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How process algebra usually works

e Syntax for processes
P,Q ::==0|a.P|P + Q|P|Q|vx.P|!P

e Operational Semantics

b1 bn
/ /
P1 *P1 -+ Pn " Pn

pip’
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How process algebra usually works

e Syntax for processes
P,Q ::==0|a.P|P + Q|P|Q|vx.P|!P

e Operational Semantics

b1 bn
/ /
P1 *P1 -+ Pn " Pn

pip’

e Nondeterminism is resolved by an omniscient, omnipotent
and nwvisible scheduler.
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Formulate the desired property, perhaps in some modal logic.
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Formulate the desired property, perhaps in some modal logic.

Show that the property holds under all choices of scheduler.
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Reasoning about security
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Model the system in your favourite process algebra

Formulate the desired property, perhaps in some modal logic.

Show that the property holds under all choices of scheduler.

But if the scheduler is omniscient and malicious
1t can leak information.
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Reasoning about security
using process algebra

Model the system in your favourite process algebra

Formulate the desired property, perhaps in some modal logic.

Show that the property holds under all choices of scheduler.

But if the scheduler is omniscient and malicious
1t can leak information.

We need to describe the scheduler explicitly,

Wednesday, June 8, 2011



Reasoning about security
using process algebra

Model the system in your favourite process algebra

Formulate the desired property, perhaps in some modal logic.

Show that the property holds under all choices of scheduler.

But if the scheduler is omniscient and malicious
1t can leak information.

We need to describe the scheduler explicitly,

and perhaps to restrict its behaviour.
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Example: Voting

@ Two candidates: a,b. Two voters: v,w.

@ The system must reveal the list of people who
actually voted (in any order) and the total votes
for the candidate.
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Example: Voting

@ Two candidates: a,b. Two voters: v,w.

@ The system must reveal the list of people who
actually voted (in any order) and the total votes
for the candidate.

@ It must not reveal who voted for whom; unless
the vote is unanimous.
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Example: Voting

@ Two candidates: a,b. Two voters: v,w.

@ The system must reveal the list of people who
actually voted (in any order) and the total votes
for the candidate.

@ It must not reveal who voted for whom; unless
the vote is unanimous.

@ A scheduler can leak the votes!
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A scheduler that leaks voting preferences.

Wednesday, June 8, 2011



What do schedulers
Know?




What do schedulers
Know?

@ The scheduler that resolves the nondeterminism
in the order in which voters names are output
should not “know” who voted for whom.
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What do schedulers
Know?

@ The scheduler that resolves the nondeterminism
in the order in which voters names are output
should not “know” who voted for whom.

@ Chatzikokolakis and Palamidessi [CONCUR 07]
described schedulers with an explicit syntax and
operational semantics and used syntactic
restrictions to control what scheduler knew.
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What do schedulers
Know?

@ The scheduler that resolves the nondeterminism
in the order in which voters names are output
should not “know” who voted for whom.

@ Chatzikokolakis and Palamidessi [CONCUR 07]
described schedulers with an explicit syntax and
operational semantics and used syntactic
restrictions to control what scheduler knew.

@ They had two schedulers to resolve different
choices.
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What do schedulers
Know?

@ The scheduler that resolves the nondeterminism
in the order in which voters names are output
should not “know” who voted for whom.

@ Chatzikokolakis and Palamidessi [CONCUR 07]
described schedulers with an explicit syntax and
operational semantics and used syntactic
restrictions to control what scheduler knew.

@ They had two schedulers to resolve different
choices.

@ They showed that certain equations hold.
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Why does it work?

@dView H=0and T =1, same = O and not same =
k.

@ Then each person announces (left coin + right
coin) mod 2 so if no one lies, the sum should be
0.
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Why does it work?

@dView H=0and T =1, same = O and not same =
k.

@ Then each person announces (left coin + right
coin) mod 2 so if no one lies, the sum should be
0.

@ So the sum is 1 iff someone lies; i.e. there are an
odd number of “not same” announcements iff
someone is lying.
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Why does it work?

@dView H=0and T =1, same = O and not same =
k.

@ Then each person announces (left coin + right
coin) mod 2 so if no one lies, the sum should be
0.

