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Chapter 1
Introduction

Fabriquées à partir du langage, les
machines sont cette fabrication en acte ;
elle sont leur propre naissance répétée en
elles-mêmes ; entre leur tubes, leurs
roues dentées, leur systèmes de métal,
l’écheveau de leurs fils, elles embôıtent le
procédé dans lequel elles sont embôıtées.

Michel Foucault, Raymond Roussel

Initially, when I have started working on my thesis, its was supposed to be centred around the
performance analysis in mobile communication networks. Accordingly, I have carried out —
using classical approaches such as simulation or combinatorial analysis — several more or less
independent studies in this area, which are presented here as Chapters 4 through 6. Two of
these (corresponding to Chapters 4 and 5) were conducted in collaboration with the UMTS Ar-
chitecture team at Alcatel CIT, whereas the third one, constituting Chapter 6 of this thesis and
generalising some previous studies by Dornstetter, Krob, Thibon, and Vassilieva was conducted
at the Laboratory for Computer Science of the École Polytechnique (LIX).

While working on these studies we have realised that they represent different levels of ab-
straction for the Quality of Service analysis of UMTS, each level relying with a different degree
of explicitness on the lower one(s). This observation illustrated rather well one of the character-
istics of Complex Industrial Systems — the subject of the project started in autumn 2004 —,
namely the fact that they are decomposed recursively into a hierarchical structure of subsys-
tems. We have decided, therefore, to use these three studies to illustrate the notion of system
that we introduced for the latter project. This was, moreover, motivated by the fact that the
definition of the system is partially inspired by our work on mobile communications: some
examples such as sampler and modulator come directly from digital signal processing, and the
idea of working with streams of data at different time scales (frequencies) is very well illustrated
by a typical coding chain.

Altogether, there is a kind of “retroaction loop” between the notion of systems, which was
influenced considerably by these telecommunications studies, and the presentation of the latter,
which we adapt to better illustrate the systemic approach. Moreover, in Chapter 4, for example,
the systemic treatment of power control allows us to better underline the similarities between
double loop algorithms, and the couple outer/inner loop power control.
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Chapter 1. Introduction

As a consequence of the above decision, the present thesis comprises essentially two more or
less self-contained, although not independent, parts: first we present the systems as defined in
the framework of the Complex Industrial Systems project, and then we illustrate some aspects
of these with the three studies mentioned above.

We have abstained, therefore, from the traditional in such cases presentation, where the
manuscript would be split into Part 1 and Part 2 correspondingly, in favour of a sequential
presentation in order to better reflect the idea of descending through different levels of hierar-
chical decomposition of a given system. We start from the global definition of a system, then
we present a particular one — the UMTS —, and descend subsequently to the bit level analysis
through a subsystem level (power control) and frame level (hybrid ARQ).

1.1 Complex industrial systems

In the modern world, complex industrial systems are just everywhere even if they are so fa-
miliar to us that we usually forget their underlying technological complexity. Transportation
systems (such as aeroplanes, cars or trains), industrial equipment (such as micro-electronic or
communication systems) and information systems (such as commercial, production, financial or
logistics systems) are good examples of complex industrial systems that we are using or dealing
with in the everyday life.

“Complex” refers here of course first to the fact that the design and the engineering of these
industrial systems are incredibly complex technical and managerial operations. Thousands of
specialised engineers, dozens of different scientific domains and hundreds of millions of euro
can indeed be involved in the construction of such systems. For instance, in the automobile
industry, a new car project typically lasts 4 years, requires a total working effort of more than
1 500 man-years, involves around 50 different technical fields and costs from 800 up to 1 500
millions of euro! In the context of software systems, important projects have also the same
kind of complexity. Recently, unification of the information systems during a merger of two
important French financial companies, has required 6 months of preliminary studies followed
by 2 years of work for a team of 1 000 computer engineers, in order to integrate more than 250
different business applications, leading to a total cost of around 500 million euro.

As one may imagine, such projects are extremely difficult to manage due to the fact that
the underlying systems are much too complex to be totally understood in their whole by a
single person. It is in this context that we speak of complex industrial systems. Although,
at this point, this notion is clearly not very well defined and rather subjective, it corresponds,
nevertheless, to a strong industrial reality.

Complex industrial systems are, indeed, characterised both by the intrinsic difficulty of their
design and by the large number of subsystems and technologies they involve, in such a way that
the global resulting system can not be anymore apprehended in all its details by one human
being. One should not in particular mix up complex systems with complicated systems, the
latter referring to industrial systems that are difficult to design and to construct, but that can
still be completely technically understood by some brilliant engineer.

To face this complexity, engineers developed a number of methodological tools, popularised
in the industry under the name of system engineering (see [68, 69] for general systems or [83, 86]
for software systems) that fundamentally rely on one of the oldest and most popular paradigms
in human history, divide and conquer, which translates here into the assertion that complex
industrial systems can always be recursively decomposed in a series of coupled subsystems,

2



1.1. Complex industrial systems

up to arriving to totally elementary systems that can be completely handled. 1 In such a
framework, system engineering provides the techniques for assisting all stages of the analysis
and development process: architecture design, progressive integration, and final validation and
qualification that altogether determine the realisation of an industrial complex system.

Despite this strong methodological environment, there is still a huge lack of theoretical tools
that may help engineers to face such complexity in practice. In particular, one does not find
a lot of research works that study “heterogeneous” systems (i.e. complex industrial systems
that result from the integration of several “homogeneous” subsystems) directly in their whole,
though a rather important research effort has been made during the last decade to better
understand several important families of homogeneous systems (such as embedded systems,
software systems, etc.) that appear as typical subsystems involved within larger industrial
systems.

Also, due to the fact that main categories of homogeneous industrial systems can be handled
by a large variety of models and tools, there are so far neither unified models, nor unified tools
that can be used to deal with complex industrial systems in all their generality. In the same
way, there are no unified tools or methods for managing all the aspects of the implementation
cycle of an industrial complex system (that is to say, the cycle of development of a system going
from the analysis of needs and the specification phase up to the final IVVQ 2 processes).

The first stage of our project is, therefore, to reconnect all these (more or less disconnected)
streams by going back to the very fundamentals, that is to say by looking for a unified definition
of an industrial system from which all these different models could be deduced. Observe that
such an approach is clearly in rupture with the usual one, which is rather oriented on local
fixing of connection problems existing between the different tools that are used for designing
and managing an industrial system (by transforming them into interface design questions). We
think, however, that the key problem is much deeper and comes directly from the fact that there
does not really exist any mathematically consistent global point of view on industrial systems
(even if some interesting approaches are to be noticed — see for example [19, 85, 102]).

1.1.1 Complex industrial systems in practice

As already mentioned above, complex industrial systems are characterised by the fact that they
integrate a big number of heterogeneous components. One can in particular distinguish three
main categories of such homogeneous (sub-)systems that are listed below.

1. Physical systems: these types of systems are transforming physical parameters. The cor-
responding formal models are based on continuous (transfer) functions that are modelling
the behaviour of such systems by means of partial derivative equations. The physical
hearts of transportation systems, micro-electronics systems, telecommunication systems,
etc. are for instance typical physical systems.

2. Software systems: these systems are characterised by the fact that they are only trans-
forming and managing data. The associated formal frameworks are therefore based on
discrete functions dealing with discrete inputs and outputs. Databases, Web oriented ap-
plications, Enterprise Resource Planning software (ERP), billing systems, etc. are again
typical examples of software systems.

1 This property can be used to construct a formal recursive definition of complex industrial systems.
2 Integration, Verification, Validation and Qualification.

3



Chapter 1. Introduction

3. Human systems : human organisations can also be seen as systems as soon as their
internal processes have reached a certain degree of normalisation. A typical example of
such a system is the so-called workflow management, i.e. the process of managing different
tasks performed by human employees as part of the operation of a given enterprise. These
processes can indeed be seen as transfer functions that characterise this new type of
systems. We cannot, in particular, avoid taking in consideration this non-technical type of
system in the modelling of a global system as soon as the underlying human organisations
are strongly interacting with its physical and/or software components.

It is important to mention here that such a system does not represent any society as
a whole, but rather a human team working in a framework of a particular industrial
project. In such an organisation every single person would have a precisely defined role
and a number of functions corresponding to this role, allowing to define eventually the
global transfer function describing the whole organisation. However, these personal roles
and functions would typically involve some kind of decision making and, therefore, imply
a certain degree of randomness. Thus, a theoretical model capable of describing human
systems should also allow random operation. For this reason, in this thesis, we do not
consider this last type of systems, and only cite them here as their modelling constitutes
a possible future research direction.

Observe that the main categories of inter-system couplings — that correspond to the possible
interactions between different types of homogeneous systems — are immediately emerging from
this last typology. On one side, one can indeed study the systems resulting from the coupling
between physical and software systems, which are also called hybrid systems in the literature
(see, for example, [9, 43, 53, 73, 101] for different point of views on such systems). On the
other side, there is the problematic of human-system interfaces 3 that recovers the coupling of
technical — that is to say physical or software — systems with human systems in the very
specific meaning we adopt for this terminology.

1.1.2 Systems: a first formal definition

In a very fundamental way, a system can be seen as a transfer function F which is transform-
ing — at each moment t of time — a vector x ∈ I of input parameters into a vector y ∈ O of
output parameters. In this framework, all the entries of x (resp. of y) belong to a topological
space, denoted here by I (resp. by O), which is called the input (resp. output) space of the
system. In other words, the behaviour of a system is depicted by a classical transfer function
model of the type:

y = F(x; t) . (1.1)

Of course, only the simplest memoryless systems can be described by an equation of this type.
To include more complicated systems in this formalism, it has to be extended in the following
way. First of all, a state variable has to be introduced. Let us reproduce here two examples
from Severance [85] that illustrate rather well this situation.

Example 1.1 (Simple electrical circuit)
Consider the electrical resistive network shown in Figure 1.1, where the system is driven by

3 Which is not connected with the classical human-machine interface (HMI) research trend, due to the fact
that we are not interested here in the interaction of one person with a single machine, but clearly in the coupling
of a whole organisation — analysed as a input/output system — with a physical and/or a software system
considered also as a whole.
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1.1. Complex industrial systems

c cv
S

v
R

R1

R2
-v

S v
R

=
R2

R1 + R2
v

S
-vR

(a) (b)

Figure 1.1: Electrical network (a) and its systemic representation (b).

an external voltage source v
S
(t). The output is taken as the voltage v

R
(t) across the second

resistor R2.

From the basic laws of electronics, it is clear that at any time t we have

v
R

(t) =
R2

R1 + R2
v

S
(t) . (1.2)

Thus the output of the system only depends on its current input, and therefore it can be fully
described as in (1.1), without using any additional state variable. Moreover, one can observe
also that this system is stationary (i.e. its action is independent of time t), which allows us, in
particular, to drop the time parameter in Figure 1.1, and eventually in equation (1.2).

c cv
S
(t) v

C
(t)R

C
-v

S
(t)

RC v̇
C

+ v
C

= v
S

-v
C

(t)

(a) (b)

Figure 1.2: Electrical RC network (a) and its systemic representation (b).

Example 1.2 (Simple resistor-capacitor network)
Consider now the resistor-capacitor network shown in Figure 1.2. Since the capacitor is an
energy storage element, this system is no longer stationary, and its output (the voltage across
the capacitor) is described in terms of differential equations:

RC v̇
C

+ v
C

= v
S

.

This equation contains v
C

, which also implies that the system’s operation depends on its own
output, which is only possible in two situations: either the output is available to the system
before it is produced, 4 or it has to be reintroduced as part of the system’s input. We shall
discuss the latter phenomenon further below, whereas the former consists simply in using a

4 One can be easily convinced that there is no causality conflict in this particular example. More generally,
the problem of causality is discussed in Section 2.2.1.
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System
Outputs

System
Inputs

Transfer
Function

Possible Retroaction

x1

x2
...

xn

y1

y2
...

ym

Figure 1.3: Functional representation of a system

state variable q(t) to redefine the system in functional terms by setting

{
q̇(t) = 1

RC

(
v

S
(t)− q(t)

)

v
C

(t) = q(t) .

Observe that, rather than (1.1), the system of the last above example is more properly
described by a functional relation of the form

(y; q) = F(x; q, t) , (1.3)

where q is the state variable, and, moreover, all three variables x, y, and q are considered to be
functions of time t.

From the syntactic point of view, this situation is a special case of the retroaction or feedback
phenomenon that we have also mentioned in Example 1.2. Indeed, when some output parame-
ters can retroact on the inputs of a system (see Figure 1.3), the corresponding functional relation
is defined by an equation of the following form, which can eventually be abbreviated to (1.3),





(y1, y2, . . . , ym) = F(x1, x2, . . . , xn; t)
xi1 = yj1

...
xik = yjk

,

(1.4)

where the last k equations define the feedback couplings.

From the semantic point of view, however, it is preferable to distinguish state variables
from the input and output ones as we do it in equation (1.3). The reason for this is that state
variables, as opposed to the input ones, should be perceived as internal to the system, and thus
not subject to external influences. This becomes even clearer when one considers a system as
a black box transforming the given inputs into corresponding outputs. Indeed, from this point
of view the notion of state variable does not have any meaning, and the output of the system
corresponds to a fixed point of the operator F in (1.4). 5

1.1.3 Industrial systems: an architectural approach

Industrial systems are now characterised by the fact that they result from an integration pro-
cess. These systems are, indeed, systems of systems that can be recursively decomposed into
subsystems, up to arriving to elementary components that are simple enough to be handled

5 This is only applicable when such a fixed point exists, which is, of course, the case of all realistic systems
(as opposed, for example, to the system defined by the equation x = x + 1).
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1.1. Complex industrial systems

entirely. This decomposition — also called system’s architecture — is, of course, not à pri-
ori determined by the system (i.e. the system’s required functionality) and, moreover, in most
cases it is not unique. Designing a good architecture for a given system constitutes one of
the most important tasks in system engineering and can considerably influence the the rest of
the development and analysis process. Figure 1.4 illustrates this situation on the example of
the aeroplane transportation system considered at the global world level: this system can be,
indeed, analysed as the interaction between several very different types of systems (i.e. physical
systems such as aeroplanes, information systems such as reservation systems, software prevalent
systems such as air traffic management systems, human systems such as airport organisations,
etc.).

Aeroplane Transportation
System

Aeroplane
Detection and

Following
Subsystem

Aeroplane
Systems

Aeroport
Logical

Systems

Air Traffic
Management

System

Reservation
Systems

Freight
Management

Systems

Aeroplane
Route

Management
Subsystem

Guiding and
Avoiding

Subsystem

A.T.M.
Telecommunication

Subsystem

Figure 1.4: A hierarchy of complex systems.

This recursive representation of an industrial system is, of course, absolutely not indepen-
dent of the process that leads to its construction. Recursively decomposing a system into its
main subsystems allows to separate the different realisation tasks in a natural way, resulting
therefore in a relatively rational industrial organisation for developing such industrial systems,
Incidentally, this approach can influence the very understanding of the global behaviour of the
resulting system.

In particular, the famous “V cycle” that corresponds to the development process used in
practice for developing industrial systems can be seen as a direct consequence of the recursive
modelling of a system that we introduced above. This “V cycle” can, indeed, be decomposed
into three major steps that are all connected with this recursive approach as presented below.

1. Step 1: Engineering. This first development period is devoted to the specification of the
system, that is to say to the construction of its recursive decomposition. This phase is
then followed by the technical design of the system that can be analysed as an exploration
from top to bottom of the associated recursive tree (i.e. from the root which represents the
system in its whole, up to the leafs which correspond to the elementary components in-
volved in the particular system) in order to technically design all the resulting components
of a given system.

2. Step 2: Realisation of the elementary subsystems. When the engineering of a system is fin-
ished, one can begin to practically realise its different elementary parts (which correspond
to the leafs of the tree associated with the system).
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3. Step 3: Integration. The final step of the realisation of an industrial system is the integra-
tion step. It corresponds to a progressive assembling of the different pieces that form such
an industrial system, followed by a recursive validation of the different resulting systems.
Note that this integration process can also be analysed as an exploration from bottom to
top of the associated recursive tree.

This typical “V development cycle” is illustrated in Figure 1.5.

System
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System
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     Operationnal
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Analysis
     of needs

Components
Development

System
  Construction

  System
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General Management

Technical Management
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Figure 1.5: The development cycle of a system.

1.1.4 Complex industrial systems: a tentative definition

We are now in position to propose a definition for complex industrial systems, which is just
unifying the two points of view that were presented in the last two subsections. A complex
industrial system is indeed a recursively integrated system of (sub)-systems that can be modelled
by a set of transfer functions coupled together. The global resulting system is then composed
of a series of transfer functions whose inputs and outputs are mutually interconnected. Observe
that global properties of such systems are typically rather difficult to study when the underlying
subsystems are modelled by transfer functions of different mathematical nature 6 (see again
Section 1.1.1).

In this definition, we are therefore mixing both a functional and an architectural point of
view on industrial systems. This approach is also illustrated by Figure 1.6 which represents —
in a very sketchy way — the transfer function associated with a “car” system. In this example,
the behaviour of the resulting system — which is a mix between a purely physical system and an
(embedded) software system — depend therefore on these physical and software subsystems and
on an human system reduced here to a single driver, which reflects in the structure of its inputs
(that are the sum of the inputs of these last two technical systems and of the actions of the
driver). On the other hand, the outputs are here mainly of physical nature (wheel orientation,
position and speed of the car, etc.) and they induce an important retroaction on the inputs
(speed modification, attitude of the driver, etc.).

6 Such as partial derivative equations and finite automata for example.
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Speed

System inputs

Engine feedback
Wheel movement

Activation of the airbag

System outputs

Figure 1.6: Simplified functional representation of a car system.

1.2 Universal Mobile Telecommunications System

1.2.1 Evolution of mobile communications

Electromagnetic waves were shown to be capable of transmitting information in the end of 19th
century, not long after the invention in 1876 by Alexander Graham Bell (1847–1922) of wire
telephone. The first radio communication is so far disputed by an Italian inventor Guglielmo
Marconi (1874–1937) and a Russian physicist Alexander Stepanovitch Popov (1859–1906), both
having performed a successful transmission in 1895. 7 However, further developments in wired
and wireless communications did not advance at the same pace. While the total number of
messages per year only for Bell company is cited to be 5,305,900,000 already in 1908 (see [18]),
reports of a “first two way radio communication” can be found for the dates in the range between
1914 and 1929, and the first commercial mobile service (car phone) was not to be introduced
before late 1940s in the USA and early 1950s in Europe.

The equipment in this systems was heavy and bulky, and the reception quality rather poor,
especially considering the elevated price of the service. A number of technological advances
around the end of 1970s such as, in particular, the invention of microprocessors, as well as
the introduction of cellular systems allowed to render mobile communications accessible to a
considerably wider group of users. Communication systems introduced during this period are
termed 1G — for First Generation —, and they were still only capable of transmitting analog
voice information.

The emergence of Second Generation (2G) cellular systems, in the beginning of 1990s, al-
lowed to improve transmission quality, system capacity, and coverage by use of digital transmis-
sion technologies. A number of services other than speech transmission, such as short message
service, fax and data transmission and roaming have appeared.

GSM,8 the most widely spread 2G standard, was born, in 1991, as a result of a collabora-
tion between France and Germany, which was at the origin, in 1984, of a public tender for a

7 Marconi’s patent has been overturned in 1943 in favour of Nikola Tesla (a Croatian-born American, 1856–
1943), who has conducted similar experiments two years earlier, in 1893.

8 GSM initially stood for “Groupe Spécial Mobile” (french). Later it was decided to keep the acronym while
changing the name to “Global System for Mobile communications”.
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Figure 1.7: The S-curve — product cost and adoption evolution. (ARPU = Average Revenue
Per User)

common mobile communications system. The original tender was conceived in terms of analog
transmission techniques, and was subsequently modified to accommodate three proposals based
on digital signal processing.

Second generation systems, being much more robust and accessible, provoked a sharp in-
crease in popularity of wireless communications. In the end of 2005, the number of GSM
subscribers on its own has passed the cap of 1.5 milliard users,9 as opposed to some 20 million
in 1990.

Similarly to the majority of consumer-oriented businesses governed by a diffusion process,
the economic evolution of mobile communications follows, in the first approximation, the so-
called S-curve (see for example [61, 67, 87, 95]). This curve, illustrated in Figure 1.7, represents
the process of market penetration broken up in the following three phases.

Phase 1 (Innovation) At the initial stage of the product’s introduction to the market, it is
only adopted by the minority constituted by the tech-savvy users who provide the
first evaluation of the products utility. At this stage, no practical data is available
regarding the cost structure for the product, its market potential, and other sim-
ilar characteristics such as, for example, the churn rate. Customer acquisition is
primordial for the operator, as it both contributes to the product’s credibility and,
eventually, to the so-called network effect, which allows a transition to the second
phase. During the innovation period, the cost of running the service is comparatively
high, but so is the average revenue per user (ARPU), as customers are motivated by
curiosity rather than by the price of the service.

Phase 2 (Growth) Once the customer base attains the critical mass, the product is adopted by
the majority of the target population. This is normally accompanied by the reduction
of both operating costs and ARPU, the total revenue being primarily determined by
the number of customers. At this stage, more reliable statistics are available for
various market parameters, which allows to better determine the pricing policies, and
to balance the customer acquisition and retention.

9 According to Wireless Intelligence [94], GSM accounted at that point for approximately 77% of world mobile
communications market.

10



1.2. Universal Mobile Telecommunications System

Phase 3 (Maturity) Finally, at the last stage of deployment, the marketing sector is nearly
exhausted, and most of the target population has adopted the product. Customer
acquisition, therefore, is no longer a priority as only a particularly sceptical minority is
liable to adapt the product at this stage. Instead, customer retention and management
becomes a key issue. At this stage, the service infrastructure is well established and
the cost of running the service is at its lowest. On the other hand, this stage is
characterised by the mounting pressure from the competitors.

Once the product deployment has reached the last phase above, one can isolate two particular
problems:

• the saturated market provides steady cash flow for the service operator, but the equipment
suppliers experience diminishing of revenue;

• in order to retain customers the operator has to maintain high value-for-money ratio as
compared to that of the competitors, which means either lowering prices, or providing
additional services.

One of the possible solutions is to restart the S-curve cycle by introducing new products,
which might be either revolutionary or evolutionary. The former renders the previous product
obsolete, and thus opens up a new market providing an opportunity to gain part of the com-
petitors’ customer base but undermines the operator’s own customer base, whereas the latter
evolves from the previous one and thus allows the customers to pass to the newer service with
the same operator.

In the context of mobile communications, the Third Generation (3G) systems, and in par-
ticular the Universal Mobile Communications System (UMTS), are being introduced as this
innovation. The new services are primarily oriented towards multi-media communications: pri-
vate or business messaging services, video conferencing, video and audio streaming, gaming etc.;
and location-based services: enable users to find other people, resources, or services; also enable
others to find users, as well as enabling users to identify their location in the context of rescue
operations or, for example, UMTS assisted GPS (see [17] for an in-depth morphological analysis
of 3G systems).

The 3G systems are intended to develop into a single standard that would guarantee world-
wide mobility and high data rates. The initial (Release 99) maximum achievable data rate for
UMTS was 2 Mb. With the introduction of High Speed Downlink Packet Access (HSDPA) in
Release 5 this has advanced to 10.8 Mbs and still growing. . .

At present, 3G systems are in the first phase of the S-curve. According to the UMTS Forum
the worldwide total number of UMTS subscribers is 50 millions with 51% in Europe and 48%
in Asia Pacific.10 The market penetration is most important in such tech-savvy countries as
Japan and Hong-Kong, while, in Europe, 3G systems are faced with an apparent lack of a
“killer application” and with important competition from new emerging technologies such as,
for instance, Wi-Fi or WiMax. Thus the transition of UMTS into the second phase of the
adoption by mass market depends substantially on rapid development of high quality service
base.

1.2.2 UMTS infrastructure: a systemic view

As with any communication system, the purpose of UMTS is simply to serve as a relay between
its subscribers and service providers. Although this two communities often intersect as, for

10 UMTS Forum Fast Facts data at 09 February 2006.
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Figure 1.8: UMTS as a relay between subscribers and service providers.

example, in the case of the most fondamental speech service, the global situation can be very
well illustrated as in Figure 1.8, i.e. UMTS as a system receives on input a set of demands
for services from user community, transmits these to the domain of service providers, and then
relays back the corresponding information.

At the first sight, this does not constitute a problem from the systemic point of view, as one
can easily imagine a system that listens conitnuously on its incoming channels, and, whenever
there is a service request from a user, transmits necessary information over its output channel,
while again continuously listening on its second input channel for service providers’ responses.
We obtain, in this manner, a perfectly normal physical system as described in Section 1.1.1.

The problems start to appear when one examines the next level of decomposition of the
UMTS infrastructure. Indeed, on this next level, UMTS can be divided in three domains
communicating with each other:

1. Core network: comprises the network part inherited from second generation systems that
connects the UMTS network to the existing ones such as the Internet and the Public
Switched Telefone Network (PSTN);

2. UMTS Terrestrial Radio Access Network (UTRAN): contains the two new network el-
ements introduced in UMTS, i.e. Radio Network Controller (RNC) and Node B, and
provides a point of access to Core Network and consequently all the services over the
radio channel;

3. User Equipment (UE): includes all the devices on the user side of the communication such
as mobile phones, PC cards, credit card readers for rural areas without landline access,
etc.

Indeed, in the diagram of Figure 1.8, does the UE, for example, belong to the UMTS or
rather to the users community? On one hand, the specifications of the UE depend tightly on
those of UMTS, and it is quite impossible to imagine the latter without the UE. On the other
hand, if we consider user equipement to be a subsystem of UMTS, then it becomes difficult
to establish a relation between different users and their respective equipment. Moreover, this
would imply that the system modelling the UMTS has to change every time a mobile is switched
on or off, or, even worse, moves from one cell to another!

The discussion above suggests that UMTS is probably better represented by a network of
systems rather than by a single system that comprises the whole infrastructure (see Figure 1.9).
In other words, one would consider UMTS as a graph, where each node (UE, Node B, etc.)
is a system — both in generic and our particular meaning of the word — participating in the
communication, and the edges correspond to available links.
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Figure 1.9: Network representation of UMTS.

Although, as we shall see in Chapter 3, we can still model this kind of systems (networks)
of systems in our framework, it is clearly not very well adapted to this context. This allows us
to give a sketch of definition for the target range of application of our model. Our framework is
designed to model complex industrial systems with finite description, as opposed, for instance,
to networks, where the full description of a system can potentially grow to infinity as new
elements are added all along the system’s life-time.

Nevertheless, the UMTS infrastructure allows us to develop a number of interesting examples
for our model (see, for instance, Chapter 4), due exactly to the fact that it represents not a
single system, but a collection of intercommunicating ones.

1.3 Structure of the thesis

As it has been mentioned above, this thesis is a product of the research performed as a part of
the project that aims to define and develop the emerging field of complex industrial systems.
Our goal, therefore, was first of all to propose an initial formal definition of such a system, and
also to illustrate the context and the methodology that we would like this definition to reflect.

Consequently, the very structure of this thesis reflects the “V development cycle” that we
have described above, and, more precisely, its descending branch, which consists of system
specification (hierarchical decomposition) and analysis.

We start, in Chapter 2, by introducing a formal definition integrating at the same time
the principle of recursive decomposition of a system and its functional (input/output) aspect.
Also, in the same chapter, we provide some basic examples, which allow us to illustrate a large
spectrum of systems that can eventually be modelled with the definition we introduced.

In the following chapters, we illustrate our approach on a case study of Universal Mobile
Telecommunications System (UMTS). Clearly, a complete decomposition of UMTS is way out
of scope of this thesis — in particular, due to the inherent complex nature of any system that
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could serve as an example in our case! 11 We proceed, therefore, using a sort of a “zoom-in”
approach. We begin, in Chapter 3, by presenting a global overview of the UMTS infrastructure,
providing also several high-level decompositions in major elements and domains of the network
(e.g. UTRAN, Node B, etc.). In the subsequent chapters, we continue by selecting, for each
chapter, a subsystem of lower level than that analysed in the previous one. Each time, we
consider a particular problem characteristic of that level, and we show how this problem can be
solved using the appropriate methods.

In Chapter 4, we select a number of subsystems, which have appeared in the high-level
decomposition, to re-assemble them into a “virtual” subsystem representing one particular
functionality of UMTS — the power control. More precisely, we discuss several algorithms
for Uplink Outer Loop Power Control (UL OLPC), and we show how these algorithms can be
parametrised in order to obtain the optimal performance.

We proceed then to the next — frame or block — level, by devoting Chapter 5 to a study
of High Speed Downlink Packet Access (HSDPA) — a service that constitutes one of the latest
additions to UMTS. We consider on this occasion one particular technique — Hybrid Automatic
Repeat Request (H-ARQ) — utilised in HSDPA to improve the performance of decoding at the
receiver by adapting the information transmitted. We present the optimal scheme to control
the way this transmitted information is adapted. Contrary to Chapter 4, where the analysis is
performed by means of stochastic methods, in Chapter 5, we obtain our results by simulation,
thus illustrating the two approaches dominant in the industrial analysis of complex systems.

We conclude our descent through the levels of decomposition of the UMTS infrastructure
by considering, in Chapter 6, a transmission of a single bit over a radio channel with spatial
diversity, that is in presence of multiple paths (or trajectories) between the transmitting and
receiving antennae. More precisely, we consider the probability that on reception this bit is
not correctly demodulated, i.e. the Bit Error Rate (BER), which is a very important statistic
in a telecommunications network. This time, we apply combinatorial methods to analyse the
probability in question, which allows us to conclude on a major note by showing how an originally
technical problem can give rise to interesting mathematical models.

11 Here, we allow ourselves a luxury of a self-quote, by reminding that complex industrial systems that we are
considering are, in particular, characterised by the fact that they “are much too complex to be totally understood
in their whole by a single person”.
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Chapter 2
Global Approach: Functional Modelling of

Complex Industrial Systems

I don’t own a watch or clock. I think of
time in other totalities now. I think of
my personal time-span set against the
vast numerations, the time of the earth,
the stars, the incoherent light-years, the
age of the universe, etc.

Don DeLillo, Cosmopolis
(The Confessions of Benno Levin)

As we have already mentioned it in the previous chapter, a full panoply of technologies is used
at present to model industrial systems. A direct consequence of this diversity of technologies
is the equivalent diversity of tools implementing them. A majority of these tools are developed
to perform some particular task, such as architectural design and analysis, verification or sim-
ulation, and therefore the underlying models are often incompatible. Thus designing a given
system from scratch becomes extremely effort-consuming, as the results of the analysis by one
of the available tools have to be converted manually to fit the requirements of another one,
which is to be used at the next stage of the design process.

This diversity is not so much a result of the fundamental differences between the problems
to be solved (systems to be modelled), but is rather a consequence of political decisions, and —
what is even more important — the circumstances conditioning the evolution of the technolo-
gies in question. Indeed, most advanced contemporary modelling tools come as a result of a
convergence process between different basic ones that were developed for some very specific
purpose, such for example as designing electrical circuits, stress analysis or that of the hydro-
or aerodynamic properties of an object. The most striking examples are probably coming from
the systems involving some kind of control, where software subsystems have to be integrated
with mechanical ones.

The question arises naturally: is it possible to unify these technologies by developing a
common model? Considering the above argument, a model aspiring to realise such unification
has to be defined on a very low level. Indeed, it suffices to consider, for example, hybrid systems,
which constitute a subject of a relatively young and ever growing in popularity research field,
to realise that the intrinsic heterogeneity of such systems is due essentially to the fondamental
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difference between the underlying visions of time: continuous time governing some physical
process’ evolution, and discrete operation of the controlling — usually software — one.

