-
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indistinguishability relation discussed in the definition of an introspective strategy.
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The formula CZ(L) means that the last move taken was LZ (general label L was
chosen by player Z). AZ(L) means that move LZ is available at the current valid
position. ©mφ means that m is an available move at the current valid position and
φ will be true after m is played. ©- φ means that φ was true at the previous valid
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Most of the connectives are straightforward, but the knowledge operator requires
more discussion. Its semantics requires the definition of the equivalence relation
∼Z , which is given as part of the model. In fact, any equivalence relation on
valid positions would be consistent with our syntax, but we will use the specific
indistinguishability relation discussed in the definition of an introspective strategy.
In the following definition, recall that Z(s) means the string of Z moves from the
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Definition 6.1. s1 ∼Z s2 if all of the following conditions hold:
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(8) s |= ¬φ if it is not the case that s |= φ.

(9) s |= # for all s.

Most of the connectives are straightforward, but the knowledge operator requires
more discussion. Its semantics requires the definition of the equivalence relation
∼Z , which is given as part of the model. In fact, any equivalence relation on
valid positions would be consistent with our syntax, but we will use the specific
indistinguishability relation discussed in the definition of an introspective strategy.
In the following definition, recall that Z(s) means the string of Z moves from the
valid position S, enabledZ(s) = {L|s.lZ ∈ V } where V is the set of valid positions
for the relevant process, and ≤ refers to the prefix ordering.
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∼Z , which is given as part of the model. In fact, any equivalence relation on
valid positions would be consistent with our syntax, but we will use the specific
indistinguishability relation discussed in the definition of an introspective strategy.
In the following definition, recall that Z(s) means the string of Z moves from the
valid position S, enabledZ(s) = {L|s.lZ ∈ V } where V is the set of valid positions
for the relevant process, and ≤ refers to the prefix ordering.
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Definition 6.1. s1 ∼Z s2 if all of the following conditions hold:

(1 ) Z(h1) = Z(h2)

(2 ) enabledZ(s1) = enabledZ(s2)

(3 ) For all s′1 ≤ s1, s2 ≤ s′2, if Z(s′1) = Z(s′2) then enabledZ(s′1) = enabledZ(s′2)
or enabledZ(s′1) = ∅ or enabledZ(s′2) = ∅.
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Let L represent a general label (a single label or a synchronizing pair of labels), m
a move (a general label together with a player), let X and Y be the two players,
and let Z represent either X or Y .

φ ::= CZ(L) | AZ(L) | ©m φ | ©- φ | KZφ | @Zφ | φ ∧ φ | ¬φ | #.

The formula CZ(L) means that the last move taken was LZ (general label L was
chosen by player Z). AZ(L) means that move LZ is available at the current valid
position. ©mφ means that m is an available move at the current valid position and
φ will be true after m is played. ©- φ means that φ was true at the previous valid
position before this one. KZφ means that φ is true at every state that player Z
considers equivalent to the current state- the usual Kripke interpretation of knowl-
edge, as in Kripke [1963]. If a fact is true at every state equivalent to the current
one, then it is true at every state that the agent considers to be possible, so the
agent is said to know the fact. Finally, @Zφ means that φ was true immediately
after player Z’s last move. These meanings are formalized in the semantics:

(1) s.LZ |= CZ(L).

(2) s |= AZ(L) if s.LZ ∈ V .

(3) s |= ©mφ if s.m ∈ V and s.m |= φ.

(4) s.m |= ©- φ if s |= φ.

(5) s |= KZφ if for all s′ ∼Z s, s′ |= φ.

(6) s |= @Zφ if s = s′.LZ and s |= φ or s = s′.LZ .L1
Z̄
.L2

Z̄
...Ln

Z̄
and s′.LZ |= φ.

(7) s |= φ1 ∧ φ2 if s |= φ1 and s |= φ2.

(8) s |= ¬φ if it is not the case that s |= φ.

(9) s |= # for all s.

Most of the connectives are straightforward, but the knowledge operator requires
more discussion. Its semantics requires the definition of the equivalence relation
∼Z , which is given as part of the model. In fact, any equivalence relation on
valid positions would be consistent with our syntax, but we will use the specific
indistinguishability relation discussed in the definition of an introspective strategy.
In the following definition, recall that Z(s) means the string of Z moves from the
valid position S, enabledZ(s) = {L|s.lZ ∈ V } where V is the set of valid positions
for the relevant process, and ≤ refers to the prefix ordering.