@ So the sum is 1 iff someone lies; i.e. there are an
odd number of “not same” announcements iff
someone is lying.
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@ If we model this with process algebra then the
scheduler has to schedule the order in which
the announcements are made.
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scheduler has to schedule the order in which
the announcements are made.

@ An omniscient scheduler can decide always to
schedule the liar (if there is one) last (or first).
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The role of the scheduler

@ If we model this with process algebra then the
scheduler has to schedule the order in which
the announcements are made.

@ An omniscient scheduler can decide always to
schedule the liar (if there is one) last (or first).

@ This is very unreasonable; the scheduler should
not “know"” the outcomes of the coin tosses when
making the schedule.
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The role of the scheduler

@ If we model this with process algebra then the
scheduler has to schedule the order in which
the announcements are made.

@ An omniscient scheduler can decide always to
schedule the liar (if there is one) last (or first).

@ This is very unreasonable; the scheduler should
not “know"” the outcomes of the coin tosses when
making the schedule.

® There are two kinds of nondeterminism and
there should be two schedulers.
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An example due to Chatzikokolakis and Palamidessi

A= a(z).([z = 0]ok B =a(z).]x = 0]ok
10.5 10.5
x = 1]ok) a(x).lx = 1]|ok

If the random choices in A and B are private, we expect that A ~ B.
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A= a(z).([z = 0]ok B =a(z).]x = 0]ok
10.5 10.5
x = 1]ok) a(x).lx = 1]|ok

If the random choices in A and B are private, we expect that A ~ B.

If we use the context a0lal, then A can produce ok with probability % no
matter what the scheduler does.

Wednesday, June 8, 2011



An example due to Chatzikokolakis and Palamidessi

A= a(z).([z = 0]ok B =a(z).]x = 0]ok
10.5 10.5
x = 1]ok) a(x).lx = 1]|ok

If the random choices in A and B are private, we expect that A ~ B.

If we use the context a0lal, then A can produce ok with probability % no
matter what the scheduler does.

But with B, a scheduler thatknows the outcome of the random choice can select
the synchronization and make the probability of ok be 1 or O.
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In general when 4+, represents a private choice we would like to have

C|P+, Q] = C|r.P] +, C|1.Q)]
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In general when +, represents a private choice we would like to have

C|P+, Q] = C|r.P] +, C|1.Q)]

This is an algebraic way of capturing the limited knowledge
of the scheduler but it is very indirect.
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Games and Knowledge

@ Games are an ideal setting to explore epistemic
concepts.

@ Economists have been particularly active in
developing these ideas.
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Many types of games

® Games for verification: Luca de Alfaro, Henzinger,
Chatterjee, Abramsky, Ong, MurawskKi,...
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Many types of games

® Games for verification: Luca de Alfaro, Henzinger,
Chatterjee, Abramsky, Ong, MurawskKi,...

@ Games in economics: see, e.g. Adam
Brandenburgers review on epistemic games.
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Chatterjee, Abramsky, Ong, MurawskKi,...

@ Games in economics: see, e.g. Adam
Brandenburgers review on epistemic games.

@ Game semantics: Abramsky, Jagadeesan,
Malacaria, Hyland, Ong, Nickau, Laird, McCusker...

@ Games in logic: model theory, EF, Lorenzen,...
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Many types of games

® Games for verification: Luca de Alfaro, Henzinger,
Chatterjee, Abramsky, Ong, MurawskKi,...

@ Games in economics: see, e.g. Adam
Brandenburgers review on epistemic games.

@ Game semantics: Abramsky, Jagadeesan,
Malacaria, Hyland, Ong, Nickau, Laird, McCusker...

@ Games in logic: model theory, EF, Lorenzen,...

@ Games in hardware synthesis: Ghica
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Games between
schedulers.




Games between
schedulers.

@ In order to make the epistemic aspects more
explicit we can think of schedulers as playing
games.
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Games between
schedulers.

@ In order to make the epistemic aspects more
explicit we can think of schedulers as playing
games.

@ The concurrent process is the "board” and the
moves end up choosing the action.
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Games between
schedulers.

@ In order to make the epistemic aspects more
explicit we can think of schedulers as playing
games.