In this chapter, we propose a formal definition of a system which intends to capture both
continuous and discrete systems — the two major types of technical subsystems that compose
a given industrial system (see Section 2.2). 1 The key point, on which our approach relies, is a
common (discrete) model of time, based on the use of a non-standard model of real numbers (see
Section 2.1). Making this (very strong) change allows, indeed, to take in account in the same
way both conservative physical systems and computer systems (see again Section 2.2 for several
examples). Moreover, our systemic models are always causal (see Section 2.2.1): non-causality
appears indeed in our approach as the consequence either of abstraction (i.e. simplifying our
model) or standardisation (i.e. going back to the usual model of time). Another advantage of
our approach is that it integrates a number of already classical system types, as for example
synchronous, Hamiltonian or dynamical systems (see Section 2.3 for some insights on these
questions).

2.1 Time

In order to model all industrial systems in a unified way, the first key problem — as already
mentioned above — is to develop a common functional 2 framework that takes into account both
continuous and discrete systems, that is to say, systems whose time evolution is represented
either continuously or discretely (typically physical and computer systems). At this point, two
directions can be chosen to construct an unified theory, depending on whether one prefers to
develop a continuous or a discrete point of view on time. In this thesis, we develop the discrete
approach in order to keep the usual intuitions originating from computer systems. The price
to pay is then the change of model of real numbers, on which relies the concept of time. This
allows to capture continuous systems in the same global framework as the discrete ones. Note,
however, that one could also do the opposite by always dealing with the usual continuous model
of time. This approach would lead to developing a distribution point of view (see [84]) on
computer systems, typically using Dirac combs to model discrete entries of a given software
system.

2.1.1 Non-standard analysis vs. the classical one

To develop a global (discrete) unified framework for dealing both with continuous and discrete
industrial systems, we go back to the 18th century representation of real numbers (see [28, 56,
55]).

Indeed, in the 17th and 18th centuries the common idea of real numbers was different from
the modern one. The reasoning of the Differential Calculus was carried out with the help of the
quantities called “infinitesimals”. For instance, to compute the derivative of a given function
f(x), one would consider the increment of this function given an infinitesimal increment dx to
x. Thus the derivative f ′(x) was defined by setting

f ′(x) =
f(x + dx)− f(x)

dx
.

1 In particular, we do not try to integrate human systems — such as company organisations — in our modelling
even if such systems are also fundamental for some type of applications (typically information systems).

2 Here, “functional” refers to the fact that systems will only be considered here as input/output functions.
We do not model the architecture, on which relies a system.
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Figure 2.1: Graphical representation of non-standard real numbers.

For example, applying this reasoning to f(x) = x2, one obtains the following computation

f ′(x) =
(x + dx)2 − x2

dx
=

2x dx + dx2

dx
= 2x + dx ≈ 2x ,

where the last relation signifies that, dx being infinitesimal, it vanishes in the final expression.

Although the notion of infinitesimals is extensively discussed in the article “différentiel” of
the encyclopedia edited by Diderot, d’Alembert, and Le Rond [28], its status was clearly not
very solid due to the absence of a strict mathematical formalism to support it. This led in the
beginning of 19th century, to the development by Cauchy (1812) and Weierstrass (1820) of the
modern analysis, based on the epsilon-delta reasoning.

In the beginning of 1960s Robinson has developed a constructive theory that he called Non-
standard Analysis “since it involves and was, in part, inspired by the so-called Non-standard
models of Arithmetic” (see [81]). This theory constructs a set ∗R of non-standard reals, 3 which
is a real-closed field that contains all usual real numbers, but also the infinitesimal reals (i.e.
the non-zero non-standard real numbers that have their absolute value strictly less than any
r ∈ R+

∗ ) — we denote the set of infinitesimal reals by I — and their inverses, which are the
infinitely great reals, i.e. those with an absolute value strictly greater than any usual real number
r ∈ R (see Figure 2.1).

In particular, two non-standard real numbers x and y are said to be infinitely close (denoted
by x ≈ y) if and only if x− y is infinitesimal.

The field ∗R is elementarily equivalent to R, which means that the first order logical proper-
ties of R and ∗R (expressed in the logical theory of ordered fields) are exactly the same (see [13]
and [48] for more model theoretical fundamentals of non-standard analysis). Observe also that,
among all non-standard real numbers, one can of course consider the set ∗Z of non-standard
integers that, on top of standard integers, contains infinitely great ones, having absolute value
greater than any n ∈ N.

Contrary to the usual analysis, the Non-standard Analysis developed by Robinson is based
on a weak form of the Axiom of Choice (see Appendix A). 4 This introduces a problem of philo-
sophical order concerning the constructibility of non-standard real numbers and, consequently,
the possibility of numerical calculation.

However, the elementary equivalence between R and ∗R guarantees that most of the usual

3 A star on the left of a symbol as in ∗R stands always for “non-standard”, whereas on the right, it means
either that zero is not included, as in R

∗ or ∗R
∗ (which denote respectively the usual and the non-standard sets

of non-zero real numbers) or that we speak of the set of words over a given alphabet, as in A∗ (which one of the
latter two notations is used shall be clear from the context).

4 Regarding the usual analysis, Dedekind has shown that it is independent from the Axiom of Choice by
providing in 1872 a construction of R, which reinterprets in modern mathematical language the Book V of
Euclid’s Elements. This construction does not make use of any form of Axiom of Choice, and is based on what
is now called Dedekind cuts.
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algorithms can also be applied to non-standard numbers. 5 On the other hand, we do not see
any specific obstacle to developing a non-standard formal calculus. Thus, one can argue that,
while a model based on non-standard analysis is not (or, at least, not directly) applicable to
simulating systems, it can very well be in the foundation of a modelling and verification tool.
Moreover, one can easily imagine that, once a model of a given system is complete, it should be
possible to determine the “practical infinity”, i.e. a sufficiently great usual real number R ∈ R

such that ε = 1/R can be considered infinitesimal for the purposes of simulating with a given
precision this particular system.

The above arguments, together with the attractive idea of developing a unified framework
for systems operating in both discrete and continuous time (see next section), convinces us of
the viability of our non-standard approach to systems’ modelling.

A comprehensive introduction to non-standard reals can be found in the paper of Lindstrøm
in [65], whereas an axiomatic approach is developed in [29]. We also provide a basic synthesis
of this theory in in Appendix A).

2.1.2 Time scales

From now on, we will suppose that the time is modelled by ∗R throughout all this chapter. Let
us therefore give the following first fundamental definition.

Definition 2.1 Let τ ∈ ∗R+
∗ be a strictly positive non-standard real number. The set Tτ = ∗Z τ

will then be called the time scale of step τ > 0. Any element t ∈ Tτ is said to be a moment on
this time scale.

A time scale can therefore be seen as a discrete 6 series of clock ticks occurring at times n · τ ,
with n ∈ ∗Z being a non-standard integer eventually infinitely great.

p p p p p p−Nτ −2τ −τ 0 τ 2τ Nτ =∞

Note 2.2 It is important to notice here that not only does ∗Z contain infinitely great integer
numbers, but it contains, indeed, an infinite number of different infinitely great integers! More-
over, the cardinality of this set is continuum, which is exactly the property which allows us to
use ∗Z to model R.

The following lemma, which is a direct consequence of Corollary A.27 in Appendix A, shows
that we can recover usual continuous time within this model by considering time scales with
infinitesimal steps (i.e. with τ ≈ 0).

Lemma 2.3 Let Tτ be a time scale with an infinitesimal step τ and let r ∈ R be any standard
real number. Then there always exists a moment t ∈ Tτ which is infinitely close to r.

More generally, we can classify all possible time scales Tτ in three following groups according
to the nature of their corresponding step τ :

• continuous time scales have an infinitesimal time step, that is τ ≈ 0,

5 One of the typical examples of such algorithms is the Euclidean algorithm for computing the greatest common
divisor of two [non-standard] integers.

6 Here the word discrete primarily implies that for each moment on a time scale the next moment is uniquely
defined (this is not true, however, for the previous one).
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• discrete time scales have a time step that is a non-infinitesimal bounded non-standard real
number, i.e. τ ≈ r for some strictly positive usual real number r ∈ R+

∗ ,

• infinite time scales have an infinitely great non-standard real number as a time step.

Note that the latter case is not of practical interest as there are essentially only three “standard”
moments on an infinite time scale, that is to say−∞, 0, and +∞. Therefore we will only consider
the time scales of the first two types.

Let us finally give the following three definitions that we will use in our model of complex
industrial systems.

Definition 2.4 A time scale Tτ is said to refine another time scale Tτ ′ — which is denoted by
Tτ ′ � Tτ – if and only if one of the two following equivalent properties holds:

• Tτ ′ ⊂ Tτ

• ∃ N ∈ ∗N, τ ′ = Nτ

Definition 2.5 Given two time scales Tτ and Tτ ′ , we shall call synchronisation points all the
moments that belong to both of these time scales, i.e. to Tτ ∩ Tτ ′ .

Observe that, if Tτ refines Tτ ′ , any moment on Tτ ′ is a synchronisation point.

Definition 2.6 A temporal filter is a set of time scales F = {Tτ}τ∈T such that � is a total
order on F . In other words, Tτ and Tτ ′ are always comparable by � for any τ, τ ′ ∈ T .

2.2 Systems

2.2.1 Definition

In this section, we give a formal definition of the notion of system which tries to capture the
reality of industrial complex systems. Most systems — be that industrial scale technological
systems or networks of information processing machines (and probably also certain biological
systems) — are too complex to be modelled or analysed as a whole, but can be treated as the
result of the integration of several components. These components tend to be simpler systems
that can in their turn be decomposed in the same way. We arrive eventually at the level where all
such components are elementary systems, i.e. sufficiently simple to be considered independently
of their structure. The following key definition is an attempt to provide a theoretical model for
this as yet intuitive and informal process (on which however relies system engineering in the
industry).

Definition 2.7 A system S is recursively defined as the union of the following elements:

• an input/output mechanism that consists respectively of:

– an input channel x capable of receiving — only at moments that belong to a given
time scale Tτi

called the input time scale — data that belong to a given set I, called
the input domain of S (and also denoted by In(S)),

– an output channel y capable of emitting — only at moments that belong to a given
time scale Tτo called the output time scale — data that belong to a given set O, called
the output domain of S (and also denoted by Out(S)),
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• two internal storage mechanisms that consist respectively of:

– an internal memory given by a tape indexed by ∗N — with a window that can take any
value within ∗N — which may contain any (non-standard) finite number 7 of values
in a given set M (also denoted by Mem(S)), called the memory domain,

– an internal state set which is just an arbitrary (non-standard) finite set Q (that is
also denoted by State(S)),

• an internal time behaviour which is given by

– an internal time scale Tτs that refines both the input and the output time scales, i.e.
which satisfies both Tτs � Tτi

and Tτs � Tτo,

– an internal state evolution function q(t) mapping each element t ∈ Tτs onto some
element q(t) ∈ Q (called the value of the internal state at moment t),

– an internal memory evolution function m(t) mapping each element t ∈ Tτs onto some
element m(t) ∈M f (called the value of the internal memory at moment t), 8

• three transition mechanisms that consist respectively in:

– a function read : Q× I → Q×M f that can read a given value on the input channel
and write correspondingly a series of values — depending on the status of a state
q ∈ Q (updated after the operation) — onto the internal memory,

– a controller function δ : Q×M × ∗N → Q×M × ∗N that allows — as we will see —
to replace an element of the internal memory by another one, 9

– a function write : Q ×M f → Q × O that can read a set of values on the internal
memory and write another value — that may depend on the status of a state q ∈ Q
(updated after the operation) — onto the output channel,

• a finite (in the usual standard meaning) set of systems Sub(S) = {S1, . . . , Sn}, which are
called the subsystems of S that are equipped with:

– for each k = 1, . . . , n, a function ρk : Q×Out(Sk)→ Q×M f that reads the output
of Sk, writes it into the internal memory and eventually changes the internal state,

– for each k = 1, . . . , n, a function Gk : Q ×M f ×⊗n
i=1 Out(Si) → Q × In(Sk) that

defines the interactions between the subsystems,

and, moreover, such that the output and input time scales of all these subsystems are
always refined by the internal time scale of S 10.

This definition allows us to construct a symbolic model of a given system’s architecture
(which is, of course, conditioned by a number of choices, such as, for instance, the decomposition
into subsystems — see in particular Definition 2.17 below and the discussion preceding it), but
does not so far allow to consider the time behaviour of this system, i.e. the evolution of its state.

7 Note that “finite” should be taken in the non-standard meaning. We recall that, in this context, a set is said
to be finite if and only if it can be put in bijection with a set of the type [0, N ] where N stands for any (either
usual or infinitely great) non-standard positive integer in ∗N.

8 We denote here by Mf the set consisting of all non-standard finite (in the non-standard meaning) sequences
over a set M (i.e. partial functions ∗N → M with non-standard finite support).

9 Depending on the value of a given state of Q which can be also changed by the action of δ.
10 Forming therefore altogether a temporal filter.
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To progress in this last direction, we first introduce the notion of instantaneous description of
a system.

Definition 2.8 Let S be a system. An instantaneous description of S is then any quadruple of
the type d = (t, q,m, i) ∈ Tτs ×Q×M f × ∗N, where

• t ∈ Tτs is a moment of the internal time scale Tτs of S,

• q ∈ Q is the value q(t) of the internal state evolution function of S at moment t,

• m ∈M f is the value m(t) of the internal memory evolution function of S at moment t,

• i ∈ ∗N is the position of the window of the internal memory of S at moment t 11.

We are now in position to define the time behaviour of a system, by considering a series
of instantaneous descriptions (completed by the time evolutions of the values of the input and
output channels that we did not integrate in these descriptions) indexed by its internal time
scale and submitted to some natural transition constraints.

Definition 2.9 Let S be a given system. A time behaviour associated with S is then a family
d(t) = (t,m(t), q(t), i(t)) of instantaneous descriptions of S, where t describes the internal time
scale Tτs of S and where one always passes from d(t) to d(t+τs) by executing one of the following
possible transition actions:

1. for any k = 1, . . . , n and at every synchronisation point t + τs between all concerned time
scales, update the input of Sk and the current internal state of S by setting

(q(t + τs), xk(t + τs)) = Gk

(
q(t); m(t); y1(t), . . . , yn(t)

)
, (2.1)

where xk denotes the input channel of the subsystem Sk and where each yi stands for the
output channel of Si correspondingly,

2. for any k = 1, . . . , n and at each synchronisation point t between the internal time scale Tτs

of S and the output time scale of Sk, read the output of Sk and update both the internal
memory of S — beginning at the current position of its associated window — and the
current value of its internal state by setting

(q(t + τs),m(t + τs)i≥i(t)) = ρk

(
q(t); yk(t)

)
, (2.2)

3. at each synchronisation point t with the input time scale, perform a read operation —
depending on the value of the internal state of the system — and update both the internal
memory of S beginning at the current position of its window and its internal state:

(q(t + τs),m(t + τs)i≥i(t)) = read
(
q(t); x(t)

)
, (2.3)

4. at each synchronisation point t with the output time scale, perform a write operation,
taking into account both the internal state of the system (that is updated after the operation)
and the values of the internal memory that begin at the current position of its window:

(q(t), y(t)) = write
(

q(t); m(t− τs)i≥i(t−τs)

)
, (2.4)

11 Whose value is given by m(t).
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5. at any other moment t on Tτs , update the internal state, the value of the current position
of the internal memory of S and the current position of its associated window:

(q(t + τs),m(t + τs)i(t), i(t + τs)) = δ
(
q(t),m(t)i(t), i(t)

)
. (2.5)

Time behaviours may however not be unique. This remark leads us to the following def-
inition of deterministic systems (observe that the systems consider in this thesis are mainly
deterministic.)

Definition 2.10 A system S is said to be deterministic if and only if S possesses exactly one
time behaviour. When this is not the case, the system is said to be non-deterministic.

The previous definitions are illustrated by the diagram in Figure 2.2. For the sake of
simplicity and clarity, we will occasionally vary this representation. In particular, we will
sometimes omit domains of variables or their names, if the omitted part is clear from the
context.

S : - -x
Tτi

I

'-read
m∈Mf

Tτs

?δ

y

Tτo

O

$
?

write

S1

S2

q∈Q
Sn

?

G1 ?6

�-
G2

-

���
Gn

��

ρn

Figure 2.2: Graphical representation of a system S.

Note 2.11 One can also consider systems with more than one tape, that is with several in-
ternal memory variables, which corresponds to saying that M is a direct product of different
independent sets. In this case, there has to be a window as above defined for each tape.

Note 2.12 The subsystem graph of S is the graph which is formed by taking Sub(S) as vertices
and with edges defined by (G i)i=1,...,n, i.e. such that there is an edge going from Si to Sj if and
only if xj depends on yi according to Equation (2.1). This graph can contain cycles and does
not necessarily have to be connected. Cycles in the subsystem graph represent feedback loops
common to a large number of industrial system, particularly where some form of control is
involved.

Note 2.13 Note that we suppose that each time scale T of an input or an output channel of a
subsystem of a given system S is always refined by the internal time scale Tτs of this system,
i.e. that one has Tτs ≺ T, especially if such a time scale is free from interactions which means
that the corresponding channel is never implied in one of the relations (2.1).

In order to reflect the level of complexity of a system, we now introduce the notion of order
of a system. A system is said to be of order N if it is constructed using only subsystems of
order N−1 and less. Systems of zeroth order are called elementary systems.
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Definition 2.14 We define the order of a system S by setting

ord(S) =





0 if Sub(S) = ∅ ,
1 + max

{
ord(S′)

∣∣∣S′ ∈ Sub(S)
}

otherwise .

We are now in position to introduce the notion of well defined system (which will in fact be
the only kind of systems that we shall consider in the sequel).

Definition 2.15 A system S is said to be well defined if there exists a positive standard integer
N ∈ N such that N = ord(S).

Note that each time behaviour of a system implicitly defines an input/output relation of the
following type (keeping the notations of the previous definitions):

y(t0 + τo) = F
(

x(u),m(t), q(t)
∣∣∣u, t ∈ [t0, t0 + τo)

)
, (2.6)

where t0 describes the output time scale Tτ0 of the system and where u, t ∈ [t0, t0 + τo) signifies
that each of these variables is taken between t0 and t0 + τo (excluding the upper limit) on
the time scales Tτi

and Tτs respectively. For more simplicity, we will rewrite equivalently the
input/output relation (2.6) in the following simplified functional form

y = F(x; q,m) . (2.7)

It is easy to see that the function F is uniquely associated with a given system S if and only if
S is a deterministic system. Observe also that F must obviously (by construction) always be a
causal function, i.e. each value y(t) depends only on the values x(t′) with t′ < t.

Note 2.16 Observe, however, that in several classical models of systems, such as dynamical
systems (see [32]) or synchronous systems (see [14]), non-causality is a real potential problem.
Such a situation is, indeed, always a direct consequence of the collapse between system feedbacks
and the hypothesis, implicit in usual continuous modelling (and corresponding to standardisa-
tion with respect to our approach), but totally explicit in synchronous modelling, that no time
is required to realise the internal operations of a given system.

One can distinguish two main and complementary approaches to system design, namely
specification and engineering. While the latter is interested in full details in the effective way a
system can be constructed, the former only deals with formal requirements on the input/output
relation of a system. In other words, the system specification approach considers a system as
a “black box” with a precise functional behaviour, but without trying to know how such a
behaviour is obtained. This approach is fundamental in the industry: a computer manufacturer
will for instance be able to provide the specification of a given wireless interface to different
suppliers that may realise different wireless computer interfaces from their structural point of
view, as soon as the input/output relations specified by the manufacturer are exactly the same.
Such situations are modelled by the following definition for equivalent systems.

Definition 2.17 Two systems S1 and S2 are said to be equivalent if and only if one has both
In(S1) = In(S2) and Out(S1) = Out(S2), and the following condition is satisfied

∀ t ∈ Tτi
, x1(t) = x2(t) ⇒ ∀ t ∈ Tτo , y1(t) = y2(t) ,

where (x1, y1) and (x2, y2) stand respectively for the input and output channels of S1 and S2.
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Note 2.18 The previous definition has mainly a meaning when S1 and S2 are deterministic.

The above definition of equivalence allows us to make one more observation. Indeed, one can
be easily convinced now that Definition 2.14 (and consequently Definition 2.15) only has sense
when certain restrictions are applied to the elements of which a system is composed. Indeed,
the following theorem implies that, when no such restrictions apply, the hierarchy defined by
the notion of order effectively collapses.

Theorem 2.19 For any given system S defined as above, there exists an equivalent zeroth order
system S′, that is having Sub(S ′) = ∅.

Proof. For a system S of first order, it is sufficient to construct a system S ′ with the same
input and output time scales as those of S, the internal time scale refining that of S and of all
its subsystems (such time scale obviously exists as Sub(S) is standard finite), and both internal
domains (memory and state) defined as direct products of those of S and its subsystems.

To prove this theorem for systems of arbitrary order, one then proceeds recursively by
integrating the elementary components into those of first order (which effectively diminishes
the order of the system and that of all its subsystems by 1).

As it has been mentioned above, this theorem shows that the notion of order does not really
have any “objective” meaning, but rather reflects the level of abstraction at which a system
is modelled. This corresponds well to the nature of the hierarchical decomposition process,
where one starts from a general specification of a system’s global behaviour, and then refines
until subsystems of a certain level of simplicity are obtained. Moreover, as we shall see in
Chapter 4, the hierarchical decomposition in subsystems of lesser order has certain advantages
for the analysis of a system, as individual subsystems can be eventually extracted from the
global context to be analysed separately.

2.2.2 Elementary systems

We will now study in more detail some important classes of elementary systems, that is of
systems of order zero. In particular, we will show that our framework already allows us to
capture several interesting classical types of systems of very different nature. Note finally that
we will concentrate in this subsection on elementary systems of the following three types (using
here a general terminology which is not specially reserved to elementary systems):

1. software systems model phenomena observed mostly in information technologies: they are
characterised by the fact that their three defining time scales are all discrete,

2. physical systems are characterised by the fact that their three defining time scales are all
continuous: they are generally used to model real-life physical systems,

3. finally, hybrid systems mix — by definition — both discrete and continuous time scales.

Elementary software systems

Elementary software systems have only discrete time scales. Their input and output spaces
will be called alphabets (a set of letters or symbols). We assume that an elementary software
system is equipped with a tape and a corresponding window that indicates the position of its
head (this definition can be generalised to take into account several tapes).
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As depicted on Figure 2.3, elementary software systems are receiving — on the input chan-
nel — data within some input alphabet I at a rate given by the input time scale Tτi

. They
are also emitting — on the output channel — data that belong to some output alphabet O at
a rate given by the output time scale Tτo . Moreover, any elementary software system has also
the right to perform — at a rate given by its internal time scale Tτs — a number of internal
actions controlled by the value of an internal state q ∈ Q, that is to say:

• read an input data x, transform it into a word (depending only on x) on the tape alphabet
and write it finally on the tape beginning at the current position of its window,

• change the value of the element of the tape that is obtained by looking on the current
position of its window (that can be updated after the operation),

• write an output data y by taking a word w on the tape beginning at the current position
of its window and transforming it (depending only on w) into y.

S : - -x
Tτi

I

'-read
m∈Mf

Tτs

δ
y

Tτo

O

$
?

write

�
�
��

@
@

@I

q ∈Q
?

6

Figure 2.3: Graphical representation of an elementary software system S.

As we can see, elementary software systems are therefore just a slight generalisation of usual
Turing machines, obtained by adding to this classical model a permanent input/output temporal
behaviour. The reader can indeed easily check that Turing machines (or equivalently recursive
functions if one prefers to stay within a functional approach) correspond to the degenerated case
of our model, where one considers elementary software systems that can only perform a unique
read action (or whose input channel will only receive a single input data during all possible
moments of time). Note also that as an immediate consequence of this simple observation, we
obtain the undecidability of the existence of a system’s output!

Example 2.20 (One element buffer)
Let us now present an example of elementary deterministic software system that we will use in
the sequel (as a subsystem of a higher order system). Our example consists of a buffer capable
of storing only — at each moment of time — one single message out of a message set A. We
assume that this buffer has two input channels. On the first input channel, the buffer can only
receive either a message m ∈ A or a distinguished empty message ε. On the second one, it
can receive either a write request, that we will denote by ’↑’, or again the distinguished empty
message ε. The buffer stores each message it receives on the first channel in a fixed memory
cell, overwritten each time a new non-empty message arrives on the same channel. When the
buffer receives a write request, it sends the currently stored message on its output channel. A
representation of such a buffer is shown in Figure 2.4.

Let us now describe how to model this simple buffering mechanism by an elementary deter-
ministic software system, denoted by Buf . The input, internal and output time scales of such
a system are all discrete with respective time steps τi = τ and τs = τo = τ/2. In other words,
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Buf : - -q q�

�
?

m

w

x y

Figure 2.4: Graphical representation of a one-element buffer.

we require the buffer to operate internally on a rate which is twice as fast as its input rate. The
input domain of Buf is clearly modelled by (A∪ {ε})×{ε, ↑} in order to take into account the
two entry channels, whereas the output domain is just equal to A ∪ {ε}. The memory domain
will be equal to A. Finally the internal state set of Buf is defined as {r, ε, ↑} (the first state
models the reading of the input channel, when the two last ones correspond to the two possible
writing decisions on the output channel). Therefore we have:

In(Buf) = (A ∪ {ε})× {ε, ↑} ,Mem(Buf) = A ,Out(Buf) = A ∪ {ε} , State(Buf) = {r, ε, ↑} ,

The control mechanisms of Buf are now given by the following transition functions:

δ = − , read(r; (x,w)) =

{
(w; x) if x 6= ε ,
(w;−) otherwise ,

write(q; y) =

{
(r; y) if q = ↑ ,
(r; ε) if q = ε ,

(2.8)

where − means not defined or no action (depending on the situation). Observe that the choice
of δ just reflects the fact that the input message is stored in a single cell of the internal memory
on which no action can be made. The unique possible time behaviour of the buffer consists
then just in alternating a read and a write action at each moment of its internal time scale.

Elementary physical systems

Before presenting the notion of elementary physical system, let us first introduce the general
framework on which relies this concept. We will, indeed, suppose that each instance p of a given
physical parameter ϕ (such as mass, distance, kinetic energy, potential energy, torsion energy,
temperature, kinetic momentum, etc.) that we will deal with, can always be both

1. measured using a measure function mϕ, which means that one can associate to each such
physical quantity p of type ϕ its measure mϕ(p) ∈ ∗R,

2. decomposed into a (non-standard) finite sum of infinitesimal quantities, i.e. a sum of phy-
sical quantities p of type ϕ that have an infinitely small measure mϕ(p) ≈ 0.

The set of all physical quantities of a given type ϕ (e.g. energy) is then called the physical
domain associated with ϕ and denoted by Pϕ. In the same way, the physical infinitesimal
domain of type ϕ (e.g. energy quanta) — which is denoted by Iϕ — consists of all infinitesimal
physical quantities of type ϕ.

Elementary physical systems can now be described exactly in the same way as elementary
software systems, i.e. by a mechanism similar to the one given by Figure 2.3, the only (but funda-
mental) difference being here that such systems manipulate physical quantities using continuous
time scales. An elementary physical system is indeed characterised by the fact that it has

1. continuous input, internal and output time scales,

26



2.2. Systems

2. input and output domains that are both equal to the same finite (in the usual meaning)
product of physical domains, i.e. both equal to ⊗ n

i=1 Pi for some finite (standard) positive
integer n ∈ N, where each Pi stands for a physical domain of a given type,

3. an internal domain which is necessarily equal to ⊗ n
i=1 Ii where each Ii stands for the

infinitesimal physical domain associated with the physical domain Pi which is involved in
either the corresponding input or output domain.

For the sake of simplicity, we can of course consider — without any extension of the representa-
tion power of our model — that an elementary physical system has a finite (in the usual sense)
number of tapes, each devoted to some particular infinitesimal physical domain.

Such elementary systems are intended to model real physical systems, considered as trans-
formers of infinitesimal physical quantities. Indeed, in our framework, the behaviour of an
elementary physical system S has to be physically interpreted as follows:

• S receives at each moment on its input time scale (hence infinitely often) a vector x that
consists of different physical quantities of given types, i.e. a vector x ∈ ⊗ n

i=1 Pi, where
each Pi stands for some physical domain; it transforms then each component xi ∈ Pi of
x into a (non-standard) finite sequence (xj

i )j=1...N — written on a specific tape of the
internal memory of S — of infinitesimal physical quantities within Ii (i.e. of the same type
as Pi) whose sum has the same measure as that of xi, i.e. such that

N∑

j=1

mi(x
j
i ) = mi(xi) , (2.9)

where mi stands for the measure function associated with the physical domain Pi,

• S can transform infinitely often, at the rate given by its internal time scale, any infinitesi-
mal physical quantity of a given type written on one of its tapes into another infinitesimal
physical quantity of another given type (that can also be stored on another tape),

• S emits at each moment on its output time scale (hence again infinitely often) a vector
y ∈ ⊗n

i=1 Pi whose components are obtained by “gluing” together sequences of infinitesimal
physical quantities (of compatible types) coming from the internal memory of S, by using
the reverse process of the initial writing mechanism as described above.

One can prove that large classical classes of physical systems — such as Hamiltonian systems
(cf. [70]) — can be recovered (as higher order systems) in our model. We will however not prove
here this last result which is quite technical, but rather illustrate on a simple example how to
analyse a classical mechanical system as an elementary deterministic physical system.

Example 2.21 (Simple pendulum)
Let us now consider a simple pendulum as shown in Figure 2.5-a. The pendulum consists of a
point mass m attached to the point (0, L) by a rigid string of negligible mass and of length L
(when hanging freely the pendulum touches the ground).
The motion of such a pendulum can be described by applying Newton’s second law of motion,
leading immediately to the following differential equation

mLϕ̇ = −mg sin θ , (2.10)

where θ and ϕ = θ̇ stand respectively for the angle formed by the string and the y axis and
for the corresponding angular speed. In its turn, Equation (2.10) is clearly equivalent to the
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Figure 2.5: Simple pendulum: mechanical (a) and systemic (b) representations.

following energy preservation equation (obtained by integrating the former and multiplying both
sides by L)

1

2
m(Lϕ)2 −mgL cos θ = C , (2.11)

where the first and the second summand in the left hand side represents respectively the kinetic
and the potential energy of the pendulum, and where C stands for the initial potential energy
of the pendulum, when it is in the point farthest from the y axis with zero angular speed.

An elementary deterministic physical system Pend modelling such a pendulum is shown in
Figure 2.5−b. This system takes no input and provides on the output channel a pair of physical
quantities that consist respectively of the pendulum’s current kinetic and potential energy. Its
internal and output time scales are supposed to be the same continuous time scale (with dt as
common infinitesimal time step). Finally, we define the output domain, the memory domain
and the internal state set of the system to be respectively equal to

Out(Pend) = EK×EP , Mem(Pend) = {0, deK}×{0, deP } , State(Pend) = {x, s}×{↑, ↓} ,

where EK and EP denote respectively the two physical domains which are associated with ki-
netic and potential energy, where deK and deP stand respectively for two infinitesimal quanta
of kinetic and potential energy — with a common measure mK(deK) = mP (deP ) = de ∈ I —
and where the x, s and the arrow states should respectively be interpreted as the two possible
internal actions of the pendulum (exchanging energy on its two tapes — see below — or sending
physical quantities to the output channel) and as the two possible directions of the pendulum’s
motion. This system has therefore two tapes K and P , each of them containing a (non-standard)
finite number of copies of the corresponding infinitesimal quantum of energy (the other parts
of the two tapes being equal to 0). Moreover the memory of our system evolves in such a way
that it always contains the same global number (necessarily infinitely great) N ∈ ∗N of energy
quanta (which satisfies the energy conservation condition N de = C). The system’s behaviour
consists then essentially in taking at each moment of time one quantum of energy from one
tape, depending on the direction the pendulum is moving, and putting it on the other one, until
the working tape is empty. The corresponding controller function δ is given below.