Definition 6.1. s1 ∼Z s2 if all of the following conditions hold:

(1 ) Z(h1) = Z(h2)

(2 ) enabledZ(s1) = enabledZ(s2)

(3 ) For all s′1 ≤ s1, s2 ≤ s′2, if Z(s′1) = Z(s′2) then enabledZ(s′1) = enabledZ(s′2)
or enabledZ(s′1) = ∅ or enabledZ(s′2) = ∅.
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CZ(L): last move was LZ .

AZ(L): LZ is available now.

�mφ: after move m, φ will be true;
it asserts that m is available.
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@Zφ means φ was true just after Z’s last move.

KZφ means Z knows φ.
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Finally, note that in the syntax and semantics we only discuss the traditional logical
connectives ∧ and ¬, so that the notation is concise. However, from now on we will
use φ1 ∨φ2 as shorthand for ¬(¬φ1 ∧¬φ2), φ1 −→ φ2 for ¬φ1 ∨φ2, and φ1 ⇔ φ2 for
(φ1 −→ φ2) ∧ (φ2 −→ φ1). On the other hand, we do not actually need the operator
AZ(L) since it is equivalent to ©LZ

' but we leave it in our syntax and semantics
anyway, to make the explanations simpler.

6.2 Logical Characterization of Indistinguishability

The main point of introducing a logic is to find a class of formulas so that two
valid positions are indistinguishable – in the introspection sense – if and only if
the two valid positions agree on all formulas in this class. In other words, we will
define two sets of formulas ΦX and ΦY such that for all valid positions s and t,
s ∼Z t if and only if for all formulas φ in ΦZ , s |= φ ⇐⇒ t |= φ. Such a theorem
is reminiscent of the basic Hennessy-Milner-van Benthem theorem which gives a
modal characterization of bisimulation.

Theorem 6.2. s ∼Z t if and only if s and t agree on all formulas of the form

(@Z©- )n@ZCZ(L)

for n ≥ 0, and for any L, and also agree on all formulas of the form

(@Z©- )nAZ(L)

for n ≥ 0 and for any L.

Proof. s and t agreeing on all formulas of the form (@Z©- )n@ZCZ(L) is equiv-
alent to Z(s) = Z(t), because s |= @ZCZ(L) if and only if L is the last Z move
in s, and s |= @Z©- @ZCZ(L′) if and only if L′ is the second to last Z move in s,
and so on. So if two valid positions agree on all such formulas, they must have the
same Z moves in the same order.

s and t agreeing on all formulas of the form AZ(L) (i.e. (@Z©- )0AZ(L)) clearly
means that enabledZ(s) = enabledZ(t), and s and t agreeing on all formulas of the
form (@Z©- )nAZ(L) is equivalent to the third condition in the indistinguishability
definition. This is because we have already ensured that Z(s) = Z(t) so (@Z©- )n

means counting backwards n Z moves and n contiguous series of Z̄ moves, and
then checking that enabledZ is the same in the two strings. This shows that two
valid positions agree on all formulas of the specified forms if and only if they are
Z-indistinguishable.

6.3 Basic properties captured in modal logic

One of the uses of this logic is to allow us to express some basic properties that are
true at every state. Now that we have a formal logic for discussing valid positions, it
is easier to determine examples of such properties, allowing us better to understand
the properties of valid positions and the relationships between them.

The fact that there is a class of formulas characterizing the equivalence relation used
to define knowledge has interesting implications for our logic. For example, the fact
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Conclusions

We have shown that the syntactic restrictions of 
Chatzikokolakis and Palamidessi can be viewed as 
semantic restrictions on the strategies allowed.

It is easy to impose other restrictions if one 
wants; it is not so easy to define a new syntax 
and operational semantics for schedulers every 
time one wants to consider a variation.

Epistemic concepts are pervasive in security; 
they should be made manifest.
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Dreams

Epistemic logic and information theory should 
fuse to give a new quantitative theory of 
information flow.

Process algebra should be enriched to allow 
more subtle interactions (e.g. games) between 
agents.
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