@ The concurrent process is the "board” and the
moves end up choosing the action.

@ We control what the schedulers "know” by
putting restrictions on the allowed strategies.
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Restricting Strategies

@ What can an agent “see” in formulating its
strategy? This controls what it "knows.”
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Restricting Strategies

@ What can an agent “see” in formulating its
strategy? This controls what it "knows.”

@ One possible restriction: an agent knows what
choices are available to it and what choices
were available to it in the past.
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Restricting Strategies

@ What can an agent “see” in formulating its
strategy? This controls what it "knows.”

@ One possible restriction: an agent knows what
choices are available to it and what choices
were available to it in the past.

@ This corresponds exactly to the CP syntactic
restrictions [CKnight, P 08].
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Restricting Strategies

@ What can an agent “see” in formulating its
strategy? This controls what it "knows.”

@ One possible restriction: an agent knows what
choices are available to it and what choices
were available to it in the past.

@ This corresponds exactly to the CP syntactic
restrictions [CKnight, P 08].

@ Easy to impose epistemic restrictions on
strategies.
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Games and Concurrency

@ New direction in concurrency: Process algebras
as defining interacting agents.
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Games and Concurrency

@ New direction in concurrency: Process algebras
as defining interacting agents.

@ Games are already used in many ways in
concurrency, semantics, logic and economics.
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Games and Concurrency

@ New direction in concurrency: Process algebras
as defining interacting agents.

@ Games are already used in many ways in
concurrency, semantics, logic and economics.

@ But we still do not have a systematic way of
describing and reasoning about inferacting
agents algebraically.
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Processes with labels

actions

T

a’?
co-actions

silent action

a,b
p.
«, 3 generic actions, co-actions, or silent action

P,Q = 0] Pt s (va)P || : {P}




Operational Semantics




The SWITCH rule
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The SWITCH rule

Represents the choices made independently
of other choices in the process




The SWITCH rule

Represents the choices made independently
of other choices in the process

Required to do a silent action because otherwise
the outcome of the protected choice would be
visible to the scheduler.




DEFINITION 2.1. P is deterministically labelled if the following conditions hold:

(1) It is impossible for P to make two different transitions with the same labels:
for all strings s, if P — P’ and P P then o = 8 and P' = P".

(2) If P ——— P’ then there is no transition P —— P" for any o or P".

lx.7v [ x

(3) If P —=> P’ then P’ is deterministically labelled.
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DEFINITION 2.1. P is deterministically labelled if the following conditions hold:

(1) It is impossible for P to make two different transitions with the same labels:
for all strings s, if P — P’ and P P then o = 8 and P' = P".

(2) If P ——— P’ then there is no transition P —— P" for any o or P".

lx.7v [ x

(3) If P —=> P’ then P’ is deterministically labelled.

[:a.0+1[:b.0 not deterministically labelled
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DEFINITION 2.1. P is deterministically labelled if the following conditions hold:

(1) It is impossible for P to make two different transitions with the same labels:
for all strings s, if P — P’ and P P then o = 8 and P' = P".

(2) If P ——— P’ then there is no transition P —— P" for any o or P".

lx.7v [ x

(3) If P —=> P’ then P’ is deterministically labelled.

[:a.0+1[:b.0 not deterministically labelled

l1:a.04 11 :{l: 7.0} is not deterministically labelled
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DEFINITION 2.1. P is deterministically labelled if the following conditions hold:

(1) It is impossible for P to make two different transitions with the same labels:
for all strings s, if P — P’ and P P then o = 8 and P' = P".

(2) If P ——— P’ then there is no transition P —— P" for any o or P".

lx.7v [ x

(3) If P —=> P’ then P’ is deterministically labelled.

[:a.0+1[:b.0 not deterministically labelled

l1:a.04 11 :{l: 7.0} is not deterministically labelled

Also, l1:a | lo:b.11 : c is not deterministically labelled because it can transition to
l1:a | I1:c which is not deterministically labelled.
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Games

@ A game 1s defined for each specific process: the process
1s the game board.
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@ two players are sufficient to model interaction
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@ Two-player games
@ two players are sufficient to model interaction

@ the players are called X and Y
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Games

@ A game 1s defined for each specific process: the process
1s the game board.