δ((x, ↑), (k, p), (iK , iP )) =





(
(s, ↑), (0, deP ), (iK−1, iP +1)

)
if (k, p)=(deK , 0) and iK >1,

(
(s, ↓), (0, deP ), (0, iP +1)

)
if (k, p)=(deK , 0) and iK =1,

δ((x, ↓), (k, p), (iK , iP )) =





(
(s, ↓), (deK , 0), (iK +1, iP−1)

)
if (k, p)=(0, deP ) and iP >1,

(
(s, ↑), (deK , 0), (iK +1, 0)

)
if (k, p)=(0, deP ) and iP =1,
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where iK and iP are the cursors of tapes K and P . The write function is then defined as the
constructor of the two global physical quantities (i.e. kinetic and potential energy) that can be
obtained by summing all infinitesimal quanta that respectively exist on tapes K and P . 12 This
last function works only in state (s, l) and ends in state (x, l) (where l stands for any type of
arrow). The unique possible time behaviour of our (deterministic) system consists hence just
in alternating permanently a tape exchange operation with a write operation.

It is then immediate to see that the elementary physical system that we just defined, always
satisfies — by construction — the energy conservation equation

EK + EP = C , (2.12)

where EK and EC stand for the measures of the kinetic and the potential energy of the pendu-
lum, that is exactly equivalent to Equation (2.11). Note, however, that our approach does not
connect the physical quantities that we manipulated (here kinetic and potential energy) with
the high level parameters ϕ and θ that were used in writing down Equation (2.11).

To fill this gap, we must interpret the pendulum as a new deterministic system Newpend of
higher order that contains the previous elementary physical system Pend as a subsystem. This
new system has another subsystem which makes alternatively the two only operations:

• it reads the outputs of Pend and transforms them — by applying the two associated
measure functions — into (non-standard) real values k and p that are stored in its internal
memory,

• it takes the above two non-standard real values k and p and writes them on its output
channel by applying the following transformation

write (k, p) =


 1

L

√
2 k

m
, arccos

p

mgL


 ,

which can be expressed within our model by making use of adapted subsystems, due to
the fact that we are only dealing here with analytic transformations (see Section 2.3).

If one identifies the output channels of this last subsystem to the output channels of Newpend,
it is then obvious to see that Newpend produces on its own output channels the pair (ϕ, θ) in
such a way that the energy conservation Equation (2.11) is always fulfilled.

Elementary hybrid systems

Elementary hybrid systems are systems of order 0 which can transform continuous behaviours
into discrete ones (or vice-versa). Therefore, they can naturally be applied to model interfaces
between software and physical systems. The two following examples illustrate how to interpret
within our approach two classical interfaces of this kind — here a sampler and a modulator —
that are totally fundamental in practice.

Example 2.22 (Sampler)
A sampler is a mechanism that takes a continuous time input function and produces a discrete
sequence of samples of its values. It can be modelled by an elementary deterministic hybrid

12 We can easily assume that the cardinality of these two families of infinitesimal quanta is respectively given
by iK and iP . Under this hypothesis, the write function can be more precisely defined — independently of the
value of the current internal state of the system — by setting write(K, P ) = (iK deK , iP deP ).
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system Hτ which is parameterised by the time step τ > 0 of its discrete output time scale.
The input and the internal time scales of such a system are both continuous with the same
infinitesimal time step dt = τ/N (where N ∈ ∗N is a given infinitely great non-standard integer).
The input, output and memory domains of Hτ are all equal to ∗R, whereas its internal state set
is equal to [0, N ], i.e. we put:

In(Sampler) = Out(Sampler) = Mem(Sampler) = ∗
R , State(Sampler) = [0, N ], .

The control mechanisms of Hτ are now given by the following transition functions:

read (i; x) =

{
(i + 1; x) if 1 ≤ i < N ,

(0; x) if i = N ,

write (0; y) = (1; y) ,

δ = − ,

where − means that no action should be taken (on the tape). The unique temporal behaviour
of this deterministic hybrid system is now obvious: at each moment of its internal time scale,
which is not a synchronisation point with the time scale of the output channel, the system
uses the read function to memorise the value on the input channel inside a fixed cell of its
internal memory. On the other hand, the system outputs — with the write function — the
value currently stored in this cell at each synchronisation point with the output time scale, i.e.
at every τ , thus producing a discrete sequence out of a continuous one.

Example 2.23 (Modulator)
The action of a modulator is reciprocal to that of a sampler and consists in converting a discrete
sequence of real numbers into a continuous function by making use — at a discrete rate — of a
pulse shape pτ (t), which will be considered here — for the sake of simplicity (see below for more
details on this hypothesis) — as a given function with interval [0, τ ] as support. A modulator
can then be modelled by an elementary deterministic hybrid system Modpτ parameterised by
this last function. The input, output and memory domains of such a system are equal to ∗R,
whereas its internal state set is equal to [0, 2 N−1] where N stands for a fixed infinitely great
positive integer within ∗N, i.e. we put:

In(Mod) = Out(Mod) = Mem(Mod) = ∗R , State(Mod) = [0, 2 N−1] .

The input time scale of Modpτ is then a discrete time scale of time step τ , whereas its internal
and output time scales are both continuous with respective time steps dts = τ/(2 N) and
dto = τ/N . The control mechanisms of this system are now given by the following transition
functions:

read (0 ; x) = (1 ; x) ,
write (2 k ; y) = (2 k+1; y · pτ (k dto)) for every k ∈ [1, N−1] ,

δ(k; m; 0) =





(2; m; 0) if k = 1 ,
(k+1; m; 0) if k = 2 i + 1 with i ∈ [1, N−2] ,

(0; m; 0) if k = 2 N−1 .

The unique temporal behaviour of such a system consists then in reading, at each possible
synchronisation point, a value on its input channel and storing it in a fixed cell of its internal
memory, a blank operation (i.e. doing nothing during one single internal clock tip) and then
applying alternatively a write operation and a δ controlled transition.
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Note also that though the pulse shape pτ in the above example gives us a degree of freedom
in the way we can modulate the continuous output, the most realistic choice is unfortunately
just to take pτ (t) = 1 for any t ∈ [0, τ ]. The examples that correspond to practical situations are
indeed obtained if the pulse shape has support bigger than [0, τ ], which requires to add several
consecutive input values. This technique would however lead to a more complicated modelling,
and therefore we restrained ourselves to the simpler system presented above.

2.2.3 Addition and multiplication of reals

As it has been mentioned above, it is essential for the development of any theory of systems to
show that the main classes of known systems can be modelled in it. In the spirit of this chapter,
this requires one to show first of all that it is possible to model elementary components of these
systems.

One of such important classes consists of the so-called dynamical systems (see [32]), which
are defined in terms of analytic functions (see Section 2.3 fore more detail). A function f is said
to be analytic on an open set D ⊂ R, if for any x0 ∈ D, the function f can be represented by a
real series

f(x) =
∞∑

n=0

an(x− x0)n ,

convergent in a neighbourhood of x0.

When transferred to non-standard domain, the definition of analytic functions is expressed
in terms of non-standard finite sums and products. Thus, the first step to modelling dynamical
systems is, indeed, to show that addition and multiplication of standard reals can be effectively
modelled in our definition.13

In the following two examples, we assume that we are capable of performing addition and
multiplication on ∗N. Indeed, these operations are computed in the same way as for standard N,
and in this case corresponding Turing machines can be constructed (see Section 2.2.2 for a way
to model Turing machines). We then show that we can perform the same kind of operations on
standard reals.

We consider a quantum ε ∈ ∗R such that ε = 1/E > 0, where E ∈ ∗N is an infinitely
great integer. In the same manner as for physical systems, described in the previous section, we
assume that the function read consists in quantifying the real number on input, i.e. transforming
it into a sequence of quanta. Similarly, we assume that write is capable of reconstituting the
real from this sequence of quanta.

Example 2.24 (Addition of standard reals)
Considering all that has been said above, it is quite simple to construct a system that calculates
the sum of two given reals. Indeed, consider the system Add defined as follows

In(Add) = R2 , Mem(Add) = {0, ε} , State(Add) = {r, w} , Out(Add) = ∗R ,

read (r; x, y) = (w ; n ·m), such that n ε ≈ x , mε ≈ y ,

δ = − ,

write (w ; l ) = (r ; l ε) ,

13 The importance of modelling these two operations is further underlined by the consideration that a theory
of modelling complex systems calls immediately for the corresponding computability theory. In our case, this
would necessarily be computability of real functions, based inherently on addition and multiplication.
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where, for any k ∈ ∗N, we denote by k the sequence of k quanta of measure ε (thus k ∈ {0, ε}f ,
with Af denoting, as before, the set of non-standard finite sequences over the alphabet A), the
symbol · (central dot) represents concatenation, and − (dash) represents, as in several previous
examples, an empty operation. Thus the unique possible time behaviour of the system consist
in alternatively reading two real numbers on the input, and writing their sum (n + m) ε ≈ x + y
on the output.

Example 2.25 (Multiplication of real numbers)
In the same manner as in the previous example, we assume two reals x and y on input. Taking
n and m such that n ε ≈ x and mε ≈ y, we observe that

x · y ≈ (nε) · (mε) = (n ·m) ε2 =
n ·m

E
ε . (2.13)

We now run the Euclidean algorithm on n ·m and E to obtain q and r such that n ·m = q ·E +r
with 0 ≤ r < E. We then have

n ·m
E

ε =
q · E
E

ε +
r

E
ε ≈ q ε . (2.14)

Thus we can design our system with two working memory bands and the Euclidean algorithm
as a subsystem. Indeed, setting

In(Mult) = R2 , Mem(Mult) = {0, ε}2 , Out(Mult) = R ,

State(Mult) = {r, c, ei, eo, w} , Sub(Mult) = {Eucl} ,

read (r ; x, y) = (c ; n,m ), such that n ε ≈ x , mε ≈ y ,

δ(c ; n,m ) = (ei ; n ·m,m ) ,

G(ei ; n,m ) = (eo ; n,E) ,

ρ(eo ; q, r) = (w ; q, r ) ,

write (w ; q, r ) = (r ; q ε) ,

where the subsystem Eucl takes two non-standard integers on input, and produces on output
the quotient q and the residue r of integer division of the first one by the second one. Equations
(2.13) and (2.14) prove that the output of our system is infinitely close to the desired multiple
of the two reals on input.

Note 2.26 Observe that using the above two example as components, it is relatively easy to
construct a system to compute any analytic function.

2.2.4 An example of higher order system

In order to show the potential of our approach in practical situations, we will now try to study
how to model within our framework a simplified version of a radio transmission system which
immediately appears as a higher order system (in the sense of Definition 2.14).

Example 2.27 (Simplified radio transmission)
We will now show how to model a communication transmitter taking messages from a buffer
Buf — as described in Example 2.20 (we also keep the notations of this example) — and
transmitting them over a radio channel. In order to achieve this goal, we must first introduce an
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encoder component Enc which reads messages from the buffer, converts them into binary form
and encodes the resulting sequence of bits — by blocks of Nb bits — into complex symbols. 14

Whenever the encoder has less than Nb bits to work on, it sends a write request to the buffer.
A description of the systemic organisation of this component is given just below in Figure 2.6.

- -m s
Conv

��
-

read ︸ ︷︷ ︸��
?

G

-δb

��-ρ -

��write

Figure 2.6: Description of the encoder component.

The corresponding (non-deterministic) system can indeed be defined as follows. We first
suppose that the internal time scale of Enc has a discrete time step which is Nb times smaller
than the rest of the global radio transmission system to which it will belong. The input domain
of the encoder is just A, the same set of messages as that of the buffer to which it is connected.
The output domain is taken to be C×{ε, ↑} in order to model the fact that two types of output
information can be sent on two different channels (i.e. a complex encoded symbol or a write
request). The memory domain is defined as {0, 1}∗ × C since one must be able to store (on
two different tapes) both sequences of bits and complex numbers. Finally, the internal state
set is reduced to two elements q0 and q1 (see the explanations below). These elements can be
summarised by setting:

In(Enc) = A , Out(Enc) = C× {ε, ↑} , Mem(Enc) = {0, 1}∗ × C , State(Enc) = {q0, q1} .

We also suppose that Enc possesses a unique subsystem Conv (i.e. that Sub(Enc) = {Conv}),
which can convert blocks of Nb bits into complex symbols according to a given table and
which has the same input time scale as Enc (the second state of Enc is in particular used to
interconnect the reading of a bit on the tape of Enc with its sending to Conv). The control
mechanisms of Enc can now be given by means of the following transition functions:

read (q0; m) = (q0; b ·m) ,

G(q0; (b, s)) = (q1; b1) ,

δ(q1; (b, s); 0) = (q0; (b� 1, s); 0) , (2.15)

ρ(q0; (b, s); y) = (q0; (b, y)) ,

write (q0; (b, s)) =

{
(q0; (s, ↑)) if |b| < Nb ,
(q0; (s, ε)) otherwise ,

where m ∈ A and m ∈ {0, 1}∗ stand respectively for the message at the input of the encoder and
for its binary form, and where (b, s) ∈ {0, 1}∗×C is the current value of the internal memory of
the system, with b denoting the sequence of bits that is currently stored on the main tape of the
encoder and s being the complex symbol produced by the Conv subsystem. We also denoted
above the concatenation product by ’·’, the first bit of the sequence b by b1 and the shift of b
by one bit by b � 1. Note finally that we did not represent here — for the sake of clarity —

14 The simplest example of such a process is the Binary Phase Shift Keying (BPSK) modulation protocol that
converts every bit b ∈ B = {0, 1} into the real number (−1)b (for more details, see for example [75] or [54]).
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the precise behaviour of δ on the main tape of Enc (that we modelled just as a single cell that
can contain sequences of bits on which concatenation products can be directly applied).

The transmitter in its turn receives on the input a sequence of complex symbols (sk)k≥0 at
a discrete rate and generates on the output a radio signal of the form

u(t) =
∞∑

k=0

sk p(t− tk) ,

where p(t) is a pulse shape function and tk is the moment when the k-th complex symbol is sent.
This new operation can be realised by a modulator similar to that of Example 2.23. Composing
now, as shown in Figure 2.7, the three components we introduced, one obtains the simplified
radio transmitter system that we wanted to model.

- Buf (fer) - Enc(oder)
��-Trans(mitter) -�

��6
A A

C
C

{ε, ↑}

Figure 2.7: Graphical description of a simplified radio transmission chain.

Observe that in the above example, the nature of the first two components (that is to say
Buf and Enc) is completely discrete, whereas that of the third component (Trans) is hybrid
(discrete input with continuous output). This should be interpreted within the classification that
we introduced in Section 2.2.2, as Buffer and Encoder are purely software, whereas Transmitter
serves as an interface between software and physical environments.

2.3 Discussion

In this chapter, we tried to show that it is possible to construct a general unified theory of
systems which may give a common framework to deal both with continuous and discrete systems
(that are the two core kinds of systems used in engineering modelling). Note that our theory
allows to take into account large classes of classical systems.

For example, consider a (controlled) causal dynamical system defined as in [32] by the
following system of equations

{
q̇(t)(= dq/dt) = A0(q) +

∑n
i=1 ui(t)Ai(q),

y(t) = h(q),
(2.16)

where the state q belongs to an analytic real manifold Q of (standard) finite dimension with
a given value q(0), vector fields A0, A1, . . . , An and function h : Q → R are analytic, defined
in a neighbourhood of q(0), and the (control) inputs u1, . . . , un : [0, T ] → R are piecewise
continuous. Such systems can be recovered within our framework as the standardisation of
appropriate physical-like deterministic systems.

Indeed, to recover this family of systems, one should transform the differential equation
(2.16) into a finite difference equation involving an infinitesimal time step. To see that this
last equation expresses the functional behaviour of a system, the key problem is then just to
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prove that any A(q) can be computed by a system when A is an analytic vector field. Under
appropriate calculability assumptions, this last property can be reduced to proving that (non-
standard) finite sums and products of non-standard real numbers can be realised by a system,
and this can be done with the help of the two components from the examples of Section 2.2.3.

In the same way, synchronous systems — which are the discrete equivalents of causal dy-
namical systems — can also be modelled in our framework by software deterministic systems
with the same input and output time scales.

However, our approach does not reduce to re-interpret already existing classes of systems.
It also introduces new classes of systems (such as the elementary software and physical sys-
tems that were discussed in Section 2.2.2) and to lots of new questions (can one develop a
Λ-calculus formalism for systems? what are the “good” system sub-families? can one construct
a complexity theory for systems? what are really the differences existing between deterministic
and non-deterministic systems? etc.) that should now be studied more in details in order to
understand more deeply the notion of system.

To summarise the above discussion one can say that, in the global perspective, we are
looking to formulate the foundations of a theory of calculability for complex industrial systems,
where the systems, as we have defined them in this chapter, will serve the same role as Turing
machines have done in classical theory: they are not to be employed for real-life computing, but
as a theoretical tool allowing to reason on systems.

Similarly, we expect our model to satisfy a thesis in the spirit of the Church’s one, i.e.
we expect it to be possible to reformulate any formalism describing temporised “reasonably
computable” systems in terms of our model.
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Chapter 3
An Example on System Level: UMTS

Infrastructure

In this chapter we illustrate the notion of a system that we have introduced in Chapter 2. More
precisely, we proceed in the spirit of the V development cycle mentioned in Section 1.1.3, by
giving here a systemic representation of a UMTS infrastructure, starting from a global view of
the system, and descending in the hierarchical decomposition to single out the subsystems that
will be necessary for the following chapters.

3.1 The predecessor: a quick look at the GSM

The Universal Mobile Communications System has inherited a number of its features and ar-
chitectural elements from its Second Generation predecessor — the Global System for Mobile
Communications.1 Before moving on to the overview of the UMTS, let us therefore present a
quick summary of GSM architecture.

3.1.1 Network elements

The GSM network can be divided into three domains: Mobile Station (MS), Base Station
Subsystem (BSS), and Network and Switching Subsystem (NSS) (see Figure 3.1).

Mobile Station

The Mobile Station is a user-side component of a GSM network. It consists of a Mobile Equip-
ment (ME) and Subscriber Identification Module (SIM).

Mobile equipment can be either portable (phone, PDA) or fixed (computer, car phone), and
is commonly referred to as terminal or handset. It is uniquely identified by its International
Mobile Equipment Identity (IMEI) number, which is primarily used for security purposes.

A SIM is a smart card that is inserted into the ME. Each SIM card contains an International
Mobile Subscriber Identity (IMSI) number that uniquely identifies the subscriber to the network
thereby allowing access to subscribed services. Along with the subscriber identity and some
basic services, a SIM card can store, in particular, the user’s phone book. Altogether, this

1 As it has already been mentioned in Chapter 1, originally the acronym GSM stood for Groupe Spécial

Mobile.
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Figure 3.1: GSM network architecture.

information allows both to easily change the handset, and, on the contrary, to use the same
handset with different SIM cards (for example when the user’s home operator does not have a
roaming agreement with the operator of the network in the area, where the user is currently
located, or simply when the user is unwilling to pay the extra charge for roaming).

Base Station Subsystem

On the other side of the radio connection, the Base Station Subsystem is composed of two parts:
the Base Transceiver Station (BTS) and the Base Station Controller (BSC). A GSM network is
composed of many BSSs, each controlled by one BSC, but eventually containing multiple BTSs.
The BSS monitors the radio connections to the MS, and performs the necessary channel coding
and decoding.

The Base Transceiver Station, or simply the Base Station, is the interface for the MS to the
network. It handles all communications with the MS via the air interface (technically referred
to as the Um interface in the GSM specifications). The available transmitting power of a BTS
essentially defines the potential cell size, i.e. its coverage area. However, the necessary cell size
depends rather on the subscriber density in the area: in large urban areas, the number of BTSs
deployed is large and the corresponding cell size is small; in contrast, there is usually a far
smaller number of BTSs deployed in rural areas, and consequently the cell size has to be quite
large to provide sufficient coverage.

The Base Station Controller manages the radio resources for multiple BTSs, the number of
which varies but could be up to several hundred. As well as the allocation and release of radio
channels, the BSC is responsible for handover management when the MS moves over to an area
covered by a different BSC. Similar to all other interfaces in GSM, the interface between the
BSC and a BTS is standardised and is referred to as the Abis interface.

Network and Switching Subsystem

While MS and BSS are responsible for the physical layer of the GSM system, the Network and
Switching Subsystem (NSS) is in the heart of the entire GSM network. It contains the core
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switching component — the Mobile Switching Centre (MSC), as well as the four databases
below.

• Home Location Register (HLR),

• Visitor Location Register (VLR),

• Authentication Centre (AuC),

• Equipment Identity Register (EIR).

The Mobile Switching Centre is a digital ISDN switch that sets up connection to other MSCs
and to the the BSCs (via the so-called A interface). In addition to the functions of a normal
switching node in a fixed network, MSC handles mobile subscribers, which includes registration,
authentication, location updating etc. Each GSM network must have at least one MSC. The
totality of the MSCs in the network form its wired (fixed) backbone, and connect it to the Public
Switched Telecommunications Network (PSTN). An MSC performing the interconnection with
other networks is called a Gateway MSC (GMSC).

3.1.2 Frequency reuse

GSM uses a combination of both the Time Division Multiple Access (TDMA) and Frequency
Division Multiple Access (FDMA) technologies. In this section, we shall concentrate on FDMA
for the following reason. When Frequency Division Multiple Access is used, each user is assigned
a different carrier frequency, which allows him to transmit information while reducing to min-
imum interference with other users’ signals. Thus, available frequencies constitute a valuable
resource, essentially determining the network capacity.

Making use of the inherent property of radio waves to attenuate with distance, cellular
networks are fundamentally based on the principle of frequency reuse, that is assigning the
same frequency to users sufficiently distant one from another to assume that their signals do
not interfere.

Example 3.1
Let R be the radius of a circular zone A to cover with N = 7 available frequencies. Suppose
for simplicity that each frequency allows to establish exactly one communication link. Thus,
without frequency reuse, a maximum of 7 links can be established in the whole zone A.

Splitting the zone A into a number of smaller zones of radius r < R (that is by using less
powerful transmitters; see Figure 3.2), we can reuse frequencies by assigning one to each of these
smaller zones to obtain the maximal number of simultaneous communications of the order of

n =
πR2

πr2
=

(
R

r

)2

,

and taking, for example R = 10 km and r = 500 m, we obtain the maximal number of simulta-
neous communication links of the order of 400 instead of 7!

In the example above, all frequencies are distributed over seven cells, and the arrangement
of these cells is then repeated to cover the whole zone A. Such arrangements of cells are called
reuse patterns or clusters. A cluster defines the network capacity and determines the level of
interference, which can be of two kinds:

• co-channel interference is observed between two signals of the same frequency with differ-
ent phase and amplitude conditions,
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Figure 3.2: Illustration of the frequency reuse principle.

• adjacent channel interference is observed between two signals on frequencies close in the
sense of the spectral distance.

In a more general case, one assumes that a cell can consist of one or several sectors depending
on the type of the antennae (omnidirectional or directed) used in this particular cell. A (p, n)-
cluster is then a cluster consisting of p cells and n sectors (the cluster in Figure 3.2-b is therefore
a (7,7)-cluster).

The problem of assigning frequencies to sectors in a cluster can be modelled in the following
manner. First of all, assume that

1. a regular pavement of a plane and a reuse pattern with n sectors are given,

2. each sector has one transceiver antenna,

3. n consecutive frequencies are available for assignment.

We have to find a frequency allocation such that frequencies in neighbouring sectors respect
some given spectral distance constraints. This can be expressed in terms of permutations of
order n.

Problem 3.2 Find a permutation σ of order n such that for all i, j ∈ [1, n] we have |σ(i) −
σ(j)| ≥ Mi,j, where σ is the permutation that assigns a frequency σ(i) to sector i, and M is a
symmetric square matrix with zero diagonal defining the spectral distance constraints.

This matrix M , called compatibility matrix or interference matrix, is essentially determined
by

• the reuse pattern type,

• the inter-pattern arrangement (the way the cluster is repeated to pave the plane),

• the spectral distance imposed between the frequencies assigned to

– two sectors of the same cell,

– two sectors of adjacent cells,

– two sectors having similarly oriented antennae.

Even in this simplified model, the problem of frequency assignment happens to be NP -
complete.

In practice, frequency assignment depends on the projected traffic density (e.g. urban vs.
rural areas) and landscape considerations. The location of cells and the corresponding attributed
frequencies constitute one of the operators’ most vigorously guarded trade secrets.
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Figure 3.3: UMTS network architecture (from [47])

3.2 Overview of the UMTS architecture

By now, numerous descriptions of UMTS can be found in the literature (see for example [22,
44, 47, 93]). We shall therefore limit ourselves here to a brief summary of its aspects that we
refer to in the sequel.

Universal Mobile Telecommunication System (UMTS) is one of the most significant advances
in the evolution of telecommunications into third generation (3G) networks. It is based on the
Wideband Code Division Multiple Access (W-CDMA) air interface, and its main advantage,
compared to second generation (2G) systems, is the increased achievable data rate, allowing a
number of new applications.

The UMTS standard can be seen as an extension of existing networks. Similarly to GSM, it
consists of three interacting domains: User Equipment (UE), UMTS Terrestrial Radio Access
Network (UTRAN) and Core Network (see Figure 3.3). The Core Network is the part of the
existing infrastructure integrated into UMTS and providing access to services. Its elements can
be extended to adopt the UMTS requirements, and do not have to be redesigned completely. At
the same time, the air interface used in UMTS is radically different from that of 2G systems.2

Therefore radio access components, i.e. UTRAN and UE, have to be completely new designs.
The UTRAN in its turn is subdivided into individual Radio Network Systems (RNS), each
controlled by a Radio Network Controller (RNC), which inherits considerably from the Base
Station Controller in GSM networks. The RNC is connected to a number of Nodes B — 3G
equivalent of Base Stations —, each of which can serve one or several cells.

As it has already been mentioned in the introduction, the UMTS infrastructure as a whole
is not exactly in the range of complex industrial systems that we define, due to its intrinsic

2 2G systems are mainly based on Frequency Division or Time Division Multiple Access (FDMA and TDMA;
see Section 3.1.2)
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continuous structure evolution. Indeed, UMTS is a typical example of a network connecting an
ever changing number of elements between themselves.3

Considered as a network, UMTS presents a clear separation in two types of objects:

1. the vertices of the underlying graph, i.e. the nodes of the network, communicating with
each other, such as UE, Nodes B, and RNC; and

2. the edges of this graph, which represent the connections.

The objects of the first type, that is the ones that actively participate in communication can
be perfectly well treated as systems in our sense, either software (as, for example, in the case
of the RNC, which can be considered a purely software system as long as we do not descend
in the analysis to the level of electric circuits), or hybrid (this is the case of UE and Node B,
which combine both software and, due to the presence of radio signal, physical properties).4

The objects of the second type, i.e. those representing the connections between different
nodes, are termed interfaces. The UMTS defines four new interfaces: Uu (connecting UE to
Node B), Iub (Node B to RNC), Iu (RNC to Core Network), and Iur (RNC to RNC connec-
tion). From the systemic perspective, the interfaces can be essentially reduced to a collection
of protocols that define what data and in which form has to be transmitted from one node
to another. The subsystems that actually realise these interfaces belonging to corresponding
systems of the first type above, we can say that the interfaces do not constitute systems in our
sense of the word.5

3.2.1 Hardware network elements

As it can be seen from the previous section, the most important network elements specific to
UMTS are the Radio Network Controller and the Node B that compose the UTRAN domain.

Radio Network Controller

The RNC enables autonomous radio resource management (RRM) by UTRAN. It performs
the same functions as the GSM BSC, providing central control for the RNS elements (RNC
and Nodes B). It also handles protocol exchanges between Iu, Iur, and Iub interfaces and is
responsible for centralised operation and maintenance (O&M) of the entire RNS.

The functions of RNC are among others:

• radio resource control (RRC)

• admission control

• channel allocation

• handover control

• macro diversity

• uplink outer loop power control (UL OLPC)

3 As we shall see in Section 3.3.2, this kind of a structure still can be modelled as a system in our sense.
Although such a model does have certain advantages, it is nevertheless not particularly natural.

4 It is, indeed, difficult to find a purely physical system in UMTS, as it is after all a digital communications
system. A rare exception would be the model of the radio channel, over which the continuous signal is transmitted.

5 Once again, observe here that even though the interfaces do not represent systems in our perspective, the
corresponding channels that provide the communication medium (radio channel or electric wire) can very well
be modelled as physical systems.
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Node B

Node B is the physical unit for radio transmission/reception within cells. Depending on sectoring
type, one or more cells may be served by a single Node B. It connects with the UE via the W-
CDMA Uu radio interface and with the RNC via the Iub interface.

The main task of Node B is the conversion of data to and from the Uu radio interface, which
includes

• forward error correction (FEC) coding,

• rate adaptation,

• W-CDMA spreading/despreading,

• modulation (quadrature phase shift keying (QPSK) or 16 symbol Quadrature Amplitude
Modulation (16QAM)),

It measures quality and strength of the connection and determines various error rates such as
Frame Error Rate (FER), Block Error Rate (BLER), and Bit Error Rate (BER), transmitting
these to the RNC.

The Node B also participates in the Uplink Closed Loop Power Control (UL CLPC). It
enables the UE to adjust its power using downlink (DL) Transmission Power Control (TPC)
commands. The predefined values for UL CLPC are derived by the RNC via the Outer-Loop
Power Control. (See Chapter 4 for a more detailed description of power control.)

3.2.2 Wideband CDMA

Wideband CDMA (W-CDMA) technology is used for the UTRAN air interface. It consists in
spreading the user information bits over a wide bandwidth by multiplying the data sequence for
each user with a different code (a different sequence of chips). All users’ signals are transmitted
in the same frequency bandwidth, one for uplink and one for downlink. This is called the
Frequency Division Duplex mode (FDD mode). Moreover, another code is applied to separate
different channels utilised by the same user. This is performed by a process called spreading
that consists of the following two operations (see [5] for complete specifications).

• The first operation is called channelisation. It transforms each data symbol into a number
of chips (thus increasing the bandwidth of the signal), by multiplying the data symbol by
an Orthogonal Variable Spreading Factor 6 (OVSF) code. These orthogonal codes help in
distinguishing between the transport channels. Figure 3.4 shows the process of generating
a CDMA signal with an 8-chip channelisation code.

• The second operation is called scrambling. The spread signal is modulated with pseudo-
random (also called pseudo-noise, PN) complex sequences. A PN-sequence allows to
distinguish between different users in uplink and between different cells in downlink con-
nection.

The PN code used to scramble the data, can be of two main types. A short PN code
(typically 10–128 chips in length), can be used to modulate each data symbol. The short PN
code is then repeated for every data symbol allowing for quick and simple synchronisation of
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1 bit period 1 chip period

Data signal

Channelisation code

(SF=8, repeated 3 times)

Output spread

signal

Figure 3.4: Spreading a data signal with an 8 chip channelisation code
(data=010, code=01110100, output=01110100 10001011 01110100).

the receiver. Alternatively, a long PN code can be used. Long codes are generally thousands to
millions of chips in length, and thus are only repeated infrequently.

At the reception, the overall signal is demodulated by multiplying each user’s signal with its
allocated code. The amplitude of the user signal increases on average by the spreading factor
relative to that of the other interfering users’ signals, i.e. this correlation detection extracts the
user signal from the noise. This effect is termed processing gain and is a fundamental aspect
giving all CDMA systems the robustness against interference. Let’s take the example of the
Speech service with a bit rate of 12.2 kbps. Assuming that QPSK modulation is used,7 which
is the usual case in practice, the processing gain is computed by taking

PG = 10 log10

(
2 · 3.84 · 106

12.2 · 103

)
≈ 28 dB,

where 3.84 ·106 is the carrier chip rate. After despreading, the signal power needs to be typically
a few decibels above the interference and noise power. For Speech service in uplink with 2
antennas, the required energy per information bit to noise ratio Eb/No is typically in the order
of 5 dB, and the required wideband signal-to-interference ratio is therefore 5 − 28 = −23 dB.
In other words, the signal power can be 23 dB under the interference or thermal noise power,
and the W-CDMA receiver can still detect the signal.

In general, a CDMA network limiting factor is first the total available power then the number
of codes. Thus, a good criterion to evaluate the capacity of a cell (the maximum number of
active users in a cell) is the transmitted power and the power saturation rate at the base station.

3.2.3 Quality of Service and performance evaluation

As we have already mentioned in Section 1.2.1, wireless networks have by now attained an
extremely high rate of market penetration, and therefore the operators’ revenues, and conse-
quently their market value, are determined by the average revenue per user (ARPU), and no
longer by the number of users. An increase of the ARPU can hardly be realised from SMS and
MMS based messaging services, and therefore new attractive services have to be introduced.

However, it is not sufficient to introduce a service, it is no less important to assure that
customers do, indeed, use it. For this to happen, the following three conditions must be satisfied.

6 Spreading factor (SF) is the length of the code, i.e. the number of chips corresponding to one data symbol.
It can be any power of 2 between 4 and 512 depending on the transmission context.

7 QPSK stands for Quadrature Phase Shift Keying modulation; it is based on a four symbol constellation
with a combination of 2 bits being encoded by each complex symbol.
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Table 3.1: Classes of services.

Error
tolerant

Conversational
voice and video

Voice messaging
Streaming audio

and video
Fax

Error
intolerant

E-commerce,
interactive games

Telnet,
Web browsing

FTP, paging,
still image

E-mail arrival
notification

Conversational
(delay << 1 s)

Interactive
(delay ≈ 1 s)

Streaming
(delay < 10 s)

Background
(delay > 10 s)

1. The service must be adapted to the terminals available on the market, and, vice-versa,
the terminals have to be conceived with the applications in mind.

2. The quality of the user experience must be sufficiently high.

3. The price of the service must correspond to user expectations, i.e. the value-for-money
ratio must be sufficiently high.

The existing terminals have been considerably improved in the last years, and are approach-
ing the second generation ones in terms, for example, of weight and battery life, while having
evolved to accomodate the needs of 3G applications, in particular by the increase in the display
size.

The operators’ pricing policies being well beyond the scope of this thesis, we shall concentrate
here on the quality of the user experience and on the network resources management. The 3GPP
specifications include four classes for Quality of Service: Conversational, Streaming, Interactive,
and Best Effort. These classes correspond to different levels of error and delay tolerance (see
Table 3.1).

Let us now emphasise some of the criteria that allow to quantify the performances of a
UMTS network. Generally speaking, these criteria can be divided in two groups, one for each
side participating in the network operation, i.e. the subscriber and the operator. These two
groups are

1. User satisfaction criteria. This group concerns the measures of the subscriber’s experience
such as

• call acceptance rate: the probability that a connection is available at the moment
when the user wants to gain access to a given service; this rate is influenced by
a number of network elements, and in particular Access Control algorithms and
handover management;

• amount of noise: for Circuit Switched (CS) services such as voice and video commu-
nications, the quality of the received signal; this is generally influenced by the error
correction coding, and by the signal to noise rate, and therefore by the efficiency of
the power control both in up- and downlink;

• data rate: this measure concerns the Packet Switched (PS) services such as file
transfer or web browsing; it is affected, among others, by power control, channel
adaption, and also by scheduling algorithms.
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Table 3.2: End-user performance expectations for interactive services (from [95]).

Medium Application Degree of
symmetry

Key performance parameters and target
values

One-way
delay

Delay
variation

Information
loss

Audio Voice
messaging

Primarily
one-way

< 1 s for
playback
< 2 s for
record

< 1 ms < 3% FER

Data Web-
browsing
(HTML)

Primarily
one-way

< 4 s/page N/A Zero

Data Transaction
services —
high priority
(e-commerce)

Two-way < 4 s N/A Zero

Data E-mail (ser-
ver access)

Primarily
one-way

< 4 s N/A Zero

Note that both the amount of noise for CS services and the data rate for PS ones depend
directly on the same parameter, which is the Block Error Rate (BLER), i.e. the proba-
bility that at the reception a transport block is not decoded correctly. 8 Observe that in
case of CS services, the false block is simply discarded, which is the source of noise in
the reproduced sound or video signal, whereas for PS services, it is retransmitted thus
decreasing the overall data rate and correspondingly increasing the delays experienced
by the user. A summary of user performance expectations for some services is shown in
Table 3.2 (source [95]).

2. Network resource criteria. This group reflects the costs incurred by the operator of the
network, both those that are connected with the resources such as power required to
maintain the radio signal, and the capacity of network to accept users, as low performance
of the latter implies a loss of profit. Some of the related measures are therefore

• network coverage: this measure obviously indicates the amount of the territory cov-
ered by the operator’s network, and it is mostly affected by the way the Nodes B are
placed;

• network saturation: the percentage of the network capacity effectively utilised for
subscriber communication; maximum revenue can be obtained when the network is
saturated, that is when all resources are utilised to generate profit; this measure is
tightly linked with the call acceptance rate above, and similarly is influenced among
others by such elements as access and power control;

• energy per bit: this more low level measure gives a clue to the amount of energy spent
to communicate one bit (this can be either an information bit or a transmitted one);
it is, in particular, influenced by the propagation conditions for the link in question.

8 Sometimes another equivalent measure is considered — the Frame Error Rate (FER). Typically, for a given
service, a transport block consists of a fixed number of frames, in which context the connection between these
two measures is obvious.
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Observe, that one of the most recurrent influences on the above cited measures is the power
control. It is, indeed, a very important feature of the UMTS, not only because it allows to limit
the interferences, but also, for example, due to the fact that it considerably influences both the
uplink and downlink capacity of the network (see Section 4.1 of Chapter 4 for a more detailed
discussion).

A number of performance optimisation procedures implies a trade-off between the user
satisfaction criteria and the network resource ones. For instance, the goal of power control
consists in finding the minimal transmit power that allows to maintain the BLER just under
the maximum rate required for a given service.

3.3 Two systemic approaches to UMTS

3.3.1 Single user case

As it has been mentioned in the opening of the chapter, we proceed in the spirit of the V de-
velopment cycle described in the introduction. More precisely, we follow its descending branch,
which goes from system specification to development of elementary components through system
design or modelling. Therefore, omitting the components’ development, and taking the descrip-
tion in the previous section as a summary specification, we shall now illustrate the modelling
stage.

Before we attempt to give a systemic decomposition of the full UMTS infrastructure as it
has been briefly described in the previous section, let us first consider the simplest possible
case with only one user in the system, who is served by the same Node B all the time. The
reasons for this are twofold. First of all, starting by this simpler case provides us with building
blocks for the general model, and, equivalently, this simplified system can be used to analyse
the performance of a single link. The results of this analysis can then serve as an input to the
analysis of the complete system.

Figure 3.5 shows an hierarchical decomposition of a UMTS network based on the description
above. Indeed, as it has been stated in Section 3.2, we separate the network in three domains:
Core network, UTRAN, and User Equipment. For now, we do not decompose the UE and Core
network any further, and we split UTRAN in its turn into Node B and RNC. This is justified
by the assumption that, in the considered case where there is only one user, the whole network
can be limited to one Node B and one RNC.

In this decomposition, Node B and RNC have subsystems responsible for their respective
functionalities. Both UE and Core network could be decomposed in a similar manner, however
we omit this for clarity as we will not consider these subsystems in the sequel.

Let us now consider a systemic representation of our network, at the abstraction level cor-
responding to the part above the dashed line in Figure 3.5. In addition to the five subsystems
introduced in this figure, the system shown in Figure 3.6 has three subsystems modelling the
interaction interfaces.

It is important to observe here that the component representing the radio channel (connect-
ing UE with UTRAN via its Node B subsystem) is best modelled as a physical component,
due to the continuous nature of a radio signal. This implies that, at the considered level of
abstraction, both UE and Node B (and consequently UTRAN) are hybrid systems combining
discrete and continuous time scales. All other subsystems in Figure 3.6 can be modelled as
software ones.

Let us now focus our attention on the Node B subsystem. As it has been mentioned in
Section 3.2.1, its key functionalities (cf. Figure 3.5) are channel coding and modulation (and their
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Figure 3.5: Hierarchical decomposition of the UMTS network with one user.
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Figure 3.6: Systemic representation of the UMTS network with one user.

inverse in uplink, decoding and demodulation), measurement of various connection statistics,
and part of the uplink power control.

A possible model for a Node B in the spirit of Chapter 2 is shown in Figure 3.7. 9 In this
model, we isolate Receiver and Modulator from the rest of the system in order to emphasise
once again that those are hybrid systems that transform the continuous radio signal into a
discrete one and vice-versa. We assume that the component responsible for performing various
measurements communicates directly with the CLPC component, as the latter utilises directly
one of the basic channel measurements provided by the former, which is the Signal to Interference
Ratio (SIR). This shall be further explained in Chapter 4. All other interactions pass by the
system’s internal memory, and all the operations are managed by a controller Q.

Finally, observe also that the two subsystems Coding and Decoding represent, in fact, a
number of parallel coding (respectively decoding) chains — one for each transport channel. An
example of such a chain for the High Speed Downlink Packet Access (HSDPA) service is given
in Chapter 5.

9 Observe that this model does neither rigorously model a Node B, nor perfectly comply with the definition
of a system as given in Chapter 2. One should, however, keep in mind that the goal here is to illustrate the latter
while reflecting as close as possible the functional nature of a real system, which is the Node B.
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Figure 3.7: A systemic model of Node B.

3.3.2 Multiple users case

Let us now turn to the general case where the UTRAN consists of several RNS, which in their
turn can have several Nodes B each, etc. This situation is illustrated in Figure 3.8. Although UE
do not normally belong to the UTRAN, here we include them into the hierarchical decomposition
for reasons that will become apparent when we consider a systemic model.

Indeed, contrary to the single user case that we have considered in the previous section and
where we assumed one instance of each type of subsystem (RNS, Node B, etc), here we have a
set of such components that can vary in size. This is especially clear when one considers UE
present in a given cell. The set of UE in a cell is affected by two processes: UE connecting
to the network or disconnecting from it on one hand, and various types of handover, when a
given UE migrates from one cell to another. Thus our model has to take in account this varying
nature of the network.

Figure 3.9 shows a backbone for a model of the part of the network comprising the UTRAN
and the UE domain. In this model each subsystem is representing a type of network nodes,
rather than a particular physical object. 10 We suppose here that the system in a higher level of
hierarchy (for example Cell for UE here) keeps in memory a list of objects in the lower level, and
calls the corresponding subsystem when action has to be taken on a particular physical — in a
usual sense of the word, rather than that of our classification of systems — instance of the latter.
In reality, the picture is of course slightly different. For example, even though the UTRAN does,
indeed, have a database with all the RNC in the network, it only has the information about
these RNC, while the information about the Nodes B is kept in the RNC, etc.

Another important difference between this model and a real-life system is that the former
contains several purely logical components (RNS, Cell, . . . ) equipped with memory, which is
obviously impossible in the latter. In particular, we assume a logical component UE domain
that keeps a list of all cells. This assumption leads us to introduce the Controller component
that allows to update this list whenever a new cell is added to the system. Instead, in real-life
systems, when a new Node B is installed all the corresponding processing is performed in the
UTRAN, as the corresponding UE domain does not exist yet.

In spite of all the differences that have been discussed above, this approach has two important
advantages. First of all, it allows us to have a static model for a dynamic network, i.e. we can

10 Here, one could draw a parallel with the class/instance duality in object oriented programming.

49



Chapter 3. An Example on System Level: UMTS Infrastructure

Cell

RNC

RNS RNS RNS

UTRAN

Node BNode BNode B

Cell Cell Cell

UEUEUE

Figure 3.8: Hierarchical decomposition of a general UMTS network.
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Figure 3.9: A backbone of a systemic model of UMTS in a general case.
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dynamically add and remove nodes from the network without having to change the underlying
model. On the other hand, and partly as a consequence of the previous observation, if we were
to consider a network simulator, this would be essentially the only possible choice, as all the
system’s memory would have to be contained in that of the simulating device! Finally, we have
to stress once again that, provided that this model is carefully developed, it can be functionally
equivalent (see Definition 2.17 in Section 2.2.1) to (a part of) the real-life system.

3.4 Discussion

In this chapter, we have presented an overview of the Universal Mobile Telecommuncations
System (UMTS), which will serve as a framework for the examples of the following chapters of
this thesis. In order to better situate this system in a general telecommunications context, we
have also accompanied this overview by a brief introduction to the Global System for Mobile
Communications (GSM), by which the UMTS has been largely inspired.

We have concentrated on two particular aspects of both of these systems, which we refer to
in the sequel: their hardware architecture and the multiple access principles utilised.

In Section 3.3, we have considered two approaches to modelling UMTS in the spirit of
Chapter 2. The theory presented in this chapter being in its rudimentary stage, these approaches
were limited to the decomposition in subsystems and the analysis of different types of subsystems
involved in this decomposition (that is physical, logical, and hybrid ones).

The discussion of Section 3.3 allows us to define the range of the systems to which our
model is applied. Indeed, as we have observed in this section, the main problems of modelling
the UMTS infrastructure by a system in the sense we adopt comes from its network nature, that
is from the fact that elements of the system can be added and removed at will. This observation
suggests the following restriction: we shall consider in our model only complex industrial systems
that admit a finite description.
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Chapter 4
Subsystem Level: Power Control

Let us emphasise now one particular functionality of the UMTS networks — the power con-
trol. We have seen in the previous chapter that this functionality is mainly shared between
the RNC, the Node B, and the User Equipment (UE). Thus in the straightforward hierarchical
decomposition, components responsible for various aspects of power control form parts of the
decomposition of different subsystems. This reflects well the aspect of the industrial systems’
engineering that is concerned firstly with determining the components necessary to construct a
system (here RNC or Node B) and, secondly, with constructing each separate component. How-
ever, the latter implies also another not less important process, which is analysing a particular
functionality in order to calibrate the subsystems that realise it. Indeed, a functionality that
is performed by several inter-operating components — and the power control provides here a
perfect example — can nevertheless be sufficiently independent from the rest of the system for
it to be studied as a separate system.

This brings forward one of the advantages of the recursive model of systems as introduced in
Chapter 2 (see in particular Theorem 2.19 and the discussion immediately after). Indeed, sup-
pose we have several systems each decomposed as in Section 2.2.1 into a number of subsystems,
and co-operating to provide, among others, a given functionality. For each of these systems,
we can isolate the components participating in this particular functionality and put them all
together to obtain a virtual system that only models this functionality in question. This virtual
system can then be analysed independently of the rest of the original systems, thus allowing for
better understanding and calibration of the components involved.

In this chapter we will illustrate this idea on the example of the power control mechanism in
UMTS. We start, in Section 4.1, by giving an overview of this mechanism, then, in Section 4.5,
we describe a virtual system corresponding to the uplink power control, and finally, in the
following sections, we give an example of a detailed analysis of one of the aspects of the latter,
namely we consider the Uplink Outer Loop Power Control (UL OLPC).

4.1 Overview of the power control

From a very general point of view, power control consists simply in adapting the transmit power
of either a UE or a Node B depending on current radio transmission environment. It can be,
therefore, considered as a system taking on input a suite of measures corresponding to the
current link state and provides on output a value of transmit power sufficient to maintain the
required quality of service (QoS).
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Figure 4.1: Power control: high-level system.

The importance of power control in W-CDMA networks is difficult to overestimate. Indeed,
contrary to the second generation systems, such as, for example, the widely implemented GSM
system, all UMTS users share the same frequency band. Signals from and to different users are
separated by codes (see Section 3.2.2 of Chapter 3). In downlink, these codes are synchronised,
and consequently orthogonal. Thus, the downlink capacity is no longer limited by the number
of frequencies that can be allocated in a given cell. Instead, in good radio conditions (ideal sce-
nario here corresponds to all mobiles being in the line of sight from the Node B), it is primarily
determined by the power available for transmission at the Node B. In general, multiple prop-
agation paths desynchronise the codes, which results in their loosing orthogonality. However,
available transmit power stays one of the important limiting factors of the downlink network
capacity. It is also important to notice that good power control in downlink allows to minimise
the interference to adjacent cells.

Considering the uplink connection from the mobile to the Node B, one can observe that,
once again, efficient power control is absolutely indispensable. First of all, the battery life of a
mobile is a universally accepted critical issue related directly to the end-user experience, whereas
the most power consuming activity of a mobile handset is transmitting the radio signal. Thus
in order to optimise the battery life, it is essential to maintain the transmitting power at the
lowest possible limit.

At the same time the uplink capacity of a given cell is most often determined by a limit
imposed on the so-called noise rise, which is defined by NR = Pr/I0, where Pr is the total
received power at the Node B, and I0 is the floor noise level. Thus keeping the mobiles’
transmit power at minimum is one of the important factors allowing to improve the network
capacity.

In uplink, it is impossible to perfectly synchronise PN sequences separating different users
and especially so in presence of multiple propagation paths. Therefore, a certain amount of
interference between different users cannot be avoided. The interference of a signal from the
mobile close to the Node B can prevent a signal from another mobile further in the cell from
being decoded correctly. This is called a near-far effect.

This effect can be clearly understood by imagining two mobiles transmitting in the same cell
and at the same power level. Suppose, however, that one of these mobiles is very close to the
Node B, while the other one is located at the border of the cell (see Figure 4.2). It is clear that
the signal received by the Node B from the first mobile is much stronger than that of the second
one, and thus the level of the produced interference can be too high for the second mobile’s
signal to be decoded correctly. More generally, one mobile close to the Node B can effectively
prevent all other mobiles in the cell from transmitting any information. It is now sufficient, in
order to understand the importance of an efficient power control mechanism, to observe that in
the example above the near-far effect can be eliminated if the first mobile reduces sufficiently
its transmit power. In the general case, this corresponds to each mobile’s transmitting at the
least power level sufficient to maintain the quality of service necessary for its connection.
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Figure 4.2: Illustration of the near-far effect.

4.2 Measures involved in the Power Control

There is a large variety of measures that can be used to perform the power control. These can
be generally separated in two groups: measures reflecting the quality of service, such as bit,
block, or frame error rates (BER, BLER, and FER correspondingly); and those reflecting the
channel quality, such as signal to interference ratio (SIR) or bit energy to interference spectral
density ratio (Eb/I0).

The following relation holds between the two last measurements

Eb

I0
= SIR

W

r
,

where W is the transmission bandwidth in Hertz and r is the data rate in bits per second. Thus,
assuming that the data rate is fixed, this relation becomes a simple linear dependency.

On the other hand, the relation between BER, BLER, and FER is much more complicated,
and we shall only state here that it is strictly monotonic. That is, when for example the BER
increases, so do the BLER and the FER. The relation between any of these three rates and the
channel quality measurements is inverse monotonic. For instance, increasing the SIR decreases
the BER and, consequently, the BLER.

It is important to observe here that these different measures correspond to different “levels
of abstraction” as to the amount of information they convey. Indeed, when one consideres one
block, which is most often the case as far as power control is concerned, the BLER corresponds
to the binary status of CRC check (block received correctly or not), whereas BER indicates
how many bits in this block were decoded with errors. In its turn, the BER summarises the
low level information available to the decoder (such as, for instance, the log-likelihood ratio of
each bit), and so on.

Thus, it is clear that the performance of power control algorithms depends on the particular
quality indicator they refer to: the more low level is the quality indicator, the better performance
can be expected from the corresponding algorithm. The downside is, however, that obtaining
lower level quality indicators is more complex, and so are the algorithms that utilise them. This
results in the implementation of such algorithms being more expensive in termes of both space
and time complexity, resulting in more expensive circuits and, a fortiori, equipement.
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4.3 3GPP power control

A number of approaches to power control problem have been studied, which can be generally
separated in two groups: centralised algorithms, and distributed ones. The former assume full
knowledge of the system and derive an optimal power assignment vector, i.e. an optimal value
of transmit power for each mobile in the cell, provided, of course, that such a vector exists. 1

In the latter approach, an independent algorithm runs on each mobile unit and adjusts its
transmitting power in such a way as to converge to the above optimal value without requiring
any global knowledge of the system.

An important advantage of distributed algorithms is that they induce much less signalling
overhead in the network and, in particular, can adapt more efficiently than the global solutions
to the changes in the environment.

Starting from Section 4.5, we shall limit ourselves to the uplink power control as it is
implemented in the actual 3GPP specifications. In this approach, the only information required
is that concerning the link between the Node B and the moble in question, and therefore it
should rather be classified as a distributed one, even though some algorithms involved are
running on the serving RNC of the corresponding cell.

Power control in 3GPP consists essentially of three so-called loops. Figure 4.3 illustrates

Power
Control

Open Loop Closed Loop

Inner LoopOuter Loop

Figure 4.3: Types of power control in 3GPP.

this typology, although it might seem to be in discord with the previous statement. First of
all, there are two main types of power control: Open Loop Power Control and Closed Loop
Power Control (CLPC). Both these types have the same systemic structure as the one shown
in Figure 4.1 of the previous section, and one should consider them as connected “in parallel”
(see Figure 4.4). The difference is that Open Loop does not rely on any feedback information
from the system, and therefore can be utilised while the connection is being initialised. Closed
Loop requires feedback information on the reception quality, which allows it to provide better
performance.

In its turn, Closed Loop is subdivided into Outer Loop (OLPC 2) and Inner Loop. The
former sets a target reception quality according to the required quality of service, while latter
adapts the transmit power in order to match the target set by the Outer Loop (see the following
sections for more details). Keeping the above terminology, one can say that these two loops are
connected “in series” (see again Figure 4.4).

1 In this context, it is said that power control problem is feasible, if there exists such an optimal power
assignment vector that every mobile can effectively support its assigned transmit power (see Section 4.4).

2 Observe that OLPC is an abbreviation for Outer Loop Power Control, and not for Open Loop Power Control.
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Figure 4.4: Open Loop vs. Closed Loop.

From the above discussion, one can see that there are only three algorithms ivolved. More-
over, Closed Loop is often identified with Inner Loop. One speaks then of Closed Loop controlled
by the Outer Loop. This is also the terminology that we shall use in the rest of the chapter.

4.3.1 Open Loop Power Control

The Open Loop Power Control is used in the Frequency Division Duplex (FDD) mode, and only
during the transmission initialisation phase. To perform this type of power control, the trans-
mitting entity measures the Signal to Interference Ratio (SIR) of the signal received from the
receiving one, compares it to a given target, and adjusts its proper transmit power accordingly.
In other words, each participating entity estimates the propagation conditions of its connection
to the other one from the signal received on the reverse link.

This procedure allows to quickly estimate the required level of transmit power when the
connection is being initialised. During this phase, the connection is only being established, and
thus the mobile and the Node B do not have the possibility to exchange information about
quality the received signal.

The main inconvenience of this method is that the uplink and downlink transmissions are
performed on different frequencies, implying a low correlation of fading effects for these two
connections. Thus the power control decision is not sufficiently reliable.

4.3.2 Closed Loop Power Control

Once the connection has been established, both the mobile and the Node B can report their
corresponding received signals’ qualities, and thus the power control decisions based on this
reporting reflect the actual channel situation much more accurately than those of the Open
Loop PC. For this reason the Closed Loop Power Control (CLPC) is used at all moments other
than connection initialisation.

Every time slot (TS):
SIRTS ← mean of the received SIR over TS;
Modify SIRTS with TPC commands not yet taken into account;
if (SIRTS > SIRtarget)

send a “down” TPC command,
else

send an “up” TPC command.

Algorithm 4.1: 3GPP algorithm for Closed Loop Power Control.
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Figure 4.5: Closed Loop (a) and Outer Loop (b) components of the Power Control system.

The CLPC proceeds as following (see Algorithm 4.1). The receiving entity measures the SIR
level, compares it to the target SIR and, according to the result of this comparison, sends a power
control command to the transmitting entity to either increase or decrease it’s transmit power
(this is summarised in Figure 4.5-a). The latter, on reception of such a command, modifies
its transmit power by a fixed step ∆, which according to 3GPP specifications can be chosen
between 1, 1.5, and 2 dB 3.

The Closed Loop PC is sometimes called Inner Loop in order to emphasise its relation to
the Outer Loop PC (see Section 4.3.3), and also Fast Power Control as opposed to the one used
in GSM. Indeed, to counteract fast fading effect the CLPC has to be applied sufficiently often.
In practice it is applied after transmission of each slot, that is at the rate of 1.5 kHz, whereas
in GSM power control is applied at the rate of 2 Hz.4

4.3.3 Outer Loop Power Control

As it has been mentioned in the previous sections, the role of the Outer Loop Power Control is
to maintain the target SIR at the appropriate level to provide the required quality of service 5

(see Figure 4.5-b for the corresponding systemic diagram). Let us first of all explain why this
loop is necessary, that is why does the target SIR have to be adjusted at all.

We have seen, in Section 4.3.2, that the transmitting entity uses a fixed step to adjust its
transmit power under the Closed Loop PC. Thus its ability to converge to the ideal power
level that would provide the necessary received SIR depends considerably on the propagation
conditions. This property is reflected by the standard deviation of the transmit power over the
transmission period.

It is clear that, when the mobile’s speed is low, so is also the channel variation. Therefore,
in this case, the CLPC efficiently compensates for the fading dips, and the standard deviation
of the transmit power is low. At high speeds, channel conditions vary rapidly, and the CLPC
compensates for fading dips less efficiently, which degrades the quality of service. To compensate
for this effect the target SIR has to be increased correspondingly.

If the target SIR were to be constant, then it has to be calculated for the worst case scenario,
and thus a mobile experiencing comparatively good radio conditions would be transmitting at
an excessively high power level. Sampath, Kumar and Holtzman in [82] showed, for example,
that for a frame error rate (FER) of 1%, if the target SIR was calculated on a basis of 2 dB
standard deviation for the CLPC, then for a user experiencing a standard deviation of 1 dB the
loss in transmitting power would be approximately 5.4 dB.

Another reason for adjusting the target SIR is that the received SIR is measured before
channel decoding and therefore it reflects the total energy over all propagation paths. However,

3 3GPP specifications also contain a slight modification of the described algorithm that allows to emulate
smaller steps by applying power control less often. However, this algorithm is beyond the scope of this dissertation.

4 Such an important difference is explained by the fact that fast and efficient power control is essential in
W-CDMA networks to distinguish different users’ signals (see Section 4.1), whereas in GSM these signals are
modulated on different frequencies, and thus the impact of power control is less crucial.

5 This quality of service is most often defined in terms of BLER.
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Figure 4.6: Effect of increasing UE speed on target SIR.

as the delays are not the same on all paths, there is a non-zero inter-symbol interference (some
times also called auto-interference; see Appendix B, cf. also [35, 40]), which implies that only a
certain amount of received power can be effectively used for decoding. When the characteristics
of the multipath environment change so does the amount of the inter-symbol interference. The
“useful” proportion of power is difficult to estimate, and therefore it is easier to adapt the target
SIR accordingly.

To illustrate the above argument, let us consider a single cell system with N mobile units.
The mobile i transmits at power pi, and the channel attenuation to the Node B is denoted by
gi. The uplink SIR requirement is then expressed by

ξkgkpk

N∑

i=1,i6=k

gipi + ηk

= ξkγk ≥ γt
k , (4.1)

where γk is the measured received SIR, ηk is the Gaussian noise at the receiver, ξk ∈ (0, 1)
represents the influence of the inter-symbol interference, and γ t

k is the threshold value required
to maintain the QoS. If we discard the inter-symbol interference, the relation (4.1) states simply
that the received SIR has to be superior to a given target SIR. In general case, this constraint
can be translated as

γk ≥ γt
k/ξk , (4.2)

and the target SIR is now defined by the right-hand side of (4.2), which varies when the channel
conditions change.

Example 4.1 (Typical application of OLPC)
We consider a situation where a mobile in communication with a Node B rapidly increases its
speed, thus causing a deterioration of radio conditions. Figure 4.6 illustrates schematically the
typical BLER to target SIR dependencies before and after acceleration. One can see that, if the
target SIR was to remain constant, this would entail an increase in the current BLER. Thus to
maintain the BLER level, it is necessary to adapt (increase in this particular case) the target
SIR, which is exactly the role of OLPC.

4.4 State of the art

As we have seen in the previous sections, power control is one of the key issues in network
resource management. Consequently, it is extensively studied in the literature, and particularly
so in the past two decades.
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A vast majority of this research is, however, concentrated on the so-called SIR-balancing
problem [7, 98] and its variants. Here, one takes a “snapshot” approach to power control, by
assuming that the derived algorithm provides an acceptable power assignment faster than the
the corresponding link attenuations evolve to invalidate it.

For convenience, we shall formulate this problem for uplink direction (for downlink the
formulation is very similar). In a rather general case this can be done as below (see for example
[77]). A variant, which we have already mentioned in Section 4.3.3 (cf. (4.1)), accounts for the
auto-interference effect [35], i.e. for the fact that not all received power can be effectively utilised
for decoding.

Consider N mobile stations transmitting over the same channel including the intracell and
intercell users. Define a base station assignment function b(i) so that k = b(i) if mobile i is
served by base station k. Denoting by gji the link attenuation from mobile i to base station j,
and by pi its transmit power, the uplink SIR requirement for user i can then be expressed as

γi =
gb(i)i pi

N∑

j=1,j 6=i

gb(i)j pj + ni

=
pi

N∑

j=1,j 6=i

gb(i)j

gb(i)i
pj +

ni

gb(i)i

≥ γt
i , (4.3)

where γi is the SIR at the receiver for the signal of this user, γ t
i is his uplink SIR requirement,

and ni is the receiver noise power. By defining the vectors p = {pi} and n = {γt
i ni/gb(i)i}

and the matrix H = {Hij} with elements Hij = γt
i gb(i)j/gb(i)i when i 6= j and Hii = 0, we can

rewrite (4.3) in matrix form:
(I−H)p ≥ n , (4.4)

where I denotes the identity matrix, and the inequality holds componentwise. A minimum-
power solution corresponds to the case where (4.4) is satisfied with equality.

Definition 4.2 The SIR-balancing problem above is said to be feasible if there exists a non-
negative power vector p satisfying (4.4).

The optimal power vector p∗, such that the equality is met in (4.4), exists if the largest eigen-
value of the matrix H, denoted by ρ(H), is less than or equal to one [99, 100]. Although power
assignment provided by p∗ ensures optimal performance for all users,6 it entails an extraordi-
nary signalling overhead in the network and therefore is not practical. This global solution of
SIR-balancing problem serves rather to obtain a theoretical bound for other algorithms.

A number of iterative distributed algorithms have been studied that allow each user to
update his transmit power based only on local measurements and his own channel attenuation
[21, 33, 72, 92, 99]; Yates, in [96], presents a framework for studying such algorithms, also
considering different possible user-to-base station assignment policies. Another good overview
is proposed in [40] with a rich reference base, whereas the latest contribution to the bibliography
is probably the Rintamäki’s PhD thesis [78].

As we have already presented in Section 4.3, the power control in UMTS is organised in two
cascading loops: the inner loop using Algorithm 4.1 to align the received SIR of a given user to
target one (see Section 4.3.2), while the outer loop updates this target according to the channel
conditions.

Algorithm 4.1, initially proposed in [11] and utilised in the inner loop, reduces to minimum
the signalling between the base station and the mobile: one bit is used per transmitter power

6 In case, where the SIR balancing problem is not feasible, a removal strategy must be employed to remove
users for which the necessary QoS cannot be achieved [10, 36, 97, 99].
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control (TPC) command, which is, however, repeated in some systems in order to increase
protection.7 Recall that this algorithm is essentially reduced to the transmitter’s increasing
or decreasing the transmit power by a fixed amount according to whether the received SIR is
above or below the target one, which information is signalled from the receiver.

A number of modifications of this algorithm can be found in the literature optimising its
performance, in particular, by reducing the oscillations around the target SIR or adapting the
SIR modification step to improve convergence [8, 40, 74, 79, 80].

Regarding the outer loop, the conventional algorithm that we present in Section 4.6.1 has
been proposed in [82], and consists in increasing the target SIR by a large step, when a block
transmission error is detected, and decreasing it by a smaller one on correct transmission. The
relation between the two steps defines the average resulting BLER.