@ Two-player games
@ two players are sufficient to model interaction
@ the players are called X and Y

@ Players are independent and act according to their
strategies.
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Games

@ A game 1s defined for each specific process: the process
1s the game board.

@ Two-player games
@ two players are sufficient to model interaction
@ the players are called X and Y

@ Players are independent and act according to their
strategies.

@ Players interact to determine how process will execute.
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Valid Positions

@ Players’ moves are labels in the process.




Valid Positions

@ Players’ moves are labels in the process.

@ A string of allowable moves 1s called a valid position.
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Valid Positions

@ Players’ moves are labels in the process.
@ A string of allowable moves 1s called a valid position.

@ A valid position 1s like a trace, but with labels instead
of actions.
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DEFINITION 3.1. A move is anything of the form lx, ly, (I,7)x, or (l,j)y where
l, and j are labels. lx and (I,7)x are called X-moves and ly and (I,7)y are called
Y -moves
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DEFINITION 3.1. A move is anything of the form lx, ly, (I,7)x, or (l,j)y where

l, and j are labels. lx and (I,7)x are called X-moves and ly and (I,7)y are called
Y -moves

DEFINITION 3.2. This extends the transition relation to multiple transitions, 1g-
noring the actions for the transitions but keeping track of the labels.

(1) For any process P, P — P.
€

(2) If P — P' and P — P" then P —— P".

S S.S

Now we define valid positions.

DEFINITION 3.3. If P — P’ then every prefix of s (including s) is a valid
position for P.
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P=(vb) (lh:{kr1:7.l2:a. l3:b+ ko:T.lo:c.l3:b} | 1a:b. (Is5:d + lg:e)).

Here are some of the valid positions for P:

lix Ky dax.(I3,14)x D5 x

x-lsx

x-lex

lix-kiylax.(I3,l4)x le x
1)
l1x-kay lax.(I3,14)

(
l1x -kay lax.(I3,1
(
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Strategies

Definition: In the game for P, a strateqy for player Z is a set S
of valid positions such that e € S and it s.m € §, then mis a Z
move and every prefix of s ending with a Z move is in S.
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Strategies

Definition: In the game for P, a strateqy for player Z is a set S
of valid positions such that e € S and it s.m € §, then mis a Z
move and every prefix of s ending with a Z move is in S.

A strategy tells the player what move to make
in a possible partial execution of the process.
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P = (vb) (llz{kl:T.lgia.lgtb—l—k217-1230-133b} | l436-(l55d‘|‘l6:€))7
one strateqy for X 1s:

£

l1x

l1x -kay.lax
lix-koy . lox.(I3,14)
l1x-kay-lax. (3, l4)X-l6X

Another strategy for X 1is:

£

l1x

l1x -k1y-lax
l1x.koy-lax
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P = (vb) (llz{kl:T.lgla.lgtb—l—k217-1230-133b} | l436-(l55d‘|‘l6:€))7
one strateqy for X 1s:

£

l1x

l1x -kay.lax
lix-koy . lox.(I3,14)
l1x-kay-lax. (3, l4)X-l6X

Another strategy for X 1is:

E

1 x
I x k1y.lax
l1x . kay.lax

Strategies need not be determinate.
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One strategy for Y 1is:

l1x-k1y
1 x-kay
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One strategy for Y 1is:

3
lix-kiy
l1x -kay

This 1s not a strateqy:

3
l1x

l1x -koy lax-(I3,14)
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Restrictions 1

Definition A strategy S is determainistic
if for all sequences s, s.m; € S and
s.mo € S implies m; = mo.




Complete strategies

@ We want some way of ensuring that the strategy tells
the player what to do 1n every possible situation.

@ This 1s formalized by the definition of complete
strategy.
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DEFINITION 3.9. Let V' denote the set of valid positions for a process P. If s is a
valid position for P, enabled(s) represents the set of moves available after s: define

enabled(s) = {m|s.m € V'}. Also, define the X and Y moves available after s as,
respectively, enabledx (s) = {mx|s.mx € V} and enabledy (s) = {my|s.my € V'}.