This algorithm will be discussed in more detail in Section 4.6, where we argue that, although
rather efficient for services with target BLER of order 10−2 and higher, for those with higher
QoS requirements it becomes inadequate due to the inherently limited information conveyed
by the simple CRC check. In other words, for high quality services, too few errors occur for a
reliable estimation of BLER to be possible.

The outer loop power control is not fixed in 3GPP specifications, which makes it into a field
where different equipment suppliers may compete. For this reason, most algorithms for outer
loop are confidential. Nevertheless, some contributions can also be found in the public domain
[38, 41, 49, 52]. One of the possible improvements is represented by the so-called double-loop
algorithms, which are discussed to some extent in Section 4.6.3.

Finally, another trend in QoS optimising is the multi-user detection. Although this technique
concerns primarily the interference suppression by way of improving receiver structure, it can
be combined for best results with efficient power control, as for example in [91].

4.5 Systemic view of the uplink power control

As it has been already mentioned in the opening of this chapter, the power control functionality
is distributed over several UMTS subsystems. On the network side, for example, the Open Loop
and the Inner Loop PC are performed in the Node B, whereas the Outer Loop PC is implemented
in the RNC. The latter allows, for example, the OLPC to be active even during soft handover
when mobile is switched from one Node B to another, thus avoiding unnecessary instances of
the initial convergence phase of the algorithm, which is rather slow. The Closed Loop PC, on
the contrary, converges sufficiently fast — justifying the name of Fast Power Control —, and
therefore can be realised in Node B, which increases its efficiency by avoiding the signalling
delay between the RNC and the Node B. (The target SIR determined by the OLPC is signalled
to the Node B over the so-called Iub interface, thus introducing a considerable delay before it
is applied by the CLPC.)

More generally speaking, various aspects of power control are distributed between the RNC
(Uplink OLPC), Node B (Downlink Open Loop, Uplink CLPC), and User Equipment (Downlink
PC). However, in order to properly model the whole functionality, one has to consider also
the delay introduced by the Iub interface when signalling the target SIR from the RNC to the
Node B, and the error in the TPC command due to its being transmitted over the radio channel
without any error protection coding, as well as other components’ influence — as always, the
model grows with the precision of the results required.

7 No error correction coding is applied to the TPC command in order to increase processing speed and,
consequently, reduce the power control delay.
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Figure 4.7: A systemic diagram of Uplink Power Control.

For the sake of clarity and simplicity, we shall now restrict ourselves even further by dropping
the Outer Loop Power Control out of our global picture. Figure 4.7 shows a diagram representing
a possible virtual system modelling the Closed Loop Power Control (here in the sense including
the OLPC).

The diagram is separated, first of all, in two layers: power control layer, and transmission
layer. Indeed, as it can be seen from the discussion above, power control from our point
of view is a reactive system heavily dependent on the surrounding environment. When one
speaks of a loop in our context, it is necessarily an action-reaction loop, where the action
consists in adjusting continuously a particular set of parameters according to the environment
measurements, constituting the corresponding reaction. For example, one can see that the blue
arrows on the diagram, corresponding to the interactions involved in the Inner Loop PC, do,
indeed, form a loop. Replacing the arrow, going from the Receiver to the CLPC component in
the Node B, by the set of red arrows we obtain the Outer Loop PC.

Transversly, this diagram is broken up into five blocks corresponding to different subsystems
of the original system in Chapter 3.

Let us briefly discuss various components shown in Figure 4.7. First of all, observe that
the system is completely decomposed in subsystems, and therefore there is no need in internal
memory or controller. The system can be viewed as having no output, and its input is essentially
restricted to the target BLER. However, the data to be transmitted has to be provided on input
for the sake of completeness. Similarly, one can consider the actual BLER to be the output
of our system, although its only purpose in this context is to allow the analysis of the power
control performance by comparing it to the target one. In any case, all the corresponding time
scales are discrete, and thus on a higher abstraction level the system should be considered as a
software one.

Recall now that the classification in Section 2.2.2, separating all systems in three classes —
software, physical, and hybrid ones —, is entirely based on the nature of system’s time scales.
Thus we can conclude that the system in Figure 4.7 would be a software one, if it was not for the
Channel component in the Transmission layer, and the two corresponding connections between
Radio Channel on one hand, and Transmitter and Receiver correspondingly on the other. As it
has already been mentioned in Chapter 3, the radio channel is best modelled by a continuous
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system, as most of the analysis in the litterature (as for example in [75]) is based on continuous
functions. Thus the Transmitter component is here a hybrid subsystem similar, although more
complex, to the Simplified Radio Transmission chain in Example 2.27 of Section 2.2.4. The
Receiver component is also a hybrid subsystem, symmetrical to the Transmitter one.

Observe that the component modelling the radio channel in the Power Control layer of the
diagram has a different nature from that in the Transmission layer. Indeed, its only purpose is
to model the possible error on the TPC command. This error is most often assumed to be neg-
ligible, and the TPC command can only take a small number of values (two or three depending
on the particular system), therefore the underlying radio channel can be easily modelled by a
purely software system that would modify the value of the transmitted command with a given
probability. Both input and output time scales of this system are therefore discrete with a time
step 0.67 · 10−3s, corresponding to a rate of 1 500 Hz, at which the CLPC is performed.

Properly speaking, the Power Control as such is modelled by the components in the upper
layer of the diagram. The separation in two layers illustrates one of the fundamental differences
between the standard approaches to system analysis: theoretical analysis and simulation. The-
oretical analysis assumes a certain pattern for all external influences, expressed by a system of
differential equations, a probability distribution, or other similar means, in order to produce
an analytical expression for the behaviour of the system in question. Simulation, at the same
time, consists in approximating the behaviour of all participating systems, including the exter-
nal influences, to obtain purely numerical results predicting the expected performance. In the
following sections we illustrate the former by analysing several algorithms for the Uplink Outer
Loop Power Control.

4.6 Outer loop power control analysis

The algorithm for CLPC is, by now, rigorously specified on the User Equipment (UE) side.
Although, on the network side, there is more choice as to the decisions a Node B has to take
on receiving a power control command, the general principle is given by Algorithm 4.1. At
the same time the OLPC algorithm is left completely open for RNC manufacturers. Therefore,
most industrial research is concentrated on the Outer Loop Power Control.

4.6.1 Sawtooth algorithm

Recall from Section 4.1 that the role of the OLPC is to maintain the target SIR at correct
level depending on the current radio conditions. The basic algorithm that serves as a reference
for most studies of OLPC is the well known Sawtooth algorithm (see Algorithm 4.2). 8 The
principle of Sawtooth is very basic and resembles to that of the CLPC algorithm. It consists in
evaluating the quality of the received signal, and adjusting the target SIR accordingly.

For each received block:
if (CRC fail)

SIRt := SIRt + δup

else
SIRt := SIRt - δdown

Algorithm 4.2: Sawtooth algorithm.

8 This algorithm in a slightly different form was proposed in [82].
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In general, an OLPC algorithm is governed by a set of parameters that can be split in the
same manner as in Section 4.1 into QoS parameters (BER, BLER, etc) and channel quality
parameters (SIR, Eb/I0, etc). It can be said that the goal of the OLPC is to implicitly measure
the channel quality and set the target SIR correspondingly. Therefore, the algorithm’s efficiency
depends particularly on its channel quality related parameters. Thus, an important problem
in analysing an OLPC algorithm is to establish a relation that, given the QoS requirements,
allows to determine the correct values for the latter.

In the case of Sawtooth, the QoS is determined by the BLER with the corresponding re-
quirement expressed in terms of a so-called target BLER. This algorithm has two parameters
δup and δdown that directly affect its performance. However, neither of these parameters has
an explicit relation with the quality of service. It is imperative therefore to establish a relation
between δup, δdown, and target BLER. This can be done with the help of the following theorem
that we prove in Section C.1 of Appendix C.

Theorem 4.3 Let {Xn} be a stochastic process on R defined by setting Xn+1 = F (Xn), where

F (X) =





X + a with probability p(X)
X − b with probability q(X)
X with probability 1− p(X)− q(X) ,

(4.5)

with a, b > 0 and p(x) + q(x) ≤ 1 for all x ∈ R. Suppose also that this process converges to a
stationary distribution π. Then, denoting by E[p(x)] and E[q(x)] the expectations in stationary
distribution of the probabilities of an upwards and downwards steps correspondingly, we have
the following relation

a E[p(x)] = b E[q(x)] . (4.6)

Proposition 4.4 In order for Sawtooth algorithm to converge to a given target BLER p, it is
necessary that its parameters δup and δdown satisfy the following relation

δup · p = δdown(1− p) . (4.7)

Proof. Observe that the evolution of target SIR controlled by Sawtooth algorithm can be
described as a stochastic process satisfying the conditions of the above theorem. Indeed, let us
denote by Xn ∈ R the target SIR on reception of the block n + 1. Sawtooth then defines the
next value of target SIR by setting

Xn+1 =

{
Xn + δup with probability p(Xn)
Xn − δdown with probability 1− p(Xn) ,

where p(Xn) is the value of BLER when the received SIR is equal to Xn, i.e. the probability
that block n+1 is not decoded correctly. Assuming that this algorithm converges, we can easily
deduce that, in terms of Theorem 4.3, we have E[q(x)] = E[1−p(x)] = 1−E[p(x)]. Substituting
target BLER for E[p(x)] in (4.6) we obtain the desired relation.

In [82] and often in practice, equation (4.7) is simplified to

δdown = δup ·BLERtarget , (4.8)

as target BLER is often negligible compared to 1. This provides a simple relation between two
parameters. The task of optimising the algorithm’s performance is now reduced to determining
the optimal value for δup, which can be performed by simulation.
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− o −
In Sawtooth, BLER serves to evaluate the quality of the received signal. This approach has an
advantage of using the same measure for both controlling the OLPC algorithm, and defining the
Quality of Service requirements; it is a very good choice for services with high error tolerance
such as packet services or voice connection. Indeed, for services requiring a BLER of 1%
and higher, errors occur sufficiently often for the algorithm to be able to adapt to channel
variations, and also to converge rapidly at the initial phase of the connection. On the other
hand, for services requiring lower BLER, Sawtooth algorithm is no longer capable of producing
satisfactory performances. For example, taking δup = 0.25 dB, and assuming a target BLER
of 10−4 (typical target BLER for video streaming), we obtain with (4.8) a value of 2.5 · 10−5

for δdown. This means that in order to compensate for an excess of 1 dB in the initial transmit
power one would have to wait for forty thousand blocks, i.e. at least eighty seconds of connection
time! 9 Morover, the following example shows that, even at the ideal value of SIR, Sawtooth
faces another problem — that of stability.

Example 4.5
Suppose again that we use Sawtooth to perform the power control on a service with target
BLER p = 10−4, and that the algorithm has converged to an ideal value s of the target SIR.
Suppose further that we fail to decode the block number n. According to Algorithm 4.2, the
target SIR for the following transmission is set to s + δup. Thus the target SIR becomes higher
than the required value, and approximately 1/p = 10 000 blocks have to be received correctly
in order for the target SIR to get back to the ideal value (cf. equation (4.7)).

Note 4.6 Observe that the use we make here of the word “stability” is somewhat abusive.
Indeed, if we assume constant radio environment, the trajectory of the transmit power defined
by Sawtooth is rather stable in the sense that it oscillates in a certain fork around the ideal
value. When we decrease the target BLER, this affects this fork and, more importantly, the
cycle of these oscillations (cf. Example 4.5): the less is the target BLER, the longer is this cycle
and thus less realistic the assumption of constant environment. Therefore, in a realistic situation
with variable radio conditions the transmit power will have a stronger tendency to diverge from
the ideal value. It is in reference to the latter phenomenon that we speak of instability.

The problem described in the example above arises from the fact that the presence of a single
error does not provide any information as to the current BLER and, consequently, target SIR.
The design of Sawtooth depends entirely on the statistical reasoning provided by Proposition 4.4.

To summarise, when using Sawtooth algorithm with services requiring lower BLER, we
encounter two particular problems:

• the information, provided by the fact that a block is decoded correctly or not, is not
sufficient to allow fast convergence to the ideal SIR value;

• even assuming that the algorithm has converged to (or was initialised with) this ideal
value, its stability cannot be assured.

The next section presents a modification of Sawtooth that allows to resolve the latter problem
without recurring to additional measurements, however it does not resolve the former one. Thus,
other measures of the received signal’s quality, providing more information on the current link
state than the simple CRC check, are necessary for services with low target BLER and also
more sophisticated OLPC algorithms.

9 Assuming that the whole block is sent in one frame, and that the frame duration is the standard 2ms.
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4.6.2 Adapting Sawtooth to increase stability

As it has been mentioned in the previous section, Sawtooth is a good choice of power control
algorithm when the target BLER is of 1% and higher. One of the problems of applying it to
services with lower target BLER is that a very long sample is necessary to estimate the current
BLER, and thus it is rather difficult to ensure the algorithm’s stability (cf. Example 4.5).

One way of addressing this problem is, therefore, to gather more information about the
current BLER before taking a decision to increase or decrease the target SIR. In other words,
we define a second power control algorithm (see Algorithm 4.3) that increases the target SIR
when a sufficient number of block errors occur during a given sampling period, and inversely it
decreases the target SIR when a sufficient number of blocks have been decoded correctly.

At the initialisation phase:
n := 0
Nerror := 0

For each received block:
n := n + 1
if (CRC fail) Nerror := Nerror + 1

if (n = Nb)
n := 0
if (Nerror > Nup) SIRt := SIRt + δup

if (Nerror < Ndown) SIRt := SIRt - δdown

Nerror := 0
end if

Algorithm 4.3: Sawtooth algorithm adapted to increase stability at lower values of target BLER.

In Algorithm 4.3, this is implemented by defining two thresholds Nup and Ndown. The target
SIR is updated every Nb blocks: it is increased if the number of block errors (Nerror) exceeds
Nup, and decreased if it is below Ndown. Compared to Sawtooth, this introduces three new
parameters that have to be taken in account by a relation equivalent to the one provided for
Sawtooth by Proposition 4.4.

First of all, observe that, supposing that at step n the received SIR is equal to x, and the
corresponding BLER is defined by a function f(x), the probabilities p(x) and q(x) of increasing
or decreasing the target SIR (cf. Equation (4.5) in Theorem 4.3) are defined correspondingly by

p(x) = P (Nerror > Nup) =
Nb∑

k=Nup+1

P (Nerror = k) ,

q(x) = P (Nerror < Ndown) =
Ndown−1∑

k=0

P (Nerror = k) ,

(4.9)

where

P (Nerror = k) =

(
Nb

k

)
f(x)k

(
1− f(x)

)Nb−k
. (4.10)

Substituting (4.10) into (4.9) we obtain a proposition equivalent to Proposition 4.4.
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Proposition 4.7 In order for Algorithm 4.3 to converge to a given target BLER p, it is nec-
essary that parameters δup and δdown satisfy the following relation

δup E




Nb∑

k=Nup+1

(
Nb

k

)
f(x)k

(
1− f(x)

)Nb−k


 = (4.11)

= δdown E




Ndown−1∑

k=0

(
Nb

k

)
f(x)k

(
1− f(x)

)Nb−k


 .

However, the relation in proposition Proposition 4.7 is too complex to be applied in practice
and has to be replaced by a suitable approximation. First of all, we substite the expectations
in (4.11) by the values of the corresponding probabilities in E[X] (see the discussion in Sec-
tion C.1 10). Assuming that the algorithm converges to a stationary distribution such that the
mean value of BLER is equal to the target p, we substitute p for f(x) to obtain the following
relation

δup

Nb∑

k=Nup+1

(
Nb

k

)
pk(1− p)Nb−k = δdown

Ndown−1∑

k=0

(
Nb

k

)
pk(1− p)Nb−k .

Algorithm 4.3 has been studied extensively in [16]. Several possible approximations for this
latter relation have been exhibited, as well as a study of this algorithm’s performance. Due to
confidentiality restrictions, we can only present here the simplest case.

Example 4.8 (Ndown = 1, Nup = 0)
This case represents an emulation of Sawtooth’s behaviour. That is, target SIR is increased
as soon as there is at least one error, and it is only decreased when no errors occur during
the period of Nb blocks. This configuration is mostly useful for comparing the stability of this
algorithm against that of Sawtooth.

On the other hand, determining the optimal relation between δup, δdown, and target SIR in
this case is relatively simple. Indeed, denoting the target BLER as above by p and assuming
p� 1, we obtain

p(SIRt) = P (Nerror = 0) = (1− p)Nb =
(

(1− p)1/p
)Nb p

≈ (1/e)Nb p ,

and consequently

q(SIRt) = P (Nerror > 0) = 1− P (Nerror = 0) ≈ 1− (1/e)Nb p .

Substituting the two equations above into (C.4), we obtain the following relation

δdown = δup

(
eNb·BLERtarget − 1

)
. (4.12)

Restricting the target BLER even further by assuming Nb � p−1, we can obtain an even
simpler relation. Let us consider again the probability of increasing the target SIR.

q(SIRt) = 1− (1− p)Nb = 1− (1−Nb p + o(p2)) = Nb p + o(p2) ,

and thus, assuming that eNtbp ≈ 1, we obtain the following relation

δdown ≈ eNtbp · δup ·Nb · BLERtarget ≈ δup ·Nb ·BLERtarget . (4.13)

10 It can be verified that both probabilities concerned satisfy necessary conditions.
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4.6.3 Double loop algorithms

As it has been mentioned above, compared to Sawtooth, the algorithm described in the previous
section mainly improves stability at low values of target BLER. Indeed, its main characteristic
feature is the ability to delay target SIR update until a better estimate of current BLER is
available to avoid unnecessarily changing target SIR when it is already close to the ideal value.
On the other hand, as the target SIR is updated less frequently, the algorithm converges even
slower than Sawtooth.

In order to improve OLPC algorithm’s convergence, a different QoS metric has to be chosen
instead of BLER, such that it can be well estimated in a shorter period of time. One of such
metrics is, for example, the Bit Error Rate (BER). The obvious advantage of BER is that it
takes the same time to transmit up to several thousands of bits (depending on the transport
channel characteristics) as to transmit one block. The approximate number of bits or blocks
necessary to estimate the corresponding error rate can be obtained with the De Moivre-Laplace
theorem (see Section C.2), and is given by

n =

⌈(
b

ε

)2

p(1− p)

⌉
. (4.14)

Example 4.9 (Voice communication)
Consider a voice communication. Typically, for this service, the target BLER is taken to be
0.01, and the corresponding BER is approximately 0.1288.

We start by computing the number of blocks necessary to estimate the BLER. Let us also
require, for example, a precision of 0.01. Substituting these values into equation (4.14) we deduce
that, taking the proportion of errors over a sequence of n = d99 b2e blocks as an estimate of
the BLER, the probability that the estimation error is less than 0.01 is approximately G(b),
where G(b) is the probability of the interval [−b, b] under standard normal distribution (see
again Section C.2). 11 The values of G(b) can be obtained from tables in numerous textbooks,
and in particular it is known that G(1.96) ≈ 0.95 and G(2.6) ≈ 0.99. Therefore, taking b = 2.6,
we can assume in the above context that with 99% probability the observed average BLER over
258 blocks is within 0.01 of the actual one.

Applying the same reasoning to the BER estimation, we conclude that, if the actual BER
is close to the target of 0.1288, then to have, for example, a 99% probability of estimating the
BER with precision 0.003 12 we have to observe a sequence of approximately 84 283 bits.

In order to compare the duration of the two corresponding transmissions, we have to compute
the number of bits that are sent per block. To do so, observe that typically the bit-rate for
voice communication would be 12.2 kbps, and the channel would be coded with the convolutional
coding of rate 1/3 with prior addition of 12 bits for the Circular Redundancy Check (CRC).
Also, one block corresponds to two 10ms frames, and therefore, to achieve the 12.2 kbps bit-rate,
we have to send 2 × 12 200/100 = 244 information bits per block. Adding the CRC bits, and
multiplying by 3, we see that 792 bits are actually transmitted per block in this context. We
can now deduce that approximately 107 blocks should be sufficient to estimate the BER against
258 for the BLER.

Note 4.10 In the example above, the target BLER is 0.01. Several observations can be made
regarding services with lower target BLER.

11 This, of course, assuming that the actual BLER is close to the target 0.01.
12 Simulations show that further increasing precision for BER estimation does not improve OLPC performance.
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Figure 4.8: A systemic diagram of a double loop algorithm.

First of all, if we decrease the target BLER, the precision of BLER estimation has to increase.
Typically, it should be at most the same as the target BLER. In this case, equation (4.14) can
be rewritten as

n =

⌈(
b

p

)2

p(1− p)

⌉
=

⌈
b2 1− p

p

⌉
.

Thus, the number of blocks required to obtain a good estimate of BLER increases when the
latter goes to zero.

On the other hand, the necessary precision of BER estimation does not vary considerably,
and the number of blocks necessary to estimate the actual BER is mostly determined by the
number of bits per block. The latter, however, increases, as the services requiring low BLER
would typically have a bit-rate of 64 kbps and higher.

Thus, for the services in question the time necessary to obtain an estimate of the BLER is
higher than that of the example above, whereas the time necessary to estimate the BER is even
less!

Note 4.11 De Moivre-Laplace theorem requires the trials to be independent. In real-life radio
channels this can be assumed to be true for blocks, but not, a priori, for bits composing these
blocks. Indeed, bit errors occur by bursts, that is the errors in the adjacent bits are not
independent events. Nevertheless, we can apply this theorem thanks to the channel interleaving
that is used to compensate for this burstyness. With channel interleaving, bits are rearranged
before transmission in a pseudo-random manner, and arranged back in order on reception. As
the transport channel BER is estimated after the deinterleaving, bit errors can also be considered
to be independent.

The discussion above shows that BER can be estimated faster than BLER, and therefore it
is more suitable when controlling a transmission with high QoS requirements. However, these
requirements are still expressed in terms of target BLER, whereas corresponding target BER
is often a priori unknown. Thus an OLPC algorithm that uses BER to determine target SIR,
also has to determine the target BER corresponding to a given BLER.

This gives rise to the so-called double loop algorithms split — as the name suggests — in
two loops: the first one determines the target BER observing the block errors, while the second
one updates the target SIR depending on whether the actual BER is higher or lower than this
target. Figure 4.8 illustrates this construction from a systemic point of view. One should notice,
in particular, the similarity between the systemic decompositions of a double loop algorithm
and the Outer Loop–Inner Loop pair (compare Figure 4.8 with Figure 4.5). Indeed, in both
cases, the system is divided in two parts: one provides the output depending on a certain quality
statistic, and the other one sets the target for the former in order to provide the required value
of some higher level statistic. The fact that the nature of the two systems is similar, suggests
also that their analyses should also be alike.

Double loop algorithms being more advanced than those described in the previous two
sections, confidentiality restrictions apply once again, so we cannot give more detail of neither
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the algorithms, nor the corresponding analysis. However, the study of one such algorithm can
be found in [15, 16].

4.7 Discussion

In this chapter, we have presented the power control subsystem of UMTS, giving particular
attention to the Outer Loop Power Control (OLPC) in uplink connection.

We have, in particular, presented two simpler algorithms for OLPC — Sawtooth and one of
its extensions — and a common method, based on stochastic processes approach, for determining
the necessary relation between the parameters of such an algorithm that would garantee optimal
performance.

We have observed also that the common problem of both of these algorithms was intrinsic to
the usage of CRC test as reference statistic, which happens to be insufficient, for services with
low target error rate, as to the amount of information it conveys on the radio conditions. This
observation leads to a conclusion that more sofisticated algorithms, using lower level statistics
are required to obtain better performance in such cases.

One particular group of such more advanced algorithms consists of double-loop algorithms,
which we did not present explicitly, in particular, due to confidentiality restrictions. We have
presented, however, a systemic representation of such an algorithm, which happens to be struc-
turally very similar to that of the Closed Loop Power Control (comprising both Outer Loop
and Inner Loop), suggesting that the analysis of a double loop algorithm should eventually be
performed in the same way as that of the Closed Loop Power Control.

Finally, the systemic representation, in Figure 4.7, of the uplink power control allowed us to
underline once more the importance of a model for studying systems of heterogenous nature,
exhibiting at the same time physical, logical, and hybrid components, with both continuous and
discrete time evolution.
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Frame Level: Hybrid ARQ Control Schemes

We shall now descend even further in the hierarchical decomposition of the UMTS network
by considering a particular subsystem of the Node B. Indeed, one of the latest features of the
UMTS is the High Speed Downlink Packet Access (HSDPA), a service allowing packet access
at a very high bit-rate compared to previous releases. It is based on a new channel called High
Speed Downlink Shared Channel (HS-DSCH). Shared between several users, this channel is
dedicated to downlink traffic and supports high data rates.

Although not the only modification required to introduce the HSDPA, the addition of HS-
DSCH is probably the most important one. From the systemic point of view this corresponds to
an addition of a new parallel coding chain to the coding component of Node B (cf. Section 3.3.1)
and, of course, the corresponding decoding chain in the UE.

In this chapter, we concentrate on one particular technique introduced as part of HS-DSCH
coding chain, which is the Hybrid ARQ (H-ARQ), and more precisely on the corresponding
control schemes (see Section 5.1 for more details).

Contrary to the previous chapter, where we emphasised rather analytical methods for our
study of the power control, in this chapter, we use the second dominant method of analysis of
complex industrial systems, that is simulations. We proceeed as following. In Section 5.1, we
give an overview of H-ARQ as well as the different techniques it consists of. In Section 5.2, we
present the link level simulations that we have performed to compare several control schemes
for H-ARQ. Finally, we conclude, in Section 5.3, by indentifying an optimal control scheme in
terms of quality of service, as well as two suboptimal ones showing slightly worse performance
but allowing to reduce the UE buffer requirements.

5.1 Overview of Hybrid ARQ

The HS-DSCH channel, which is the base of the new HSDPA service, is the main evolution
of Release 5 (R5) of 3rd Generation Partnership Project (3GPP) specifications. Release 5
introduces for this channel some new advanced radio technologies both in the physical and in
the Medium Access Level (MAC) layer. The main techniques are: a new modulation scheme, 16-
state Quadrature Amplitude Modulation (16QAM); adaptive modulation and coding (AMC);
and Hybrid Automatic Repeat Request (H-ARQ), an improved method of retransmission of
false blocks. These new technologies allow to achieve data rates of up to 10.8 Mbps.

In downlink, H-ARQ allows a User Equipement (UE) to automatically request a retrans-
mission of a block it didn’t manage to decode correctly. In previous releases of UMTS (R99),

71



Chapter 5. Frame Level: Hybrid ARQ Control Schemes

with H-ARQ type 1, on reception of a false block the UE discarded it and waited for a retrans-
mission of the block from the Radio Network Controller (RNC) hoping to decode the new copy.
In HSDPA fast H-ARQ is applied by retransmitting directly from Node B in the physical layer,
thus enabling quicker retransmissions.

In Release 5, H-ARQ Type 2/3 is added, whose aim is to enable combining a retransmission
with previous transmissions to increase the chances of correct decoding. The ensuing disad-
vantage of H-ARQ is that the UE needs to store the false blocks and add the new set of the
soft decision bits to the previous ones it couldn’t decode correctly, which requires additional
memory and processing.

Although some research has been done to determine the optimal parameters for ARQ as
such (see for example [71]), none is so far available in the context of H-ARQ for HSDPA as
defined by 3GPP specifications.

H-ARQ is described in detail in [6] and consists of the following three techniques:

• Chase combining (CC) — if the received block doesn’t have the correct Circular Redun-
dancy Check (CRC) sequence, it is retransmitted and new values of soft decision bits are
added to those of the first transmission.

• Incremental redundancy (IR) — incorrect block is retransmitted with different redundancy
version parameters (different systematic over parity bits priority and/or rate matching
parameters).

• 16QAM constellation rearrangement (CoRe) — different mapping of blocks of bits to
symbols.

5.1.1 Chase combining

Chase combining was originally proposed in [20]. It provides a considerable gain in transmission
power (3 dB when two transmissions are used in Gaussian environment) at the cost of slightly
increased processing complexity and a buffer in the UE that is required to store the received
values.

To understand the idea behind this technique, one should first of all observe that all the
way up to the decoding stage the receiver works with so-called soft decision bits rather than
with logical ones, i.e. 0 or 1. Each soft decision bit represents the log-likelihood ratio of the
corresponding bit, defined by

Λ = log
P (b = 0 | ŝ)

P (b = 1 | ŝ)

where b is the original transmitted bit, and ŝ is the received signal. In other words, the log-
likelihood ratio indicates if, given the received signal ŝ, the original transmitted bit is more
likely to be 0 or 1. Figure 5.1 shows the log-likelihood ratio depending on the conditional
probability P (b = 0 | ŝ). One can clearly see that the bigger the log-likelihood ratio, the higher
is the probability that given the received signal ŝ the original transmitted bit was equal to 0,
and vice-versa.

Assuming that bits on the output of source encoder are identically distributed (that is
P (b = 0) = P (b = 1) = 1/2) we can apply the Bayes’ theorem to obtain

Λ = log
P (ŝ | b = 0) P (ŝ)

P (b=0)

P (ŝ | b = 1) P (ŝ)
P (b=1)

= log
P (ŝ | b = 0)

P (ŝ | b = 1)
.
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0

0 0.5 1

Figure 5.1: Log-likelihood ratio corresponding to a bit b as a function of P (b = 0 | ŝ).

The same ideas can be applied in case of multiple transmissions. Indeed, assume that a given
block is not decoded correctly after the first transmission and is subsequently retransmitted.
For each bit in this block, we obtain therefore two values of soft decision bits corresponding
respectively to both of these transmissions. Consequently, the log-likelihood ratio can be defined,
for any given bit, based on the two received signals ŝ1 and ŝ2. One can assume that the channel
characteristics at the moments of these two transmissions are independent (for example, the first
transmission might have occured during a fading dip, which would have been over before the
second transmission was initiated). Applying Bayes’ theorem as above we obtain the following
relation.

Λ = log
P (ŝ1, ŝ2|b = 0)

P (ŝ1, ŝ2|b = 1)
= log

P (ŝ1|b = 0)P (ŝ2|b = 0)

P (ŝ1|b = 1)P (ŝ2|b = 1)
= Λ1 + Λ2 , (5.1)

where Λ1 and Λ2 are the log-likelihood ratios of the bit in question corresponding to the first
and the second transmission respectively.

However, in practice consequent transmissions are not entirely independent, and therefore
the equality does not hold in (5.1). Nevertheless, the correlation is low, and putting Λ ≈ Λ1+Λ2

in the above notations happens to be a sufficiently good approximation of the log-likelihood ratio
with respect to the two transmissions.

5.1.2 Incremental redundancy

Incremental redundancy provides yet another improvement by allowing to send additional in-
formation in case were retransmission is needed. The channel coding in HSDPA is based on
the rate 1/3 Turbo encoding. This means that to every block of information bits, two blocks
of parity bits of the same size are added at the encoding stage. Consequently, some bits have
to be punctured before transmission to obtain a given bit rate. The incremental redundancy
consists in puncturing different bits at consequent transmissions. In other words, bits which are
punctured at the rate matching step of the first transmission can be sent at the second one (see
Figure 5.2).

In HSDPA, one can prioritise sending systematic or parity bits, and at the same time vary
the parameters of the rate matching algorithm, thus choosing not to puncture the same bits as
at previous transmissions. Whatever the choice of priority (sending systematic or parity bits),
there are two possible values of rate matching algorithm’s parameters, which provides altogether
four redundancy versions. 1.

1 Observe that choosing the same redundancy version at each transmission, we obtain Chase combining. Thus
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UE buffer:

2nd transmission:

1st transmission:

systematic bits

systematic bits

systematic bits

parity 1 •

parity 1 •

parity 1 •

parity 2 •

parity 2 •

parity 2 •• •

• •

Figure 5.2: Illustration of the incremental redundancy principle (punctured bits are indicated
by •; by combining the two transmissions, the UE has information about more bits than has
been sent at any single transmission).

Incremental redundancy consists, therefore, in changing the redundancy version utilised at
subsequent transmissions of the same block. This technique greatly improves Turbo decoder’s
performance (see [1, 2] for a comparison of IR vs CC). The disadvantage is that the buffer size
in the UE has to increase considerably, as well as processing complexity.

5.1.3 16QAM constellation rearrangement

16QAM constellation rearrangement is a technique proposed in [3, 4] that allows to increase
performance as compared to Chase combining while keeping processing complexity and buffer
requirements comparatively low. Thus, constellation rearrangement can be viewed as a low
complexity alternative to incremental redundancy. As implied by its name, this technique is
only applicable when 16QAM modulation is used 2, and consists in changing the mapping of
blocks of bits to complex symbols.

16QAM is a quadrature amplitude modulation based on a constellation of 16 symbols de-
picted in Figure 5.3. The bits to be transmitted are grouped in blocks of four. Each one of these
blocks defines a constellation symbol that is then transmitted over a communication channel.
More precisely, denoting the four bits by i1 q1 i2 q2 correspondingly, the complex-valued symbol
is obtained with the following formula:

s =
ı̃1(2− ı̃2) + j · q̃1(2− q̃2)√

5
,

where j =
√
−1, and b̃ = (−1)b is the real-valued bit corresponding to the logical bit b. One

can observe that first and third bits (i1 and i2) define the real part of the symbol, and second
and fourth (q1 and q2) — the imaginary one, and therefore demodulation of the received signal
ŝ would consist, firstly, in comparing its real and imaginary parts to zero in order to determine
i1 and q1, and, secondly, in comparing absolute values of its real and imaginary parts to the
threshold 2C/

√
5 to determine i2 and q2, where C depends on the radio conditions and transmit

power.
The advantage of 16QAM is that 4 bits are transmitted per single complex-valued symbol,

as opposed to 2 in QPSK — the modulation used for all channels in UMTS transmitting user
data, except for HS-DSCH —, thus doubling the possible bit-rate. On the other hand, its

the latter is a trivial case of Incremental redundancy.
2 Here we place ourselves in the context of R5 UMTS where the only modulations in use are BPSK, QPSK,

and 16QAM. In a different context constellation rearrangement could be used with any amplitude modulation
(e.g. 64QAM, 128QAM, etc.)
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Figure 5.3: 16QAM symbol constellation.

Constellation
version

Output bit
sequence

Operation

0 i1 q1 i2 q2 None (mapping as in Figure 5.3)

1 i2 q2 i1 q1 Swapping MSBs with LSBs

2 i1 q1 i2 q2 Inversion of LSBs’ logical values

3 i2 q2 i1 q1 Both swapping and inversion

Table 5.1: Constellation rearrangement for 16QAM (see [6], p. 65).

disadvantage is a more complex modulation and demodulation procedure, as well as increased
sensitivity to radio conditions.

It is well known (see for example [75]) that among the four bits forming a symbol in 16QAM
the probability of error can be considerably less for the most significant bits (MSBs) than for
the less significant bits (LSBs). For example, if we consider symbol 2 (0010) of the constellation
in Figure 5.3, for the first bit to be demodulated erroneously the perturbation of the real part
of the transmited signal has to be three times that necessary to induce an error in the third bit.

In order to compensate for this effect, bits can be rearranged before retransmission in such
a manner that some less protected bits become more protected. More precisely, denoting the
four bits by i1 q1 i2 q2, one of the four transformations in Table 5.1 is applied before they are
mapped to a constellation symbol (see [6]).

Assuming that each symbol of the constellation is transmitted with equal probability, av-
eraging of the probability of error over a long chain of bits is equivalent to averaging it over
the symbol constellation. Thus, in order to better understand the principle of constellation
rearrangement, we can consider a transmission where each constellation symbol is sent exactly
once over an ideal channel (no fading, no noise).

Suppose we use standard bits-to-symbols mapping, i.e. constellation version 0. We then have
a chain of 64 bits, out of which 16 are better protected than the other 48. These 16 bits are the
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Xrv 0 1 2 3 4 5 6 7

s 1 0 1 0 1 1 1 1
r 0 0 1 1 0 0 0 1
b 0 0 1 1 1 2 3 0

Table 5.2: Encoding of redundancy version parameters for 16QAM.

two MSBs of each of four symbols in the corners of the constellation, and one of the MSBs for the
eight other symbols on the constellation’s exterior. Each of the four transformations in Table 5.1
provides better protection for a different set of 16 bits. Thus consequent retransmissions with
different constellation arrangements would considerably improve Turbo decoder’s performance.

One can make the following observations regarding constellation rearrangement.

• Constellation rearrangement does not require additional buffer in the UE. The only space
required is that, necessary to store three additional tables for bits-to-symbols mapping,
and it is negligible compared to the size of buffer used to store transmitted bits. There is
no additional processing to be done.

• When only one transmission is performed, all four constellation rearrangement techniques
are equivalent. Similarly, if several retransmissions are needed, whatever is the rearrange-
ment sequence, there is always an equivalent one with first transmission using standard
mapping. Maximum benefit from constellation rearrangement can be obtained with four
retransmissions using different rearrangement techniques.

5.1.4 Control schemes

Both incremental redundancy and 16QAM constellation rearrangement are controlled by a set
of so-called redundancy version (RV) parameters: r, s, and b that are in their turn encoded
by a single parameter Xrv. The parameters r and s control the rate matching step, which is
the base of incremental redundancy technique, while b controls the way 16QAM constellation
is rearranged.

The value of s can be either 0 or 1 and indicates if, at rate matching step, the systematic
bits are prioritised (s = 1) or not (s = 0). Once we know what flows are to be punctured in
priority — systematic or parity bits — the value of r determines the exact puncturing pattern
within these flows. The range of r is 0 to 3 for the QPSK 3 modulation or 0 to 1 for 16QAM.
For 16QAM these parameters are encoded according to Table 5.2 (see also [6], p. 67).

At each transmission, the value of the Xrv parameter is chosen in the following manner. We
fix a list X = {x0, x1, . . . , xl−1} of values between 0 and 7, where l is arbitrary. We shall now
set Xrv = xn−1 mod l at n-th transmission. In other words, for each given block the value of Xrv

cycles through the list X that we shall call the H-ARQ control scheme.
For example, a list consisting of a single value {0} defines the scheme that only uses Chase

combining (the same redundancy version is sent at each retransmission). A list with two ele-
ments {0, 1} implies that we send alternatively systematic and parity bits. If, in the latter case,
a third or fourth retransmission is required the value of Xrv shall again be 0 and 1 correspond-
ingly.

The question arises naturally: what H-ARQ control scheme is optimal in terms of the quality
of service (QoS) (lowest Ior/Ioc

4 for a given BLER) and complexity (UE buffer and processing)?

3 Quadrature Phase Shift Keying
4 The ratio of the total user power to noise (dB)
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Name Scheme Buffer Description

CC {0} 1 Chase combining
CoRe {0,4,5,6} 1 Constellation rearrangement
IR {0,1,7,3} 4 Incremental redundancy
IR+ {0,1,2,3} 4 Incremental redundancy with constellation rearrangement
IR/2–a {0,7} 2 Systematic bits only with two rate matching patterns
IR/2–b {0,1} 2 Systematic then parity bits; same rate matching pattern
CoReIR– {0,1,4,1} 2 Hybrid sub-optimal
CoReIR {0,1,4,8} 2 Hybrid (CoRe + IR)

Table 5.3: Compared H-ARQ control schemes. A scheme here is a list of values for the Xrv

parameter to be used at consequent retransmissions (cf. Table 5.2). The third column shows
the UE buffer space complexity index, i.e. the number of different redundancy version sent with
a given control scheme.

− o −
As it has been mentioned above, the maximum benefit from constellation rearrangement can
be obtained with four retransmissions. The same can be said about incremental redundancy
in 16QAM as there are four different redundancy versions: systematic or parity bits, and two
rate matching patterns for each of them. We shall therefore compare different H-ARQ control
schemes of length four. The schemes we compare are shown in Table 5.3.

Along with the list defining a scheme and its short description we give in this table the
scheme’s space complexity index. This index represents the number of redundancy versions
(systematic/priority bits, rate matching pattern) used in the scheme. Each additional redun-
dancy version increments the number of bits that have to be stored in the UE buffer. Therefore
the higher is the index in question, the more expensive the scheme is in terms of buffer require-
ments. 5 Let us briefly discuss the proposed schemes.

CC as indicated in Table 5.3 this scheme represents Chase combining. Indeed, the same bits
are sent at all retransmissions.

CoRe this scheme makes full use of constellation rearrangement, but none of incremental
redundancy: we send the same bits at each transmission using all possible bits-to-symbols
mappings.

IR in this scheme we send alternatively systematic and parity bits. Two last retransmissions
use a different rate matching pattern compared to the first two, thus making full use of
incremental redundancy.

IR+ incremental redundancy is enhanced here by using constellation rearrangement on the
last two retransmissions. This increases protection of bits that are not punctured in both
rate matching patterns.

IR/2–a in this scheme only systematic bits are sent. Thus, comparing its performance with
that of other schemes we can see if alternating systematic bits with parity ones is preferable
to alternating rate matching patterns.

5 One should keep in mind, however, that a scheme with space complexity index 4, for example, does not use
four times more space than that with this index equal to 1.
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Figure 5.4: HSDPA coding chain.

IR/2–b this scheme is complementary to IR/2–a: we send systematic and parity bits alterna-
tively maintaining the same rate matching pattern.

CoReIR– this scheme is an attempt at a compromise between the high performance and high
complexity of IR on one hand, and lower performance and low complexity of CoRe on the
other: we alternate systematic and parity bits, but instead of using different rate matching
patterns, we use different bits-to-symbols mapping. As there is no available value of Xrv

that would have s = 0, r = 0, and b 6= 0 (as Xrv = 1, but with a different bits-to-symbols
mapping), we use the same value of Xrv for second and fourth transmissions.

CoReIR same as CoReIR–, but we introduce for testing purposes Xrv = 8 that is not in the
3GPP specifications (Table 5.2; also [6]) and encodes the following combination of RV
parameters: s = 0, r = 0, b = 1, i.e. prioritising parity bits with the same rate matching
pattern as for Xrv = 1 but with a different bits-to-symbols mapping.

The roles of these schemes are as follows. CC provides us with reference performances.
IR+ being the scheme that ensures most diversity (different redundancy versions plus some
use of constellation rearrangement), is the candidate for best performance, however it also
requires the largest UE buffer. The goal of CoRe and IR is to enable a comparison between
the two techniques, as well as to verify if sufficiently good results can be obtained using only
one of them (initially constellation rearrangement was proposed in [3] to completely replace
incremental redundancy). Furthermore, IR/2–a and IR/2–b allow us to single out the aspect of
incremental redundancy that ensures the most gain in performance: IR/2–a does not send parity
bits only varying the rate matching pattern, whereas IR/2–b does the inverse by alternating
systematic and parity bits. Finally, as it has been mentioned above, CoReIR and CoReIR– are
constructed by merging together incremental redundancy and constellation rearrangement in
order to obtain good performances while keeping low UE buffer requirements.

5.2 Simulations

5.2.1 Simulation conditions

For all of the above H-ARQ schemes we perform link level simulations in Gaussian environment.
We consider an HSDPA connection using 16QAM with one channelisation code at coding rate
3/4, and we consider BLER to Ior/Ioc ratio at different retransmissions. We implement the full
HSDPA processing chain, of which the coding part is shown in Figure 5.4. The list of simulation
parameters is given in Table 5.4.
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Table 5.4: List of simulation parameters.
Parameter Value

Channel model Additive White Gaussian Noise (AWGN)
Chip-rate 3.84 Mcps
Power control Off
Channel estimation Ideal
Allocated power for HS-DSCH 80% (-1 dB)

Spreading factor 16
Number of codes for HS-DSCH 1
Number of slots per TTI 3
Frame length 2 ms
Number of transport blocks per TTI 1

Channel coding Turbo code (rate 3/4)
CRC 24 bits
Tail bits 12
Turbo decoder Log-MAP
Number of decoder iterations 8
Max number of retransmissions 4

Modulation 16QAM

Accuracy
50000 — 250000 slots per Ior/Ioc value;
At least 100 block errors

5.2.2 Results

Figure 5.5 shows BLER performance of all considered H-ARQ control schemes after second
transmission. In solid lines are plotted the curves for schemes that do not send parity bits on
the second transmission, while those that do are plotted in dashed lines 6.

One can observe in the first place that sending parity bits provides a gain of approximately
1.8 dB at 10% BLER over resending systematic ones. Another observation to be made is that
sending systematic bits with the same rate matching pattern but a different bits-to-symbols
mapping (CoRe) provides a gain of approximately 0.4 dB over using a different rate matching
pattern with the same mapping (IR/2–a).

Comparing performances after the third transmission (see Figure 5.6 6) allows us to differen-
tiate between the schemes that produced similar results after second transmission. As expected,
IR+ provides best performance vis-à-vis the BLER to Ior/Ioc ratio.

Both CoReIR and CoReIR– perform approximately 0.4 dB better than IR (cf. the second
observation on the performances after two transmissions). The difference between IR+ and
CoReIR (CoReIR–) is very slight (less than 0.1 dB). Thus, up to this point both CoReIR and
CoReIR– provide performances close to optimal, while maintaning lower UE buffer requirements
(see again Table 5.3).

Let us finally compare the performances after the fourth transmission (Figure 5.7). We can
observe that due to retransmitting the same redundancy version as at the second transmission
CoReIR– performs here worse than IR. At the same time CoReIR, which has a much lower
requirements for UE buffer, provides a considerably better performance. Indeed, its performance
is approximately 0.2 dB better than that of IR, and very close to IR+.

6 Note that after second and third retransmissions performances are the same for some schemes, therefore all
dashed curves in Figure 5.5 and Figure 5.6 coincide.

79



Chapter 5. Frame Level: Hybrid ARQ Control Schemes

0.001

0.01

0.1

1

-10 -8 -6 -4 -2

B
LE

R

Ior/Ioc

16QAM CR 3/4 (708 kbps), H-ARQ = ON
2nd transmission

CC
CoRe

IR
IR+

IR/2-a
IR2/2-b

CoReIR-
CoReIR

Figure 5.5: Performance of different H-ARQ control schemes after 2nd transmission.

To finalise the presentation of simulation results we give in Table 5.5 the ratings of all
schemes considered, and in Figure 5.8 the bit-rate achieved by the best candidates compared
to that of Chase combining.

5.3 Discussion

The simulations presented above allow us to conclude that the best performance in terms of
BLER to Ior/Ioc ratio is provided by the scheme we have denoted IR+ that makes full use
of both incremental redundancy and constellation rearrangement. However — and for that
reason —, this scheme requires the biggest UE buffer among all possible schemes.

Table 5.5: BLER to Ior/Ioc ranking of all schemes after each retransmission.
Name UE buffer 2nd 3rd 4th

CC 1 8 8 8
CoRe 1 6 6 5
IR 4 1–5 4 3
IR+ 4 1–5 1 1
IR/2–a 2 7 7 7
IR/2–b 2 1–5 5 6
CoReIR– 2 1–5 2–3 4
CoReIR 2 1–5 2–3 2
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Figure 5.6: Performance of different H-ARQ control schemes after 3rd transmission.

At the same time another scheme denoted CoReIR provides performance that is only about
0.1 dB worse than that of IR+ while considerably reducing UE buffer requirements7.

The disadvantage of this scheme is that at the fourth transmission it uses a combination of
redundancy version parameters that is not found in the 3GPP specifications, i.e. s = 0, r = 0,
and b = 1 (transmitting parity bits with the same rate matching pattern as for Xrv = 1, but
with a different bits-to-symbols mapping).

Therefore there are two possible lines of action:

1. Without changing the specifications (see Table 5.2), one should decide between IR+ and
CoReIR– according to what is being prioritised: performance or UE buffer size.

2. One of the entries of the Table 5.2 (Xrv = 5, 6, or 7) should be modified to match the
parameters specified above, and CoReIR should be selected as optimal H-ARQ control
scheme.

7 UE supporting all coding rates from 1/3 to 1 would require approximately 50% more buffer with IR+ than
with CoReIR.
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Figure 5.7: Performance of different H-ARQ control schemes after 4th transmission.
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Chapter 6
Bit Level: Analysis of BPSK Modulation

with Spatial Diversity

In this chapter, we conclude our descent through the levels of the system modelling the UMTS
network, which we have started in Chapter 3, by considering a transmission of a single bit over a
radio channel with spatial diversity, which implies a presence of multiple paths (or trajectories)
between the transmitting and receiving antennae. In this context, we study the probability that
on reception this bit is not correctly demodulated, i.e. the Bit Error Rate (BER), which, as we
have seen in Chapter 4, is a very important statistic in a telecommunications network.

An expression for this error rate has been studied in [30], [31], and [54], where, on one
hand, a stable algorithm was developed to compute it, and, on the other hand, a combinatorial
interpretation of the underlying expression was obtained by means of Young tabloids of N ×N
square shape.

We devote this chapter to generalising the results of these studies to the conditional proba-
bility that the log-likelihood is below a certain threshold ε when the transmitted bit is 0. 1

In Section 6.1, we briefly present the model describing the Binary Phase Shift Keying
(BPSK) modulation that we use for our studies. In Section 6.2, we consider the probabil-
ity that a bit’s log-likelihood is less than a given threshold ε and deduce two expressions in
terms of symmetric functions for first coefficients of its Taylor expansion. One of these expres-
sions leads to a stable and efficient algorithm computing these coefficients, whereas the second
one allows an interesting combinatorial interpretation that we develop in Section 6.3.

This combinatorial interpretation involves a class of objects that we call square tabloids with
ribbons. We show that a Robinson-Schensted-Knuth correspondence can be naturally extended
to associate a {0,1}-matrix to each square tabloid with ribbon, and we conclude by providing
a complete and independent characterisation of the class of {0,1}-matrices that arise in this
context.

6.1 Signal processing background

Modulating numerical signals means transforming them into wave forms. Due to their impor-
tance in practice, modulation methods were widely studied in signal processing (see, for instance,

1 We have already mentioned log-likelihood in Chapter 5. However, for consistency of the chapter, we repeat
this definition in the next section. Here, it is sufficient to notice that the probability of a bit error is equal to the
conditional probability that the the log-likelihood is negative given that the transmitted bit is 0.
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Chapter 5 of [75]). Among the different modulation protocols used in practical contexts, an
important class consists in methods where the modulation reference (i.e. a fixed numerical se-
quence) is transmitted over the same channel as the usual signal. The demodulation decision is
based then on at least two noisy informations, i.e. the transmitted signal and the transmitted
reference. It happens, however, that one can also take in account in the demodulating process
several noisy copies of these last two signals: one speaks then of demodulation with diversity.
It appears that the probability of errors in such context is of the following form:

P (U < V ) = P

(
U =

N∑

i=1

|ui|2 < V =
N∑

i=1

|vi|2
)

, (6.1)

where N is the number of paths (and consequently the number of copies of the information-
reference pair), and the ui’s and vi’s denote independent centered complex Gaussian random
variables with variances equal to E[ |ui|2 ] = χi and E[ |vi|2 ] = δi for every i ∈ [1, N ] (see also
Section 6.1.2).

The problem of computing explicitly probabilities of this last type was studied in signal
processing by several researchers (see [12, 46, 75, 90]). The most interesting result in this
direction is due to Barett ([12]) who obtained the following expression for the probability given
by formula (6.1).

P (U < V ) =
N∑

k=1



∏

i6=k

1

1− δ−1
k δi

N∏

i=1

1

1 + δ−1
k χi


 (6.2)

Observe, however, that, when for some i 6= k the values of δk and δi are close, the denominator
1 − δ−1

k δi in the right-hand part of this expression is close to zero, and thus the equation is
computationally unstable.

Equation (6.2) provides us the conditional probability that the log-likelihood of a bit is less
than zero under the condition that the transmitted bit was +1. 2 We remind the reader that
log-likelihood is defined by setting

Λ = log
P (b = +1|X)

P (b = −1|X)
,

and allows to decide what was the value of the transmitted logical bit. It is also essential for
various decoding algorithms such as MAP and its variants, and Soft Output Viterbi Algorithm
(SOVA) (see for example Chapter 4 of [42]).

6.1.1 Multipath channel model

We consider a model where one transmits an information b ∈ {−1, +1} on a noisy channel 3.
A reference r = 1 is also sent on the noisy channel at the same time as b. We assume that we
receive N pairs (xi(b), ri)1≤i≤N ∈ (C×C)N of data (the xi(b)’s) and references (the ri’s)

4 that
have the following form

{
xi(b) = ai b + νi for every 1 ≤ i ≤ N,
ri = ai

√
βi + ν ′

i for every 1 ≤ i ≤ N,

2 Real-valued bits are often considered in signal processing theory, which are defined as (−1)b with b being a
logical 0–1 bit.

3 This is the case for example when BPSK modulation is used. For a large number of other modulation
methods the information transmitted is more complex, and contains more than one bit. However, performance
analysis for these modulations can be reduced to that of BPSK (see [75]).

4 One speaks in this case of spatial diversity, i.e. when more than one antenna is available, but also of multipath
reflexion contexts. Both of these situations are very common in mobile communications.
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where ai ∈ C is a complex number that models the channel fading associated with xi(b) 5,
where βi ∈ R+ is a positive real number that represents the signal to noise ratio (SNR) which
is available for the reference ri and where νi ∈ C and ν ′

i ∈ C denote finally two independent
complex white Gaussian noises. We also assume that every ai is a complex random variable
distributed according to a centered Gaussian density of variance αi for every i ∈ [1, N ].

According to these assumptions, all observables of our model, i.e. the pairs (xi(b), ri) for
all 1 ≤ i ≤ N , are complex Gaussian random variables. We finally also assume that these N
observables are mutually independent random variables in C2. Under these hypotheses we have
the following expression for the log-likelihood.

Λ = log

(
P (b = +1|X)

P (b = −1|X)

)
=

N∑

i=1

4 αi
√

βi

1 + αi (βi + 1)
(xi(b)|ri) (6.3)

with X = (xi(b), ri)1≤i≤N and where (?|?) denotes the Hermitian scalar product. One indeed
decides that b was equal to 1 (resp. to −1) when the right hand side of (6.3) is positive (resp.
negative) 6. One obtains (6.1) now applying the parallelogram identity to (6.3).

The situation undesirable for both demodulation (increased chances of taking incorrect
decision) and soft decoding algorithms (unreliable input) is when the log-likelihood is close
to zero, i.e. |Λ| < ε. We shall therefore study the probability P (U − V < ε) 7 generalising (6.1)
where P (U − V < 0) is considered instead.

6.1.2 The analogue of Barret’s formula

Let us consider two real random variables U and V defined, as in [31] by setting

U =
N∑

i=1

|ui|2 and V =
N∑

i=1

|vi|2

where ui’s and vi’s are independent centered complex Gaussian random variables with variances
E[|ui|2] = χi and E[|vi|2] = δi for every i ∈ [1, N ]. It is then easy to prove by induction on N
that the probability distribution functions of U and V are equal to

dU (x) =
N∑

j=1

χN−2
j∏

1≤i6=j≤N

(χj − χi)
e
− x

χj and dV (x) =
N∑

k=1

δN−2
k∏

1≤i6=k≤N

(δk − δi)
e
− x

δk (6.4)

when all variances χi and δi are distinct. One can then easily obtain

P (V > x) =

∫ +∞

x
dV (t) dt =

N∑

k=1

δN−1
k∏

1≤i6=k≤N

(δk − δi)
e
− x

δk . (6.5)

We then have the following expression for P (U − V < ε)

P (U − V < ε) =

∫ +∞

0
dU (x)P (V > x− ε) dx.

5 Fading is typically the result of the absorption of the signal by buildings. Its complex nature comes from
the fact that it models both an attenuation (its modulus) and a dephasing (its argument).

6 In the case when Turbo codes are used for channel coding the actual value of log-likelihood represents the
reliability of the input.

7 Probability P (U − V < ε) can be studied independently as the distribution function of the random variable
U − V (cf. [39]).

85



Chapter 6. Bit Level: Analysis of BPSK Modulation with Spatial Diversity

Substituting relations (6.4) and (6.5), this last identity leads to the expression

P (U − V < ε) =

∫ +∞

0

N∑

j,k=1

χN−2
j δN−1

k∏

1≤i6=j≤N

(χj − χi)
∏

1≤i6=k≤N

(δk − δi)
e
− x

χj e
− x

δk e
ε

δk dx,

from which we immediately obtain the relation

P (U − V < ε) =
N∑

j,k=1

χN−1
j δN

k

(δk + χj)
∏

1≤i6=j≤N

(χj − χi)
∏

1≤i6=k≤N

(δk − δi)
e

ε
δk .

This last formula can now be rewritten as follows

P (U − V < ε) =
N∑

k=1

δN
k e

ε
δk

∏

1≤i≤N

(δk + χi)
∏

1≤i6=k≤N

(δk − δi)




N∑

j=1

∏

1≤i6=j≤N

(δk + χi)

∏

1≤i6=j≤N

(χj − χi)
χN−1

j


 , (6.6)

Finally we can deduce the analogue of Barret’s formula (cf. [12, 31]):

P (U − V < ε) =
N∑

k=1

δ2N−1
k e

ε
δk

∏

1≤i≤N

(δk + χi)
∏

1≤i6=k≤N

(δk − δi)
(6.7)

due to the fact that the internal sum in relation (6.6) is just the Lagrange interpolation expres-
sion taken at the points (−χj)1≤j≤N for the polynomial δN−1

k (considered here as a polynomial
of C[χ1, . . . , χN ][δk]).

6.2 Symmetric functions expression

In this section, we use a number of facts and notations related to symmetric functions in general,
and Schur functions in particular. These facts and notations can be found in Section D.2 of
Appendix D.

We shall try to represent the probability P (U −V < ε) in terms of Schur functions. In order
to do so we have to get rid of the exponential in the numerator of the right hand side of (6.7).
Replacing it by its Taylor decomposition, we obtain

P (U − V < ε) =
+∞∑

m=0

N∑

k=1

δ2N−m−1
k∏

1≤i≤N

(δk + χi)
∏

1≤i6=k≤N

(δk − δi)
× εm

m!
.

We will now concentrate our efforts on the m-th coefficient of this exponential series, i.e.

P (N)
m = P (N)

m (∆, X) =
N∑

k=1

δ2N−m−1
k∏

1≤i≤N

(δk + χi)
∏

1≤i6=k≤N

(δk − δi)
. (6.8)

This formula can be expressed using the Lagrange operator L. Let us indeed set δk = xk and
χk = −yk for every k ∈ [1, N ]. Then one can rewrite (6.8) as

P (N)
m =

N∑

k=1

x2N−m−1
k

R(xk, Y )R(xk, X\xk)
,
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where we denoted X = {x1, . . . , xN } and Y = { y1, . . . , yN } and where

R(A,B) =
∏

a ∈ A,b ∈ B

(a− b)

is the resultant of two polynomials having A and B as sets of roots. Hence, we have

P (N)
m =

N∑

k=1

g(xk, X\xk)

R(xk, X\xk)
= L(g) (6.9)

where g stands for the element of Sym(x1)⊗ Sym(X\x1) defined by setting

g(x1, X\x1) = g(x1) =
x2N−m−1

1

R(x1, Y )
.

Observe now that one has

g(x1, X\x1) =
1

R(X,Y )
x2N−m−1

1 f(x1, X\x1)

where f stands for the element of Sym(x1)⊗ Sym(X\x1) defined by setting

f(x1, X\x1) = R(X\x1, Y ) = s(NN−1)((X\x1)− Y ) (6.10)

(the last above equality comes from the expression of the resultant in terms of Schur functions).
Note now that the resultant R(X,Y ), being symmetric in the alphabet X, is a scalar for the
operator L. It follows therefore from relation (6.9) that one has

P (N)
m =

L(x2N−m−1
1 f(x1, X\x1))

R(X,Y )
. (6.11)

Let us now study the numerator of the right-hand side of relation (6.11) in order to give

another expression for P
(N)
m . Note first that Cauchy formula leads to the development

s(NN−1)((X\x1)− Y ) =
∑

λ⊂(NN−1)

sλ(X\x1)s(NN−1)/λ(−Y ) . (6.12)

According to the identities (6.10) and (6.12), we now obtain for 0 ≤ m < 2N the relations

L(x2N−m−1
1 f(x1, X\x1)) =

∑

λ⊂(NN−1)

L(x2N−m−1
1 sλ(X\x1))s(NN−1)/λ(−Y )

=
∑

λ⊂(NN−1)

s(λ,N−m)(X)s(NN−1)/λ(−Y ),

the last above equality being an immediate consequence of Theorem D.11. Using the equality

sλ/µ(−X) = sλ̃/µ̃(X),

where µ ⊂ λ (see [66]) and the definition of skew Schur functions, we can rewrite the last above
expression as

L(x2N−m−1
1 f(x1, X\x1)) =

∑

λ⊂(NN−1)

(−1)|λ|s(λ,N−m)(X)s
(λ,N)

(Y ),
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where 0 ≤ m < 2N , and (λ,N) denotes the complementary partition of (λ,N) in the square N N .
Going back to the initial variables, the signs disappear in the previous formula by homogeneity
of Schur functions. Reporting the identity obtained in such a way into relation (6.11), we finally

obtain an expression for P
(N)
m in terms of Schur functions, i.e.

P (N)
m =

∑

λ⊂(NN−1)

s(λ,N−m)(∆)s
(λ,N)

(X)

∏

1≤i,j≤N

(χi + δj)
(6.13)

where X = {χ1, . . . , χN}, ∆ = {δ1, . . . , δN}.

6.2.1 A determinantal approach

Let us now go back to the alphabets X and Y defined in Section 6.2. We saw there that

P (N)
m =

f
(N)
m (X,Y )

R(X,Y )
(6.14)

where 0 ≤ m < 2N , and f
(N)
m (X,Y ) is a symmetric function of Sym(X)⊗ Sym(Y ) given by

f (N)
m (X,Y ) =

∑

λ⊂(NN−1)

s(λ,N−m)(X)s(NN−1)/λ(−Y ).

Let’s now compute the action of the vertex operator Γz(X) (see Section D.2.2) on the
rectangle Schur function s(NN−1)(X − Y ). Recall first that Cauchy formula shows that one has

s(NN−1)(X − Y ) =
∑

λ⊂(NN−1)

sλ(X) s(NN−1)/λ(−Y ).

Applying the vertex operator Γz(X) to this expansion, we now get

Γz(X)(s(NN−1)(X − Y )) =
∑

λ⊂(NN−1)

Γz(X)(sλ(X)) s(NN−1)/λ(−Y )

=
+∞∑

k=−∞

(
s(λ,k)(X) s(NN−1)/λ(−Y )

)
zk.

Hence, f
(N)
m (X,Y ) is equal to the coefficient of zN−m in the image of s(NN−1)(X−Y ) by Γz(X).

On the other hand, using Cauchy formula in connection with relation

Γz(X)(sλ(X)) = σz(X) sλ(X−1/z).

given by Thibon in [89], one can also write

Γz(X)(s(NN−1)(X − Y )) = σz(X)s(NN−1)(X − Y − 1/z)

= σz(X)
(N−1∑

j=0

s(NN−1)/(1j )(X − Y ) s(1j)(−1/z)
)

=
(+∞∑

i=0

si(X)zi
)(N−1∑

j=0

s(NN−1)/(1j )(X − Y )(−1/z)j
)
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due to the fact that the only non zero Schur functions of the alphabet −1/z are indexed by
column partitions of the form 1k (and are equal to (−1/z)k). The coefficient of zN−m in the

above product gives us then a new expression for f
(N)
m (X,Y ), i.e.

f (N)
m (X,Y ) =

N−1∑

k=0

(−1)ksN−m+k(X)sNN−1/1k(X − Y ). (6.15)

But this last expression is just the development along the last colomn of the determinant

∣∣∣∣∣∣∣∣∣∣∣

sN (X − Y ) sN+1(X − Y ) . . . s2N−2(X − Y ) s2N−m−1(X)
sN−1(X − Y ) sN (X − Y ) . . . s2N−3(X − Y ) s2N−m−2(X)

...
...