DEFINITION 3.12. For a nonblocked process with valid positions V', a strateqy S
for player Z is complete if for all s € S, for every string s’ such that Z(s') = ¢
and s.s' € V and enabledz(s.s") # 0, then s.s'.m € S for some move m.
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DEFINITION 3.9. Let V' denote the set of valid positions for a process P. If s is a
valid position for P, enabled(s) represents the set of moves available after s: define

enabled(s) = {m|s.m € V'}. Also, define the X and Y moves available after s as,
respectively, enabledx (s) = {mx|s.mx € V} and enabledy (s) = {my|s.my € V'}.

Note that a position can have X moves enabled or Y moves enabled, but not both.
This is clear from the operational semantics.

DEFINITION 3.12. For a nonblocked process with valid positions V', a strateqy S
for player Z is complete if for all s € S, for every string s’ such that Z(s') = ¢
and s.s' € V and enabledz(s.s") # 0, then s.s'.m € S for some move m.
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P = (vb) (llz{klzT.lgza.lgzb—l—k227-1210-5335} | 1436-(l53d‘|‘l636))>

£
1 x

l1x.koy . lax

1 x.koy.lox.(I3, l4)X

1 x.koy.lox. (I3, l4)X.l6X

1s not complete, because X cannot respond to Y choosing ki: lix € S, and
lix.kiy € V and enabledx(l1x.k1y) # 0, but there is no move m such that
l1x.kiy.m € 5. The strategy would be complete if, for example, the valid position
l1x.kiy.lox.(I3,l4) x .Isx and all appropriate prefizes were added to the strategy.
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Executions




Executions

@ A pair of complete, deterministic strategies
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Executions

@ A pair of complete, deterministic strategies

@ one for each player
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Executions

@ A pair of complete, deterministic strategies
@ one for each player

@ defines an execution of the process.
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Epistemic restrictions

@ We define two equivalences on valid positions, one for
each player.
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Epistemic restrictions

@ We define two equivalences on valid positions, one for
each player.

@ These equivalences capture what players “know” in the
usual (Kripke) way.
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Epistemic restrictions

@ We define two equivalences on valid positions, one for
each player.

@ These equivalences capture what players “know” in the
usual (Kripke) way.

@ If s1 and sz are equivalent for Z then si.m1s in Z’s
strategy 1f and only 1f so.m 1s in the strategy.
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Epistemic restrictions

@ We define two equivalences on valid positions, one for
each player.

@ These equivalences capture what players “know” in the
usual (Kripke) way.

@ If s1 and sz are equivalent for Z then si.m1s in Z’s
strategy 1f and only 1f so.m 1s in the strategy.

@ We are saying that strategies can only be based on what
players know.
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Epistemic restrictions

@ We define two equivalences on valid positions, one for
each player.

@ These equivalences capture what players “know” in the
usual (Kripke) way.

@ If s1 and sz are equivalent for Z then si.m1s in Z’s
strategy 1f and only 1f so.m 1s in the strategy.

@ We are saying that strategies can only be based on what
players know.

@ One can design different equivalences to “engineer” the
appropriate epistemic concept.
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Introspection




Introspection

@ An example epistemic restriction: introspection.
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Introspection

@ An example epistemic restriction: introspection.

@ The player knows his own history
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DEFINITION 3.16. For player Z, positions s1 and so are called Z indistinguish-
able if they satisfy the following conditions:

(1) Z(s1) = Z(s2)
(2) enabledz(s1) = enabledz(ss).

(83) For all prefixes s7 of s1 and sy of sa, if Z has a move available at both s
and s, and Z(sy) = Z(s}), then enabled(s|) = enabled(ss,).
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DEFINITION 3.16. For player Z, positions s1 and so are called Z indistinguish-
able if they satisfy the following conditions:

(1) Z(s1) = Z(s2)
(2) enabledz(s1) = enabledz(ss).

(83) For all prefixes s7 of s1 and sy of sa, if Z has a move available at both s
and s, and Z(sy) = Z(s}), then enabled(s|) = enabled(ss,).

DEFINITION 3.17. Given a process P, and S a strategy for player Z on P, S
1s introspective if for every Z indistinguishable pair of valid positions s1 and s,
si1.m €5 if and only if ss.m €S.
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P = (Vb) (lll{kllT.lgla.lgib—F]CQZT.ZQ:C.lgtb} ‘ 1411_?. (l5:d—|—l626))
the determanistic strategqy given above for X,

S = {e,
l1x,
l1x-k1y oy,
l1x Koy .lax,

lx-k1y lax.(I3,04

.

13714

(3, 14)
lix kaylax.(I3,14) y,
lix-k1y.lax.(I3,14)

(3, 14)

X'Z5X7
lix -kay-lax-(I3,14) x-

18 not introspective. This 1s because in order to satisfy the introspection condition,
Lix-kiy.lax.-(I3,la) y and lix.kay.lax.(I3,14)y should have the same moves ap-

pended to them in S, since they are X indistinguishable. However, l1 x.kiy .lax.(I3,14) v .lsx €
S and llX.kgy.ng.(lg, l4)X'15X Q S, and similarly, llX.kgy.ZQX.(lg, l4)x-l6X c S

and llX.kgy.ng.(lg, l4)X.l5X @/ S.
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P="{'7.Cc(®°f+Tg)+ %)+ 21 .(Cc.(°f+ Tg)+ °e)}.
Let X ’s strategy be
S = {e,

lOX7

lox-liy-lsx,

lox-lay lsx,

lox-liv-Isx.l6x,

lox-loy lsx.l7x.
This strategy is introspective. Even though X (lox.liyv.lsx) = X(lox.loy.lsx) and
enabledx (lgx.l1y.l3x) = enabledx (lgx .lay .l3x ), it is acceptable that the two strings
have different moves appended to them, because enabledx (lox.liy) = {lsx,lax}
and enabledx (lox.lay) = {lsx,lsx}- This can be thought of as X being able to
distinguish between the two positions lox.liy.lsx and lgx.loy.l3x because he re-

members what moves were available to him earlier and is able to use this informa-
tion to tell apart the two positions.
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P, Q) ::

p,1 i
CP ::

Syntactic schedulers

[:a.P|PIQ|P+Q|(va)P|1:{P}]0
L] (L, k)

o(L).p | if L then pelsen |0

P p,n




ACT

L aPllo().p,n —— Pl pn
X

Pllp,n—P'|p,n a#a,a

RES 2

(va)P || p,n —— (va)P' || o',

Pl p,n— P'||p/,n' p+#if L then p; else py
SUM1 s

(8
P+Qllpn— P'llpn
Pllp,n—— P'|l¢',n  p#if L then p; else py

PAR1 — —
PlQllp;n — PIlQI o5 n
PHT},O L) P/Hnlao

SWITCH X —
L:AP}o(l).p,m ——— P |lp,m

lx.jy B

Pl o(1).0,0 % P'|0,0  Qlo().0,0—-Q"|0,0
COM X ‘ — / / JXx
PlQ|e(, j)-p,n ——— P[Q || p, 7
(laj)X
Pl p1,7m % P p1,m" Pl o(L).0,0 i,> P 10,0 for some scheduler 6

IF1 S

P ||if L then py else p2,n —— P’ || py,7/
P p2,7 % P’ p5,m" Pl o(L).0,0 /4 for all schedulers 6

IF2 a
P ||if L then p; else pa,n — P'|| p5, 7’
S

Wednesday, June 8, 2011



The main technical result




The main technical result

@ The 1ntrospective restriction exactly captures the
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The main technical result

@ The 1ntrospective restriction exactly captures the
independence requirement that one expects

@ In particular,

@ they are equivalent to the syntactic schedulers of
Chatzikokolakis and Palamidessi.
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THEOREM 4.4. Given a deterministically labelled process P, a nonblocking pri-
mary scheduler p for P, and a nonblocking secondary scheduler n for P, there is a
deterministic, complete, introspective X strateqy S depending only on P and p, and
a deterministic, complete, introspective Y strateqy T depending only on P and n,
such that the execution of P || p,n is identical to the execution of P with S and T .