. . .
...

...
s2(X − Y ) s3(X − Y ) . . . sN (X − Y ) sN−m+1(X)
s1(X − Y ) s2(X − Y ) . . . sN−1(X − Y ) sN−m(X)

∣∣∣∣∣∣∣∣∣∣∣

, (6.16)

which is an expression of the multi-Schur fonction s(NN−1,N−m)(X−Y, . . . ,X−Y,X). Hence,
relation (6.16) gives us both a determinantal and a multi-Schur expression for the denominator
of the right hand side of formula (6.14). Using the interpretation of the resultant R(X,Y ) as a
multi-Schur function, we can conclude that for 0 ≤ m < 2N

P (N)
m =

s(NN−1,N−m)(X−Y, . . . ,X−Y,X)

s(NN )(X−Y, . . . ,X−Y )
(6.17)

where the alphabet X−Y appears N−1 times in the numerator and N times in the denominator
of the right hand side of the above formula.

6.2.2 A Toeplitz system and its solution

Using the determinantal expression of the multi-Schur function s(NN )(X−Y, . . . ,X−Y ), we can

now observe that for all 0 ≤ m < 2N relation (6.17) shows that P
(N)
m is equal to the quotient of

the determinant (6.16) by the determinant

∣∣∣∣∣∣∣∣∣

sN (X − Y ) sN+1(X − Y ) . . . s2N−1(X − Y )
sN−1(X − Y ) sN (X − Y ) . . . s2N−2(X − Y )

...
...

. . .
...

s1(X − Y ) s2(X − Y ) . . . sN (X − Y )

∣∣∣∣∣∣∣∣∣
,

which is obtained by replacing the last column of the determinant (6.16) by the N -dimensional
vector (s2N−1(X − Y ), s2N−2(X − Y ), . . . , sN (X − Y )). Hence, the right hand side of relation
(6.17) can be interpreted as the Cramer expression for the last component p0 of the linear
system




sN (X − Y ) sN+1(X − Y ) . . . s2N−1(X − Y )
sN−1(X − Y ) sN(X − Y ) . . . s2N−2(X − Y )

...
...

. . .
...

s1(X − Y ) s2(X − Y ) . . . sN (X − Y )







pN−1

pN−2
...
p0


 =




s2N−m−1(X)
s2N−m−2(X)

...
sN−m(X)


 .

Let us now set πm(t) = p0 + p1 t + · · · + pN−1 tN−1. The above linear system implies that
the coefficients of order N to 2N − 1 in the series πm(t) σt(X−Y ) are equal to the coefficients
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of the same order in tmσt(X). This means equivalently that there exists a polynomial µm(t) of
degree less than or equal to N−1 such that one has

πm(t) σt(X−Y )− tmσt(X) + µm(t) = O(t2N ) .

Going back to the definition of σt(X−Y ), one can notice that this property can be rewritten as

(πm(t)λ−t(Y )− tm)σt(X) + µm(t) = O(t2N )

that is itself clearly equivalent to

πm(t)λ−t(Y ) + µm(t)λ−t(X) = tm + O(t2N ).

Since the left hand side of the above identity is a polynomial of degree at most 2N − 1,
it follows that its right hand side must be equal to tm, keeping in mind that we consider
0 ≤ m < 2N . Hence, we showed that one has

πm(t)λ−t(Y ) + µm(t)λ−t(X) = tm. (6.18)

Thus, for 0 ≤ m < 2N , P
(N)
m is the constant term πm(0) of the polynomial πm(t), where

πm(t) and µm(t) are the polynomials of degree ≤ N − 1 defined by (6.18).

6.2.3 A Bezoutian algorithm

Algorithm 6.1 shown on page 91 computes πm and µm iteratively, starting with m = 0, and
then consequetively deriving πm and µm from πm−1 and µm−1 for m = 1 . . . 2N − 1.

Let us now prove the consistency of this algorithm.

Proposition 6.1 The polynomials πm(t) and µm(t), produced by Algorithm 6.1, satisfy relation
(6.18).

Proof. We argue by induction on m. The case m = 0 being obvious, we can consider only
m ≥ 1.

Suppose that at Step m − 1 we have found the two polynomials πm−1(t) and µm−1(t) of
degrees ≤ N − 1 satisfying the relation (6.18) for m − 1. First of all observe that it follows
immediately from (6.18) and the fact that m < 2N that, d(πm−1) = N−1, then also d(µm−1) =
N − 1 and vice versa.

If we have d(πm−1), d(µm−1) < N − 1, then the two polynomials πm(t) = tπm−1(t) and
µm(t) = tµm−1(t) satisfy (6.18) for m. Observe that in this case the coefficient c calculated in
Step m.1 is zero, and hence relation (6.20) holds.

Suppose now that d(πm−1) = d(µm−1) = N − 1. Then we can set

{
πm−1(t) = a tN−1 + π′(t)
µm−1(t) = b tN−1 + µ′(t)

with d(π′), d(µ′) < N − 1 . (6.21)

At the same time one can easily see from the definition of X(t) and ∆(t) that

{
X(t) = (−1)Nχ1 . . . χN · tN + X ′(t)
∆(t) = δ1 . . . δN · tN + ∆′(t)

with d(X ′), d(∆′) = N − 1 . (6.22)
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6.2. Symmetric functions expression

Input: Alphabets ∆ = {δ1, . . . , δN} and X = {χ1, . . . , χN}.
Output: For all m = 0 . . . 2N − 1, a pair of polynomials (πm, µm) satisfying (6.18).

For m = 0, the right hand side of the equality (6.18) is 1, i.e. the greatest common divisor
of λ−t(Y ) and λ−t(X). This implies that we can use the Generalised Euclidean algorithm
as first step of our algorithm.

• Step 0.1. Consider the two polynomials X(t) and ∆(t) of R[t] defined by setting

X(t) =
N∏

i=1

(1− χi t) and ∆(t) =
N∏

i=1

(1 + δi t).

• Step 0.2. Compute the unique polynomial π0(t) of R[t] of degree d(π0) ≤ N−1 such
that

π0(t)X(t) + µ0(t)∆(t) = 1

where µ0(t) stands for some polynomial of R[t] of degree d(µ0) ≤ N−1.

Suppose now that at Step m − 1 we have found the polynomials πk(t) and µk(t) for all
k < m. Then the following Step m provides us the next pair of polynomials πm(t) and
µm(t) of degrees ≤ N − 1, satisfying the relation (6.18).

• Step m.1. We suppose that 0 < m < 2N . Let then

c =
[tN−1](µm−1)

χ1 . . . χN
= (−1)N−1 [tN−1](πm−1)

δ1 . . . δN
, (6.19)

where [tN−1](π) stands for the coefficient of tN−1 in the polynomial π(t).

• Step m.2. We then define

{
πm(t) = t πm−1(t) + (−1)N c ∆(t)

µm(t) = t µm−1(t)− (−1)N cX(t)
(6.20)

to obtain the required polynomials.

Algorithm 6.1: Calculating the polynomials πm and µm
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Substituting these four equations into (6.18) we obtain:

tm−1 = πm−1(t)X(t) + µm−1(t)∆(t)

=
(
(−1)Naχ1 . . . χN + b δ1 . . . δN

)
t2N−1 + O(t2N−2)

As the degree of the left-hand side of this equation is m− 1 < 2N − 1, we conclude that

(−1)Naχ1 . . . χN + b δ1 . . . δN = 0.

Therefore we can define the coefficient c as

c = (−1)N a

δ1 . . . δN
=

b

χ1 . . . χN
. (6.23)

Let us now put πm(t) = t πm−1(t)−d∆(t), where d is a coefficient such that d(πm) ≤ N −1.
Indeed, substituting (6.21), (6.22), and (6.23) into this formula we obtain:

πm(t) = (−1)N−1c δ1 . . . δN tN + tπ′(t)− d δ1 . . . δN tN − d ∆′(t)

=
(

(−1)N−1c− d
)
δ1 . . . δN tN + t π′(t)− d ∆′(t)︸ ︷︷ ︸

deg ≤ N−1

,

thus it is sufficient to take d = (−1)N−1c in order to have d(πm) ≤ N − 1. Applying the same
reasoning to µm(t) we obtain the following two expressions:

{
πm(t) = t πm−1(t)− (−1)N−1c ∆(t)
µm(t) = t µm−1(t)− (−1)N cX(t)

, (6.24)

where d(πm), d(µm) ≤ N − 1. In order to complete our proof we have to check that these two
polynomials satisfy (6.18):

tm = t πm−1(t)X(t) + t µm−1(t)∆(t)

=
(
πm(t) + (−1)N−1c ∆(t)

)
X(t) +

(
µm(t) + (−1)N cX(t)

)
∆(t)

= πm(t)X(t) + µm(t)∆(t)

This ends our proof.

Note 6.2 We recall that πm(0) = P
(N)
m .

6.3 Combinatorial interpretation

6.3.1 A special case

Recall that originally P
(N)
m has been defined as the m-th coefficient of the decomposition of

P (U − V < y) into an exponential series (cf. Section 6.2):

P (U − V < ε) =
∞∑

m=0

P (N)
m × εm

m!
,
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6.3. Combinatorial interpretation

and therefore, taking y = 0, we obtain (see also (6.13))

P (U < V ) = P
(N)
0 =

∑

λ⊂(NN−1)

s(λ,N)(∆)s
(λ,N)

(X)

∏

1≤i,j≤N

(χi + δj)
. (6.25)

This expression for the probability P (U < V ) has been obtained in [31], while in [54] it has
been given a combinatorial interpretation. Indeed, as λ ⊂ (N N−1) we have λi ≤ N for all i,
and thus (λ,N) is also a partition.

It is well known that a Schur function over an alphabet A indexed by some partition λ can
be expressed as a sum

sλ(A) =
∑

tλ

m(tλ) ,

where tλ runs through all possible Young tableaux over A of shape λ, and m(tλ) is the monom
obtained by taking the product of all elements of A contained in tλ. For example,

s(1,2)({χ1, χ2}) = χ2
1χ2 + χ1χ

2
2 ,

which corresponds to

χ2

χ1 χ1
+

χ2

χ1 χ2 .

In this manner one can represent the numerator of the fraction in (6.25) as a sum of the monoms
corresponding to (NN ) square tabloids consisting of a Young tableau over the alphabet ∆ and
a complimentary one over X. For example,

P
(2)
0 =

χ1χ2(δ2
1 + δ1δ2 + δ2

2) + (χ1 + χ2)(δ2
1δ2 + δ1δ

2
2) + δ2

1δ
2
2

(χ1 + δ1)(χ1 + δ2)(χ2 + δ1)(χ2 + δ2)

corresponds to

χ2 χ1

δ1 δ1
+

χ2 χ1

δ1 δ2
+

χ2 χ1

δ2 δ2
+ δ2 χ1

δ1 δ1
+ δ2 χ2

δ1 δ1
+ δ2 χ1

δ1 δ2
+ δ2 χ2

δ1 δ2
+ δ2 δ2

δ1 δ1 .

For an arbitrary m such that 0 < m < 2N it is possible that (λ,N −m) (see again (6.13)) is

not a partition. In order to obtain an analogous representation of P
(N)
m we will have to introduce

a more complex combinatorial object — square tabloid with ribbon.

6.3.2 Square tabloids with ribbons

Definition 6.3 A ribbon in a Young diagram is a connected chain of boxes not containing a
2 × 2 square such that any box has at most two neighbours (see Figure 6.1). The number of
boxes in a ribbon is its length.

The examples a–c in the Figure 6.1 are correct ribbons, while d–f are not. In this note we
will only consider those that start in the lower right-hand corner of the square, and go to the
North-West (examples b, c). For the sake of simplicity we will omit these two conditions when
refering to ribbons.
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• •
• •

•
• •
• •

• • •
•
•

•
• •
• •

•
• •
• • •

• • •
• •
• • • •

a b c d e f

Figure 6.1: Several examples and counter-examples for the Definition 6.3 of ribbons.

We shall denote by R(N) the set of all such ribbons in (NN ). Denoting by R(N)
m the subset of

R(N) consisting of ribbons of a given length m, one obtains the following obvious decomposition:

R(N) =
2N−1⋃

m=1

R(N)
m .

In a way analoguous to the one used to represent Young diagrams as a partition of an
integer, a ribbon is fully described by a sequence (r1, . . . , rk), where ri is the number of boxes
in its i-th row. For example, the ribbons b and c from Figure 6.1 are (2, 2, 1) and (1, 1, 3)
correspondingly.

For any given r ∈ R(N) we shall consider all Young diagrams λ ⊂ (N N ), such that λ ∪ r is
also a Young diagram, together with µ = λ ∪ r — diagram complementary to the latter. Here
the union ’∪’ is taken in its geometrical sense — the union of two sets of boxes.

We can introduce one of our bijection’s domains by considering all possible triplets consisting
of a ribbon and two Young tableaux of shapes λ and µ on the alphabets ∆ = {δ1, . . . , δN} and
X = {χ1, . . . , χN} correspondingly, such that put together they form a complete square:

T (N)
m = {(tλ, tµ, r)|r ∈ R(N)

m , λ ∪ r ⊂ (NN ), µ = λ ∪ r},

where 1 ≤ m ≤ 2N − 1, λ and µ are the shapes of tλ, and tµ (see Figure 6.2).

From the combinatorial point of view this construction means that we take a square N by
N , cut out a ribbon of length m, then split the rest into two Young tableaux over alphabets ∆
and X.

δ4 χ4 χ3 χ1

δ3 • χ3 χ1

δ2 • • χ4

δ1 δ2 • •

Figure 6.2: A typical element of T (5)
4 .

Proposition 6.4 We have the following representation for P
(N)
m

P (N)
m =

∑

t∈T (N)
m

(−1)h(t)−1m(t)

∏

1≤i,j≤N

(χi + δj)
,
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where m(t) is the monom corresponding to t, and h(t) is the height of the ribbon of t defined

as follows. If t = (tλ, tµ, r) ∈ T (N)
m is a square tabloid with ribbon, and r = (r1, . . . , rN ) then

h(t) = max{i|ri > 0}.

Proof. This proposition becomes an obvious consequence of (6.13), if we consider the fact that

s(...,i,j,...)(A) = −s(...,j+1,i−1,...)(A) .

Example 6.5

P
(2)
2 =

χ1χ2 − δ1δ2

(χ1 + δ1)(χ1 + δ2)(χ2 + δ1)(χ2 + δ2)
,

can be represented as the following difference

χ2 χ1

• • − δ2 •
δ1 • .

6.3.3 Description of the bijection

In the following we shall construct a bijection between the square tabloids with ribbons intro-

duced in the previous section, and a subset M
(N)
m of MN×(N+m)

8 that we will define later on.
We shall split a matrix from this set into two parts: the one on the left-hand side containing N
columns, and the one on the right-hand side — m columns. The right part is the one that will
eventually generate the ribbon in the corresponding tableau, and has only one 1 in each of its
columns. Meanwhile the left part will be responsible for the tableau tλ, and has one 1 for each
of its boxes. Going back to the example of Figure 6.2, the corresponding matrix would be




0 0 0 0 0 0 1 0 1
1 1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0


 .

Algorithm 6.2 takes a square tabloid T ∈ T (N)
m on input and constructs the corresponding

matrix from MN×(N+m). As this algorithm is based on the Knuth correspondence (cf. [34,

51, 54]), 9 it can be easily seen that it is reversible, thus, denoting by M
(N)
m the image of the

mapping defined by this algorithm, we obtain a bijection between M
(N)
m and T (N)

m .

8 In the following we will only consider {0, 1}-matrices, therefore we use Mm×n as a shorthand notation for
Mm×n({0, 1}).

9 This correspondence, as well as its extension that we use in Step 3 of Algorithm 6.2 (and also in Step 2 of
Algorithm 6.3) is presented in Section D.1.1 of Appendix D.
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Input: T = (tλ, tµ, r) — a square tabloid in T (N)
m .

Output: A {0, 1}-matrix M ∈MN×(N+m).

• Step 1. Number each box of r starting with N + 1 and up to N + m from bottom to top
and from left to right (see Figure 6.3-a).

• Step 2. Replace all δi in tλ and χi in tµ by i, and join tλ with r to obtain two Young
tableaux P and Q of shapes λ ∪ r and µ = λ ∪ r correspondingly (Figure 6.3-b).

• Step 3. Apply the same procedure as in [54] to obtain a tableau Q of a shape conju-
gated to λ ∪ r (Figure 6.3-c; see Example 6.6 below, Section D.1.1 or [54] for a formal
description).

• Step 4. Finally apply Knuth’s bijection based on column bumping to the pair (P,Q) of
Young tableaux of conjugate forms to obtain a matrix from MN×(N+m) (Figure 6.3-d).

Algorithm 6.2: Construction of a {0, 1}-matrix from a square tabloid

χ4 χ3 χ2 χ1

δ4 6 χ3 χ1

δ2 5 8 χ4

δ1 δ2 7 9

4 3 2 1

4 6 3 1

2 5 8 4

1 2 7 9

P

4 6

2 5 8

1 2 7 9

4 Q

3 3

2 2 4

1 1 2

a b c




0 0 0 0 0 0 1 0 1
0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0




d

Figure 6.3: Applying the algorithm to an element of T (5)
4 .

Example 6.6
Let us elaborate on the example given along the algorithm. We start with the following square

tabloid from T (5)
4 :

χ4 χ3 χ2 χ1

δ4 • χ3 χ1

δ2 • • χ4

δ1 δ2 • •

As the size of the square is 4, and the length of the ribbon is 5, the classical numbering for the
ribbon goes from 5 to 9 and is shown in Figure 6.3-a. Re-labelling the rest of the tabloid and
re-arranging it as indicated in the Step 2 of Algorithm 6.2 we obtain the two Young tableaux
shown in Figure 6.3-b.
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In Step 3 we take the upper right-hand corner tableau

4
3
2 3
1 1 4

and we transform it into another one of complementary shape by applying the following proce-
dure.

First of all we consider this tableau as having four columns — the last one being empty.
Then we form another tableau by putting in its first column all the numbers between 1 and 4
that are not in the last column of this one. As the last column of the original tableau is empty,
we put in the first column of the new one all numbers 1–4. In the second column we put all the
numbers that are not in the third one of the original tableau (i.e. 1–3), etc. Thus we obtain the
tableau Q from Figure 6.3-c.

The only thing left to do now is to apply Knuth’s bijection to the pair (P,Q) to obtain the
matrix in Figure 6.3-d.

Note 6.7 We denote by M
(N) =

⋃2N−1
m=1 M

(N)
m the set of all matrices that can be obtained by

applying this algorithm.

As it has been mentioned in the beginning of the section, it can be easily seen that Algo-
rithm 6.2 is reversible. More precisely, we have the following reciprocal algorithm.

Input: A {0, 1}-matrix M ∈ M
(N)
m .

Output: T = (tλ, tµ, r) — a square tabloid in T (N)
m .

• Step 1. Applying Knuth’s bijection in the opposite direction we can transform any matrix
from MN×(N+m) into a pair of Young tableaux P and Q of conjugated shapes: on the
alphabets {1, . . . , N + m} and {1, . . . , N} correspondingly.

• Step 2. The fact that M belongs to M
(N)
m implies that both P and Q fit into (NN ),

and thus we can again apply to Q the same procedure as in [54] to obtain a new Young
tableau tµ of the shape complementary to that of P .

• Step 3. Once again referring to the fact that M belongs to M
(N)
m , we can state that in P

there is exactly one occurence of each one of N +1, . . . , N +m, and that the corresponding
boxes form a ribbon r numbered from bottom to top and from left to right. Moreover,
this ribbon can be cut out of P leaving a Young tableau tλ on the alphabet {1, . . . , N}.
(See Section 6.3.4 for conditions on {0, 1}-matrices defining M

(N)
m explicitely.)

• Step 4. To finalise our algorithm it is sufficient to replace all entries i in tλ with δi, and
in tµ — with χi.

Algorithm 6.3: Construction of a square tabloid from a {0, 1}-matrix
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Example 6.8
To reverse Example 6.6 we start with the matrix




0 0 0 0 0 0 1 0 1
0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0




and we transform it into a two-row array representing the positions of 1’s: in each column of
the array the element in the first row is the row number, and the one in the second row — the
column number of a position containing 1. We obtain therefore the following array:

(
1 1 2 2 2 3 3 4 4
7 9 2 5 8 1 6 2 4

)

Applying Knuth’s bijection consists now in forming one Young tableau by column-bumping
in the elements of the second row of the array from left to right, and placing the corresponding
elements of the first row into a Young tableau of the conjugated form. This results exactly in
the pair of tableaux shown in Figure 6.3-c.

Applying the procedure described in Example 6.6 we obtain a pair of tableaux of compli-
mentary shapes

4 6
2 5 8
1 2 7 9 ,

4
3
2 3
1 1 4 .

Finally, re-arranging and re-numbering these two accordingly we end up with the tabloid

χ4 χ3 χ2 χ1

δ4 • χ3 χ1

δ2 • • χ4

δ1 δ2 • •

that was the starting point of Example 6.6.

We will denote the square tabloid obtained by applying Algorithm 6.3 to a matrix M by
Φ(M). Note that Φ(M) is also defined on some matrices that do not belong to M

(N), but in
that case Φ(M) 6∈ T (N).

6.3.4 Characterisation of matrices in M
(N)

In the previous section, we presented a bijective mapping from M
(N) to T (N). This mapping

being defined by an algorithm, we can explicitely calculate its image given an element of M
(N).

However, this set is only defined implicitely as the image of the mapping induced by the Algo-
rithm 6.3. This section is therefore devoted to providing explicit conditions on a matrix from

MN×(N+m) to be an element of M
(N)
m .

We will use an equivalent of Green’s theorem that gives us a way of calculating the shape
of the Young tableau obtained by the Robinson-Schensted correspondence from a word on the
corresponding alphabet. As Robinson-Schensted correspondence is the base of Knuth’s bijection,
this theorem can be reformulated in terms of {0, 1}-matrices to be applied to the latter.
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6.3. Combinatorial interpretation

First of all, let us introduce a few notations. Let M be a {0, 1}-matrix as considered above.
We shall denote by R(M,k) the largest possible number of 1’s in M that can be arranged in k
disjoint (possibly empty) sequences going North-east. Here, as in [34], we will begin each word
indicating a direction with a capital letter if the sequence goes strictly in that direction, and
with a small one if it does so weakly. Here, for example, “North-east” stands for “strictly North
and weakly East”, i.e. if two 1’s in positions (i1, j1) and (i2, j2) (where i2 ≤ i1) belong to the
same sequence then we have i2 < i1 (strictly North), and j1 ≤ j2 (weakly East) (see Figure 6.4).
By convention R(M, 0) = 0. Taking λ = (λ1, . . . , λN ) to be the shape of the tableau P obtained




1 0 1

1 1 0

0 1 0







1 0 1

1 1 0

0 1 0




a b

Figure 6.4: The boxed sequence of 1’s goes North-east on (a), but not on (b).

from M by Knuth correspondence, we can state the following theorem:

Theorem 6.9 (Green) In the above notations, one has:

∀k = 1 . . . N, R(M,k)−R(M,k − 1) = λk.

Now, if we denote by (λ1, . . . , λN ) and (r1, . . . , rN ) the shapes of tλ, and r correspondingly,
where Φ(M) = (tλ, tµ, r), and taking M ′ to be the left-hand N×N square part of M , we obtain
automatically

∀k = 1 . . . N,

{
R(M ′, k) − R(M ′, k − 1) = λk

R(M,k) − R(M,k − 1) = λk + rk
. (6.26)

In other words, (6.26) provides us a way of calculating the shapes of tλ and r given a {0, 1}-
matrix M . This immediatly delivers the first condition to be satisfied in order for M to be in
M

(N).

Condition 6.10 Let Φ(M) = (tλ, tµ, r) and (λ1, . . . , λN ) and (r1, . . . , rN ) be the values provided
by (6.26), then for r to be a correct ribbon as described by the Definition 6.3, it is necessary
that

• there exists h ∈ [0, N ] such that rk > 0 for any k ∈ [1, h], and rk = 0 when k > h;

• λk + rk = λk−1 + 1 for all k ∈ [2, h];

• λ1 + r1 = N .

The above condition, when fulfilled, guarantees that the shape of the ribbon is correct. It
rests therefore to ensure that it’s numbering is the required one, i.e. all boxes forming the ribbon
must be numbered from bottom to top, and from left to right by the sequence N +1, . . . , N +m.

First of all, there has to be exactly one box in tableau P for each number between N + 1
and N + m. This is obviously guaranteed by the following condition.

Condition 6.11 For any k ∈ [N + 1, N + m] there is exactly one 1 in the k-th column of M .
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Example 6.12
Let us consider the following matrix

M =




0 0 0 0 0 0 0 1 1©
1 0 0 0 1 0 1© 0 0

1 1 0 0 0 1© 0 0 0

1 0 1© 0 0 0 0 0 0




Considering the left-hand side of the matrix we can see that

R(M ′, 1) = 3 (boxed sequence),
R(M ′, 2) = 4 (boxed and circled sequences),
R(M ′, 3) = 5 (boxed, circled, and unmarked sequences).

As there are no more 1’s left we conclude that λ = (3, 1, 1). Now if we consider the whole matrix
we obtain

R(M, 1) = 4 (boxed sequence),
R(M, 2) = 8 (boxed and circled sequences),
R(M, 3) = 10 (boxed, circled, and unmarked sequences).

and therefore
λ1 + r1 = 4, λ2 + r2 = 4, λ3 + r3 = 2,

i.e. . r = (1, 3, 1). It is easy to see now that both Condition 6.10 and Condition 6.11 are verified.
We can deduce that the lower left-hand side tableau and the ribbon in the image of M will

have the following shapes:

•
• • •

•

In the following we will require some additional notions. As we have seen above, given a
matrix M ∈ MN×(N+m) and provided that Condition 6.10 is satisfied, we can calculate the
shape of all elements of Φ(M). Thus, in particular, we know the desired classical numbering of
the ribbon. For instance the numbering of the ribbon in the Example 6.12 should be as follows:

6
5 7 9

8 .

Definition 6.13

• We will refer as columns of the ribbon to the sequences of numbers in each column of boxes
of the ribbon in the classical numbering ((5,6), (7), and (8,9) in the example above).

• Two numbers i, j ∈ [N + 1, . . . , N + m] are said to be in the same level l, if each one of
them is exactly l boxes down from the top of its column in the classical numbering of the
ribbon. We will refer as levels to maximal sets of numbers being in the same level. We
say that level l1 is higher than level l2 if l1 < l2 — in other words if level l1 is closer to
the top.
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Example 6.14
Taking on the previous example, we can say that numbers 6, 7, and 9 form level 0 in this ribbon,
and 5 and 8 — level 1.

Example 6.15
More generally, if we have a ribbon numbered as follows,

9
6 7 8

5 ,

we shall say that its columns in the classical numbering are (5,6), (7), and (8,9); its levels [in
the classical numbering] are (6,7,9) and (5,8); and its columns in the actual numbering are (6,9),
(7), and (5,8).

Our goal now is to ensure that the numbering of the ribbon, obtained by applying Algo-
rithm 6.3, is the same as the classical one.

Condition 6.16

1. The 1’s corresponding to each column of the ribbon form a sequence going south-East.

2. The 1’s corresponding to each level of the ribbon form a sequence going North-East.

We can now state the following theorem.

Theorem 6.17 (Caracterisation of M
(N)
m ) Let M ∈ MN×(N+m) be a {0, 1}-matrix.

M ∈ M
(N)
m if and only if M satisfies all three conditions 6.10–6.16.

Proof of the main theorem

It is obvious that M ∈ MN×(N+m) satisfies both Condition 6.10 and Condition 6.11 if and
only if there is exactly one box in Φ(M) numbered with each one of N +1, . . . , N +m and these
boxes form a correct ribbon in the sense of Definition 6.3. Thus, we only have to show that,
when these two conditions are fulfilled, the Condition 6.16 is equivalent to the ribbon in Φ(M)
being numbered correctly.

Recall that Algorithm 6.3 is based on Robinson-Schensted-Knuth correspondence, which
has column bumping as its building block. Therefore, when applying this algorithm to M , we
perform a certain number Θ of column bumpings. Thus, for each θ ∈ [0, Θ], one can consider a
Young tableau Tθ obtained after bumping in θ boxes.

Definition 6.18 For a ∈ [N + 1, N + m], we shall denote by dθ(a) the column of Tθ containing
the box numbered a. We take dθ(a) = 0 if a is not in Tθ.

Note 6.19 There is no ambiguity in the definition of dθ(a) due to Condition 6.11.

Example 6.20
Consider the matrix

M =

1 2 3 4 5 6


0 0 0 0 1 1
0 1 0 1 0 0
1 0 1 0 0 0


 .
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To obtain the lambda part and the ribbon of Φ(M) we have to successively perform column
bumping on all letters of the word 562413. This creates the following chain of Young tableaux:

5
→ 6

5
→ 6

2 5
→ 4 6

2 5
→ 4 6

1 2 5
→ 3 4 6

1 2 5
;

3 • •
1 2 •

We have therefore

d1(4) = d2(4) = d3(4) = 0 d4(4) = d5(4) = 1 d6(4) = 2 .

We will show now that Condition 6.16.1 is equivalent to the following proposition: at any
stage of the column bumping process, the box containing a number from any column of the
ribbon in the classical numbering will be no further in the tableau than any box containing
another number from the same column but a lower level.

Example 6.21
Taking on the previous example, one can easily verify that, for any 0 ≤ θ ≤ 6, we have
dθ(5) ≥ dθ(6).

Lemma 6.22 Suppose that Conditions 6.10 and 6.11 are satisfied, and let r be the ribbon of
Φ(M). Then for any a ≥ N + 1, such that a and a + 1 belong to the same column of r in its
classical numbering, the relation

dθ(a) ≥ dθ(a + 1)

is invariant over θ ∈ [0, Θ] such that dθ(a) > 0.

Proof. Suppose that we have dθ(a) < dθ(a + 1) and dθ+1(a) ≥ dθ+1(a + 1). This means that
during the (θ + 1)st column bumping a bumps out some c to take its place in the same column
where a + 1 is (see Figure 6.5-a). In this case we have a ≤ c (by definition of column bumping

a + 1

c

a

-

a + 1

ac

-

a b

Figure 6.5: Snapshots of column-bumping process for Lemma 6.22.

process), and c < a + 1 (by definition of Young tableaux), which means that a = c. However
this is impossible because of the Condition 6.11.

On the other hand, if at some point we have dθ(a) ≥ dθ(a + 1) and dθ+1(a) < dθ+1(a + 1),
it means that a and a + 1 are in the same column, and a + 1 is bumped out by some c (see
Figure 6.5-b). Again, we can notice that, by definition of column bumping, c ≤ a + 1 and c > a
implying that c = a + 1, which contradicts Condition 6.11.

Note 6.23 It can be easily observed that Condition 6.16.1 is equivalent to saying that, for any
a as in Lemma 6.22, a is bumped in earlier than a + 1, i.e. dθa

(a) > dθa
(a + 1) = 0, where

θa = min{θ|dθ(a) > 0}.
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Corollary 6.24 In the conditions of Lemma 6.22, Condition 6.16.1 implies that dθ(a) ≥ dθ(a+
1) for all θ ∈ [0, Θ].

Proof. This corollary is a trivial consequence of Lemma 6.22 and Note 6.23.

Corollary 6.25 M ∈M
(N) implies Condition 6.16.1.

Proof. Obviously, if M ∈ M
(N), we have dΘ(a) = dΘ(a + 1) for any a as in Lemma 6.22. As

Conditions 6.10 and 6.11 also hold in this case, we can deduce from Lemma 6.22 and Note 6.23
that Condition 6.16.1 is verified.