Furthermore, given a deterministically labelled process P, a deterministic, complete,
introspective X strateqy S for P, and a deterministic, complete, introspective Y
strateqy I' for P, there is a nonblocking primary scheduler p depending only on S
and P and a nonblocking secondary scheduler n depending only on T and P such
that the execution of P with S and T is identical to the execution of P || p,n.
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Probabilistic Choice

@ Chatzikokolakis and Palamidessi also defined
schedulers for a probabilistic process algebra.
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Probabilistic Choice

@ Chatzikokolakis and Palamidessi also defined
schedulers for a probabilistic process algebra.

@ We have formalized this also and proved a
similar correspondence theorem.
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@ Epistemic concepts are nicely captured by an S5
modal logic.
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Modal Logic

@ Epistemic concepts are nicely captured by an S5
modal logic.

@ Such logics have been very useful in the theory
of distributed systems but have been slow to
penetrate concurrency theory.

@ We present a modal logic for capturing the
notion of introspection and other epistemic
aspects of the agents.
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Knowledge

@ Usually modelled with an equivalence relation on
the set of states (possible worlds), which
represents what the agents thinks is possible.

Wednesday, June 8, 2011



Knowledge

@ Usually modelled with an equivalence relation on
the set of states (possible worlds), which
represents what the agents thinks is possible.

@ If St is the set of states then the agent knows
phi in state s if for all states t with s™1, phi is
frue in t.
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-~

Axioms for Knowledge

. All propositional tautologies
- (Kio) AN (Ki(¢ = ) = K
. Ko = ¢

. K0 = K;K;®

. Modus Ponens

. From ¢ infer K,;¢
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@ There are variant axiomatizations possible.
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Some Remarks

@ There are variant axiomatizations possible.

@ The axioms given correspond to assuming that
the possibility relation is an equivalence relation.

@ The axioms given are for a situation.

@ Many combinations are possible: time, probability,
dynamic update.
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What our logic should say

—Which player made the last move and what the last move was,

—What moves are available and what player they belong to,

—What formulas are satisfied by specific continuations of the current valid position,
—What formulas are satisfied by specific prefixes of the current valid position,

—The knowledge of each player in the current state, according to the introspective
indistinguishability condition discussed in section 3, and

—What formulas were satisfied by the state immediately after either player’s last
move.
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Let L represent a general label (a single label or a synchronizing pair of labels), m
a move (a general label together with a player), let X and Y be the two players,
and let Z represent either X or Y.

¢::=Cz(L) | Az(L) | Om ¢ | ¢ | Kz | Qzp | oNP || T.
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Let L represent a general label (a single label or a synchronizing pair of labels), m

a move (a general label together with a player), let X and Y be the two players,
and let Z represent either X or Y.

¢::=Cz(L) | Az(L) | Om ¢ | ¢ | Kz | Qzp | oNP || T.

Cz(L): last move was L.

Az(L): Lz is available now.

Om@: atter move m, ¢ will be true;
1t asserts that m 1s available.

(O ¢ means that ¢ was true at the previous valid position
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Let L represent a general label (a single label or a synchronizing pair of labels), m

a move (a general label together with a player), let X and Y be the two players,
and let Z represent either X or Y.

¢::=Cz(L) | Az(L) | Om ¢ | ¢ | Kz | Qzp | oNP || T.

Cz(L): last move was L.

Az(L): Lz is available now.

Om@: atter move m, ¢ will be true;
1t asserts that m 1s available.

(O ¢ means that ¢ was true at the previous valid position

K 7@ means Z knows ¢.

@@ means ¢ was true just after Z’s last move.
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THEOREM 6.2. s ~z t if and only if s and t agree on all formulas of the form
(@z(O)"@zC%(L)

for n > 0, and for any L, and also agree on all formulas of the form

(@z0)"Az(L)
for n > 0 and for any L.
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Conclusions

@ We have shown that the syntactic restrictions of
Chatzikokolakis and Palamidessi can be viewed as
semantic restrictions on the strategies allowed.

@ It is easy to impose other restrictions if one
wants; it is not so easy to define a new syntax
and operational semantics for schedulers every
time one wants to consider a variation.

@ Epistemic concepts are pervasive in security;
they should be made manifest.
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Dreams

@ Epistemic logic and information theory should
fuse to give a new quantitative theory of
information flow.

@ Process algebra should be enriched to allow
more subtle interactions (e.g. games) between
agents.
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