We have shown therefore that Condition 6.16.1 is necessary for M to belong to M
(N). The

next step is to prove that Condition 6.16.2 is also necessary. We can remark the following by
analogy with the Note 6.23.

Note 6.26 Condition 6.16.2 is equivalent to saying that, for any a and b (a < b) belonging
to the same level in the ribbon, b is bumped in earlier than a, i.e. 0 = dθb

(a) < dθb
(b), where

θb = min{θ|dθ(b) > 0}.

Let us now introduce a few notations. We consider all columns of the ribbon in the sense of
Definition 6.13 numbered from left to right. The conjugated shape of the ribbon is a sequence
(c1, . . . , cN ), where ci is the number of boxes in the ribbon’s i-th column. In the following
discussion we will only consider those columns i that have ci > 0.

For each column i we will denote by ti its top box in the classical numbering. In Example 6.12
the conjugated shape of the ribbon is (2,1,2), and t1 = 6, t2 = 7, and t3 = 9.

Lemma 6.27 Suppose that Conditions 6.10, 6.11, and 6.16.1 are satisfied, and let r be the
ribbon of Φ(M). Suppose also that for any ti−1 − k, and ti − k — two numbers in the adjacent
columns and the same level of r in its classical numbering — we have

dθ+1(ti−1 − k) < dθ+1(ti − k) ,

then the same is correct if we replace θ + 1 by θ.

Proof. Suppose this is not the case. Then we have at the same time

dθ(ti−1 − k) ≥ dθ(ti − k)
dθ+1(ti−1 − k) < dθ+1(ti − k)

,

which means that ti − k and ti−1 − k are in the same column of Tθ, and during the (θ + 1)-st
column bumping some t bumps ti−k out (see Figure 6.6). From the definition of Young tableaux
and column bumping we can conclude then that t ∈ [ti−1 − k + 1, . . . , ti − k − 1]. However,
t ∈ [ti−1 + 1, . . . , ti − k − 1] implies that t is in the column i of the final ribbon, and thus, by
Condition 6.16.1 and Lemma 6.22, we have dθ(t) ≥ dθ(ti − k), which is impossible, as t bumps
out ti − k at step θ + 1. Thus we can deduce that

t ∈ [ti−1 − k + 1, . . . , ti−1] . (6.27)

Notice here that, for k = 0, this interval is empty and we obtain a contradiction. We can
therefore continue our proof inductively.

Let us suppose that we have proven the assertion of the lemma for all levels higher than
k. To prove it for k notice that (6.27) implies that t is in the column i − 1 of the classical
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ti−k

...

ti−1−k

t

-

Figure 6.6: Snapshot of column-bumping process for Lemma 6.27.

numbering of the ribbon, and thus t = ti−1 − k′, where 0 ≤ k′ < k. By the assumption of the
induction, we then have

dθ(ti − k)− 1 = dθ(t) = dθ(ti−1 − k′) < dθ(ti − k′) ≤ dθ(ti − k) , (6.28)

and therefore

dθ+1(t) = dθ+1(ti−1 − k′) < dθ+1(ti − k′) = dθ(ti − k′) = dθ(ti − k) = dθ+1(t) . (6.29)

The inequality in (6.29) is the assumption of the lemma, the first equality is trivial, the second
is due to (ti − k′)’s not changing its position during (θ + 1)-st column bumping, the third is a
consequence of (6.28), and the last represents the fact that t bumps out ti − k. The relation
(6.29) being contradictory proves the lemma.

Let us now generalise Lemma 6.27 to any pair of numbers in the same level of the ribbon.

Lemma 6.28 Suppose that Conditions 6.10, 6.11, and 6.16.1 are satisfied, and let r be the
ribbon of Φ(M). Suppose also that for any i < j and any ti − k, and tj − k — two numbers in
the same level of r — we have

dθ+1(ti − k) < dθ+1(tj − k) ,

then the same is correct if we replace θ + 1 by θ.

Proof. First of all notice that without loss of generality we can assume that tj − k and ti − k
are adjacent in the level k of r, i.e. for any h, such that i < h < j, there is no box in the level k
of the column h of r. Observe also that Lemma 6.27 is a special case of this one with j = i + 1,
and therefore we only have to discuss the case were j − i > 1.

As before we suppose that we have proven the assertion of the lemma for all levels higher
than k. We shall suppose that it is not satisfied for level k, and obtain a contradiction. Indeed,
using the same reasoning as for (6.27), we can show that

t ∈ [ti − k + 1, . . . , tj−1] , (6.30)

which implies that t belongs to some column i′ where i ≤ i′ < j, and therefore t = ti′ − k′ with
some k′ ∈ [0, . . . , k − 1]. Then we have the following chain of relations:

dθ(tj − k)− 1 = dθ(t) = dθ(ti′ − k′) < dθ(tj − k′) ≤ dθ(tj − k) (6.31)

that is analogous to (6.28). We obtain a contradiction in the same manner as in (6.29), which
proves the lemma.
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Corollary 6.29 M ∈M
(N) implies the Condition 6.16.2.

Proof. As we have seen before, M ∈M
(N) implies both Condition 6.10 and Condition 6.11, and

by Corollary 6.25 also the Condition 6.16.1. It can also be easily observed that the assumption
of Lemma 6.28 holds for θ + 1 = Θ, and therefore applying this lemma inductively, we prove
the validity of Condition 6.16.2 (cf. Note 6.26).

Collecting together Corollaries 6.25 and 6.29, we obtain the following proposition.

Proposition 6.30 M ∈M
(N) implies all the conditions 6.10–6.16.

− o −
To show that Conditions 6.10–6.16 are sufficient for M ∈ M

(N), we make use of the notion of
plactic equivalence described in Section D.1.2 of Appendix D.

Let us again consider a matrix M ∈ MN×(N+m), and Φ(M) = (tλ, tµ, r) — the square
tabloid obtained by applying Algorithm 6.3 to M .

If we take u to be the word obtained by reading the positions (columns) of 1’s in M , then,
denoting by Tu the Young tableau obtained by applying column bumping to the word u, we
have by definition of Robinson-Schensted-Knuth correspondence

Tu = tλ ∪ r ,

which implies by Proposition D.5 that

u ≡ w(Tu) = w(tλ ∪ r) ,

where u is the mirror image of u. Applying now Theorem D.8 to this equivalence and the
interval [N + 1, N + m] we obtain

u′′ ≡ w(r) ,

where u′′ is the word obtained by reading the positions of 1’s in M ′′ — the right-hand part of
M —, and w(r) is the the restriction of the tableau word corresponding to tλ ∪ r to the ribbon
r. Therefore, by Theorem D.7, we have for any k ≥ 0

R(u′′, k) = R(w(r), k) (6.32)

Observe that the increasing subsequences in u′′ correspond exactly to the sequences of 1’s
going North-East in M ′′, while the decreasing ones correspond to the sequences going south-
East. Condition 6.16.1 implies therefore that no two 1’s corresponding to boxes of the same
column of r in the classical numbering can be part of the same increasing subsequence. Thus
the increasing subsequences can only have one 1 per column of r in the classical numbering,
which means that they cannot be longer than the subsequences corresponding to levels of r in
the classical numbering. More generally, we can conclude that we obtain R(u ′′, k) considering
the subsequences of u′′ corresponding to the k top levels of r.

On the other hand, Corollary 6.24 implies that an increasing subsequence in w(r) can only
have one number per column of r in the classical numbering. At the same time it follows
trivially from the definition of a Young tableau that such a sequence can only have one number
per column of r in its actual numbering (the one constructed by Algorithm 6.3).

Let us now substitute k = min{ci|ci > 0} in (6.32). In this case k is equal to the number
of levels of r of maximum length. Combining the two observations above, we can deduce that
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in w(r) there are exactly k subsequences each having one letter per column of r in its classical
numbering as well as in its actual numbering. Thus, for any i such that ci = k we can deduce
that all numbers ti − ci + 1, . . . , ti are in the column i of r in its actual numbering, in other
words, column i is numbered correctly.

Repeating the same argument for subsequent levels of r we conclude that all columns of r are
numbered correctly, which proves that M ∈M

(N), and thus finalises the proof of Theorem 6.17.

6.4 Discussion

In this chapter, we have turned to the very fundamentals of the performance analysis of UMTS in
particular and any mobile communications system in general, by placing ourselves in the context
of Bit Error Rate (BER) estimation. More precisely, we have considered soft demodulation of
a digital signal modulated with Binary Phase Shift Keying (BPSK) technique and in presence
of spatial diversity.

This subject has already been studied in [30, 31] and [54], where interesting combinatorial
results were obtained, as well as an efficient algorithm for calculating BER based on the char-
acteristics of different propagation paths. In these papers, BER is expressed as a conditional
probability that a difference of two quadratic forms U and V is less than 0 under the assumption
that the value of the transmitted bit was 0. This is denoted P (U − V < 0), where U and V are
two real random variables such that U =

∑N
i=1 |ui|2 and V =

∑N
i=1 |vi|2 with ui’s and vi’s being

independent centred complex Gaussian variables with variances E[ |ui|2 ] = χi and E[ |vi|2 ] = δi.
The material of this chapter was devoted to generalising the results and algorithms of these

studies to a computation of the corresponding conditional probability distribution function
P (U − V < ε), which can also be given an interpretation in terms of mobile communications.
Indeed, the difference U − V represents the log-likelihood ratio of the bit in question, and,
therefore, the probability P (U − V < ε) indicates in way “how close we were to making an
error”.

We gave two expressions in terms of symmetric functions over the alphabets ∆ = (δ1, . . . , δN )
and X = (χ1, . . . , χN ) for the first 2N−1 coefficients of the Taylor expansion of P (U−V < ε) in
terms of ε. The first one is a quotient of multi-Schur functions involving two alphabets derived
from alphabets ∆ and X, which allows us to give an efficient algorithm for the computation of
these coefficients.

The second expression involves a certain sum of pairs of Schur functions sλ(∆) and sµ(X)
where λ and µ are complementary shapes inside an N ×N rectangle. We showed that such a
sum has a natural combinatorial interpretation in terms of what we call square tabloids with
ribbons and that there is a natural extension of the Knuth correspondence that associates a
(0,1)-matrix to each square tabloid with ribbon. We then presented a complete characterisation
of the (0,1)-matrices that arise from square tabloids with ribbons under this correspondence.

Clearly, the results of this chapter are not directly applicable to practical performance eval-
uation in communication networks, but present more interest in the domain of combinatorics.
They allow us, however, to show how interesting combinatorial objects can be obtained in a
rather practical context.
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The main goal of this thesis was twofold: firstly, to develop a formal mathematical model for
a concept that we call Complex Industrial Systems and, secondly, to illustrate this model and
the underlying analysis on a real-life industrial system.

The notion of complex industrial system refers principally to products of industrial devel-
opment, such as, for example, cars and aeroplanes, of which one can say that their design and
engineering are complex technical and managerial operations. Moreover, this notion can also
imply some more global entities as, for example, an industrial plant, which involves, at the same
time, a number of technological systems such as production chains, software systems controlling
these chains, and eventually a team of human operators, which can also be considered as a
system in this context.

Typically, such systems are a result of integration of a multitude of subsystems or com-
ponents that, in their, turn can also be complex systems, although with a more precise func-
tionality and easier to conceive. Thus, the underlying development process can be separated
in two phases: engineering and integration. The former consists in recursively decomposing
the system into smaller subsystems, until each component can be completely specified, and the
latter involves assembling these elementary components to produce the final complex system.
The complexity of the final design and the multitude of the involved subsystems are the two
qualities that characterise the resulting system. In particular, a system in the target range of
our model can be described by an affirmation that it cannot be apprehended in all its details by
one human being.

We have introduced, in this thesis, a theoretical model that allows to formally define a system
as described above, and reflects its complex nature by integrating the principle of recursive
decomposition.

As it has been mentioned above, a complex industrial system consists of a large number
of subsystems that are very often heterogeneous in their nature. Indeed, one encounters, in
practically all situations involving some kind of control, interactions between physical phenom-
ena, which evolve in a continuous manner described most often by differential equations, and
logical (or, as we call them, software) ones that exhibit a discrete behaviour. This situation
constitutes the research domain of a field facing a steadily increasing popularity, termed Hybrid
Systems. However, all models proposed so far do not eliminate this inherent duality but rather
concentrate their efforts on developing a good interface.

A complex system in our context can, for example, fabricate a discrete output depending
on some input information provided continuously, and similarly for all other combinations of
discrete and continuous behaviours. One of the fundamental aspects of our model is, therefore,
the notion of time. Our model comprises, at each level of the recursive decomposition, three
time scales: the input, output, and internal ones, which reflect the corresponding evolutions.
These time scales are based on the notion of non-standard real numbers that allows to describe
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in the same way both discrete and continuous behaviour. Consequently, our model uniformly
integrates both types of systems.

Moreover, we have also shown that a number of classical systems ranging from mechanical
(as in the Pendulum example) to purely mathematical (as in the discussion of the dynamical
systems as introduced in [32]) can be naturally represented in our model.

− o −

The model defined above has served us, in the rest of this thesis, as a guiding thread for
a progressive descent through different levels of a particular industrial system, namely the
Universal Mobile Telecommunications System — a third generation mobile communications
standard.

Thus, in Chapter 3, after a brief overview of the evolution of communication systems and the
architecture of UMTS, we have provided two high-level systemic decompositions of the network:
one in a simplified case with only one user, and another in a more general case. In particular,
the discussion of the latter allowed us to propose a definition of the range of systems that can
be naturally treated by our model as systems admitting a finite description.

In Chapters 4, 5, and 6, we have pursued the descent started in Chapter 3, by considering
three problems encountered on different levels of decomposition: starting from a rather high
level modelling a virtual subsystem in Chapter 4, and descending to a comparatively low level
in Chapter 6, where a single bit transmission was analysed.

More precisely, in Chapter 4, we have studied the Uplink Power Control. We started by
showing how a virtual system can be assembled from separate components of the global system in
order to study a particular functionality, here the power control in the ascending link between
a mobile and a base station. We have presented several stochastic algorithms for the Outer
Loop Power Control, and exhibited thereby a concrete method for determining the appropriate
parameters for such algorithms, which is an important problem influencing the network capacity
as well as the performance of a single link.

In Chapter 5, we have descended to the next level of our system, by considering the 16QAM
modulation used for the High Speed Downlink Packet Access feature. In particular, our goal,
in this chapter, was to determine the optimal control scheme for Hybrid ARQ. As opposed to
Chapter 4, where the analysis was realised by a rather theoretical approach, that of Chapter 5
was conducted by simulation, thus illustrating the use of the two most prominent techniques in
industrial development.

Finally, in Chapter 6, we have descended to practically the lowest possible level in the
analysis of a telecommunications network, by placing ourselves in the context of a single bit
transmission over a radio channel with spatial diversity, i.e. in presence of multiple propagation
paths, to study the problem of estimating the bit error rate. The results of this chapter generalise
those obtained in [30, 31, 54], and introduce an interesting class of combinatorial objects.

− o −

To conclude, this work allowed us to lift the curtain on what might become one day a uniform
theory of complex industrial systems and to gain a certain understanding of its possibilities
and limitations. Nevertheless, it leaves also a number of open problems and research directions
both in the systemic part and for each individual problem considered in the last chapters. In
particular, it would be interesting to consider possible hierarchies of systems, and to build
the corresponding complexity and calculability theories based on this model; but also one can
continue the exploration of power control algorithms, look for a generalisation and analytical
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analysis of H-ARQ control schemes, not to speak of the properties of square tabloids with
ribbons, which is the class of combinatorial objects introduced in the last chapter.
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Appendix A
Non-standard analysis

In this appendix, we provide the fundamentals of the non-standard analysis that we use in
Chapter 2 to define the notion of time scales used in our definition of systems. We start by
presenting the Zermelo-Fraenkel axiomatic system of set theory, as well as its main extensions,
namely the axiom of choice and the continuum hypothesis. We then proceed by introducing
some elements of model theory, and in particular the notions of ultrafilters and ultraproducts,
followed by that of elementary equivalence. Finally, making use of these notions we give a formal
construction of the field ∗R of non-standard reals and show that it is elementary equivalent to
the standard real field R.

Except for a couple of minor additions, the body of this appendix is a condensed compilation
of [60] — for the set theory presentation (Section A.1) — and [48] and [65] — for what concernes
ultrafilters and ∗R (Sections A.2 through A.4).

A.1 Elements of set theory

A.1.1 Zermelo-Fraenkel system (ZF) or common mathematics

The ZF system is given by the universal closure of the nine axioms below. This system provides
axiomatic foundation for what is commonly considered usual mathematics. More precisely, it
introduces the notion of set that allows to define constructively most of the objects the usual
mathematics manipulate.

The axioms below can be separated into three categories:

• the axioms of simple existence that stipulate the existence of sets: the empty set (ZF 3)
and the infinity (ZF 7),

• the axioms of restriction that limit the spreading of sets by requiring that they possess
some reasonable properties: extensionality (ZF 1) and foundation (ZF 9),

• the axioms of conditional existence (all other axioms of ZF) that provide ways of “con-
structing” sets from those already existing.

Let us now list the nine axioms discussed above. We use the symbols like = (identity),
∈ (membership), ∀ (universal quantifier), ∃ (existential quantifier), etc. in their usual sense;
the letters x, y, z, and t represent variables, i.e. they are always tied up by a corresponding
quantifier; and the letters a and b represent constants referring to some given set fixed in the
context where they appear.
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ZF1 the axiom of Extensionality. Two sets x and y having exactly the same elements are
equal:

∀x∀y
(
∀z(z ∈ x⇔ z ∈ y)⇒ (x = y)

)
.

ZF2 the axiom of Subsets (Separation, Comprehension). For any property ϕ(x) that
does not contain y, and where x is a free variable, and for any set a, there exists a subset
y of a, which contains only those elements of the latter that satisfy the property ϕ(x):

∃y ∀x(x ∈ y ⇔ (x ∈ a ∧ ϕ(x)) .

ZF3 the axiom of the Empty Set. There exists an empty set (i.e. a set without elements):

∃y ∀x(x 6∈ y) .

Assuming that there exists at least one set a (which is implied by the existence of an
infinite set postulated by ZF 7), this axiom is a consequence of ZF 2 as we have

∅ = {x|x 6= x} = {x|x ∈ a ∧ x 6= x} .

ZF4 the axiom of the Unordered Pair (Pairing). Given two sets a and b, there exists a
set which has a and b as its only elements:

∃y ∀x(x ∈ y ⇒ x = a ∨ x = b) .

ZF5 the axiom of the Power Set. Given a set a, there exists a set which has all the subsets
of a as its only elements:

∃y ∀x(x ∈ y ⇔ ∀z(z ∈ x⇒ z ∈ a))

or in an abbreviated form

∃y ∀x(x ∈ y ⇔ x ⊂ a) .

ZF6 the axiom of the Sum Set (Union). For any set a there exists a set
⋃

a (also denoted⋃
x∈a x), which is the union of all elements of a, i.e. it has the elements of all elements of

a as its only elements:

∃y ∀x(x ∈ y ⇔ ∃z(x ∈ z ∧ z ∈ a)) .

ZF7 the axiom of Infinity. There exists an infinite set. More precisely, there exists a set
x, which has ∅ as its first element (in the order induced by ∈), such that y ∈ x implies
y ∪ {y} ∈ x:

∃x(∅ ∈ x ∧ ∀y(y ∈ x⇒ ∃z(z ∈ x ∧ ∀t(t ∈ z ⇔ t ∈ y ∨ t = y)))) ,

which in abbreviated form becomes

∃x(∅ ∈ x ∧ ∀y(y ∈ x⇒ y ∪ {y} ∈ x)) .

The smallest set satisfying ZF 7 is denoted by ω or, more commonly, by N.
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ZF8 the axiom of Replacement. If the definition domain of a functional relation ϕ(x, y) is
a set then its image is also a set. More precisely, for any property ϕ(x, y) that does not
contain a, and where x and y are free variables, we have

∀x∀y
(
∀z(ϕ(x, y) ∧ ϕ(x, z)⇒ y = z)⇒ ∃t ∀y(y ∈ t⇔ ∃x(x ∈ a ∧ ϕ(x, y)))

)
.

ZF9 the axiom of Foundation (Regularity). Any non-empty set x has an element y, which
does not have any common elements with x, i.e. a minimal element in the order induced
by ∈ (that is the relation ∈ is well founded):

∀x
(
∃y(y ∈ x)⇒ ∃y(y ∈ x ∧ ∀z ¬(z ∈ x ∧ z ∈ y))

)

or, in abbreviated form,

∀x
(
(x 6= ∅)⇒ ∃y(y ∈ x ∧ y ∩ x = ∅)

)
.

A.1.2 Stronger theories

Even though Zermelo-Fraenkel set theory provides to an important extent the foundation of
the common mathematics, other assertions can be added to enrich it. Some of these assertions
are independent from the ZF system. Their admission or exclusion is made depending on what
is the use one intends to make of the set theory. Postulating a given axiom can, for instance,
solve some important mathematical problems. However, some assertions are incompatible with
other ones, and consequently different ways of enriching ZF exist, sometimes also mutually
incompatible. In this section, we shall briefly present the two most prominent of the different
extensions of ZF existing at present.

Axiom of choice (AC)

The axiom of choice is a typical example of an assertion extending ZF, which has profoundly
divided the mathematical community in the first half of the 20th century, but which also became
a source of vigorous research aiming to clarify its nature.

In particular, in 1938, Gödel has shown that adding the axiom of choice to other axioms of
set theory can not render the enriched theory contradictory, provided that this is not the case
with the original one. In other words, the axiom of choice cannot be refuted in the framework
of the fondamental set theory.

In return, in 1963, Cohen proved that the negation of the axiom of choice is also compatible
with other axioms of set theory, thus showing that the axiom of choice can neither be derived
in this framework.

The assertion below is the form of the axiom of choice as it has been included, in 1908, by
Zermelo into his axiomatic system. (It was also Zermelo, who has coined the term “axiom of
choice” in the same year.)

For any set a, such that all of its elements are non-empty and pairwise disjoint, there
exists a set c (called the choice set of a), such that its intersection with each element of a
is a set consisting of exactly one element:

∀x
(
x ∈ a⇒ x 6= ∅ ∧ ∀y(y ∈ a⇒ x ∩ y = ∅ ∨ x = y)

)
⇒ ∃c ∀x∃t(x ∈ a⇒ c ∩ x = {t}) .
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The axiom of choice has two important characteristics:

• its fecondity: numerous mathematical assertions are consequences of this axiom, and,
moreover, cannot be proven without some form of “choice”;

• and its stability: an important number of the consequences of the axiom of choice, coming
from various branches of mathematics, imply it in their turn, and thus represent its
equivalent forms.

One of the most well-known equivalent forms of the axiom of choice is the Zorn’s lemma.

Lemma A.1 (Zorn, 1935) If (x,≤) is a non-empty partially ordered set, such that any chain
(totally ordered subset) in x admits an upper bound, then x has a maximal element.

Continuum hypothesis

Another important assertion that is often considered as an addition to the fondamental set
theory is the so-called continuum hypothesis.

For a given set a, let us denote by P (a) the set of all of the subsets of a (cf. ZF 5). Any set
a is then equipotent to some subset of P (a) but not to P (a) itself, the cardinality of the latter
is strictly superior to that of a (Cantor’s theorem). The question arises naturally: whether the
are cardinal numbers between those of a and P (a). The answer is obviously positive in case
when a is finite. However, in the case when a is infinite, the question is undecidable in ZF.
Equivalently, the axiom of choice implies that, for any ordinal number α, we have ℵα+1 ≤ 2ℵα ,
but ℵα+1 = 2ℵα is undecidable in ZFC (ZF+AC). The following assertions postulating the
corresponding equalities are called respectively continuum hypothesis and aleph hypothesis:

Hypothesis A.2 (Continuum hypothesis [CH]) There is no cardinal comprised strictly
between the first infinite cardinal ℵ0 and 2ℵ0 .

This can be summarised by the affirmation that the power of continuum 2ℵ0 , i.e. the cardi-
nality of the set R of real numbers, is equal to the first non-denumerable cardinal ℵ1.

Hypothesis A.3 (Aleph hypothesis [AH]) For any ordinal α, we have 2ℵα = ℵα+1.

Observe that the aleph hypothesis is a generalisation of the continuum hypothesis. In ZF it
is equivalent to the generalised continuum hypothesis below.

Hypothesis A.4 (Generalised continuum hypothesis [GCH]) For any transfinite cardi-
nal κ, there is no cardinal comprised strictly beteen κ and 2κ.

Gödel has shown that GCH cannot be refuted in ZFC, whereas Cohen has shown subse-
quently that CH (and a fortiori GCH) cannot be proven in ZFC (both under the assumption
that ZFC is consistent).

A.2 Ultrafilters and ultraproducts

A.2.1 Ultrafilters and measures

Definition A.5 If I is an arbitrary set, a filter F over I is a family of subsets of I satisfying
the following conditions:
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1. the empty set does not belong to F ,

2. for any two P,Q ∈ F we also have P ∩Q ∈ F ,

3. for any P ∈ F and any Q ⊂ I such that P ⊂ Q we also have Q ∈ F .

Observe that conditions 1 and 2 imply that a filter cannot contain both a given set P ⊂ I
and its complementary (I \ P ). A filter that, for any P ⊂ I contains at least one of these is
called an ultrafilter.

Example A.6
A family Fa = {P ⊂ I | a ∈ P} of all subsets of I containing a given element a ∈ I is called a
principal (or trivial) ultrafilter generated by a.

Example A.7
If J is infinite the family of all P ⊂ I, such that I \ P is finite, forms a filter. Filters of this
kind which don’t contain any finite sets are called free.

The filters over a given set I are partially ordered by set inclusion. The following proposition
stipulates that ultrafilters are exactly filters that are maximal with respect to this ordering.

Proposition A.8 A filter F over I is an ultrafilter iff it is maximal with respect to set inclusion.

Proof. The fact that a filter that, for any given P ⊂ I, contains either P or I \ P is maximal
is trivial. Hence we only have to show that any maximal filter satisfies this property.

Suppose that F is a maximal filter, and let P ⊂ I be a subset of I such that neither P ∈ F
nor (I \ P ) ∈ F .

Observe that there cannot exist two sets Q1, Q2 ∈ F satisfying Q1 ∩ P = Q2 ∩ (I \ P ) = ∅
since this would imply that ∅ = Q1∩Q2 ∈ F . Therefore we can assume without loss of generality
that, for all Q ∈ F , we have Q ∩ P 6= ∅. It is easy to check then that

F ′ =
{
Q ⊂ I

∣∣∣∃F ∈ F (F ∩ P ⊂ Q)
}

is a filter and, moreover, a proper extension of F , which contradicts the latter’s maximality.

Note A.9 Corollaries A.10 and A.11 below assume Zorn’s lemma.

Corollary A.10 Any filter F over some set I can then be extended to an ultrafilter over I.

Proof. Let S be the set of all filters over I extending F , and order S by inclusion. By Zorn’s
lemma, S has a maximal element U . Proposition A.8 implies that U is necessarily an ultrafilter.

Applying the above corollary to the free filter defined in Example A.7 we obtain the existence
of free ultrafilters under the hypothesis of the Zorn’s lemma validity.

Corollary A.11 (Weak ultrafilter theorem) Let I be an infinite set. There exists a free
ultrafilter over I.

The proof of the existence of non-principal ultrafilters that we have provided above is based
on the Zorn’s lemma, and thus depends on a form of the axiom of choice. It is known, how-
ever, that it is strictly weaker than AC. Moreover, assuming the consistence of ZF system, the
dependencies in Figure A.1 can be shown. The statements in Figure A.1, which were not yet
mentioned, are listed below.
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axiom of choice
Zorn’s lemma
maximal ideal

-
� /

prime ideal
ultrafilter

-
� / weak ultrafilter

Figure A.1: Dependencies between some statements in set theory (an arrow indicates that one
notion implies another, a crossed arrow — that it does not; statements in the same box are
equivalent).

Theorem A.12 (Maximal ideal theorem [Krull, 1929 1]) Every commutative ring, such
that 1 6= 0, contains a maximal ideal.

Theorem A.13 (Prime ideal theorem [Stone, 1936]) Every Boolean algebra contains a
prime ideal.

Theorem A.14 (Ultrafilter theorem [Cartan, 1937 2]) Every Boolean algebra contains an
ultrafilter.

− o −
Observe that, if F is a free ultrafilter on I, the function m : 2I → {0, 1} defined by setting

m(P ) =

{
1 if P ∈ F
0 if P 6∈ F ,

is a finitely additive measure defined on all subsets of I, such that m(I) = 1 and m(P ) = 0 for
all finite subsets P ⊂ I. Conversely any such measure m defines a free ultrafilter F on I by
setting

F = {P ⊂ I |m(P ) = 1} .

Thus a free ultrafilter can be interpreted as a collection of subsets of I, such that each of
the sets belonging to it contains “almost all” elements of I. Observe that this notion of “almost
all” does not necessarily correspond to the intuitive one. Indeed, if one was to consider, for
example, a free ultrafilter U over N, it is impossible to say a priori whether even or odd, prime
or composite numebers constitute “almost all” natural numbers, even though one and only one
of each of these pairs has to member of U . However, this ambiguity does not have any real
effect on the construction of the set of the non-standard reals, which is the main goal of this
appendix (see Section A.3).

A.2.2 Ultraproducts and elementary equivalence

Let (Rα)α∈I be a family of rings,3 and let F be an ultrafilter over I. In the direct (Cartesian)
product

∏
α∈I Rα we introduce an equivalence relation by setting (rα) ∼ (r′α) if and only if the

set {α ∈ I | rα = r′α} belongs to F , which is also expressed by saying that rα = r′α for F-almost
all α.

1 The equivalence of the maximal ideal theorem and the axiom of choice was shown by Scott in 1954.
2 In 1937, Cartan was unaware of the duality between a filter and an ideal in a Boolean algebra.
3 More generally, we can consider a family of any type of algebraic structures such as, for example, groups or

modules. Here, we choose to speak of rings purely for the convenience of presentation.
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The equivalence class represented by an element (rα) is denoted by [rα]. By obvious com-
ponentwise addition and multiplication these equivalence classes form a ring, called the ultra-
product of (Rα)α∈I with respect to F , that is denoted

∏
α∈I Rα/F . If Rα = R for all α ∈ I, the

ultraproduct is denoted by RI/F and is called the ultrapower of R with respect to F . In the
latter case there is a canonical mapping ∆ : R → RI/F defined by setting ∆(r) = [rα], where
rα = r for all α ∈ I.

It can be easily verified that
∏

α∈I Rα/F is a field if each Rα is a field. It even suffices to
assume that Rα is a field for all α’s in some subset J ⊂ I belonging to F . Conversely, if the
ultraproduct

∏
α∈I Rα/F is a field, the set {α ∈ I |Rα is a field} belongs to F . Thus, we have

the following property of an ultraproduct.

Proposition A.15 The ultraproduct
∏

α∈I Rα/F is a field if and only if Rα is a field for F-
almost all α ∈ I.

The property R is a field can be expressed by the formula ∀x(x = 0 ∨ ∃y (xy = 1)). This
is an example of a first order sentence in the language R of rings, that is, a formula in the
language of rings, in which every variable is in the scope of a quantifier (∀ or ∃).

The above example is a special case of a metatheorem called  Los’s principle.

Theorem A.16 ( Los’s principle) Let (Rα)α∈I be a family of rings (resp. fields, modules,
etc.), and F an ultrafilter over I. A first order sentence σ in the language of rings (resp. fields,
modules, etc.) holds for the ultraproduct

∏
α∈I Rα/F if and only if σ holds in Rα for F-almost

all α in I.

Definition A.17 Two algebraic structures R and S are called elementary equivalent (denoted
R ≡ S) if R and S satisfy the same first order sentences in the corresponding language.

Corollary A.18 Let R be an algebraic structure. The following equivalence then holds for any
index set I and any ultrafilter F over I

RI/F ≡ R .

A.3 The set ∗R of non-standard reals

A.3.1 Construction of non-standard reals

Let us now consider the sequences of real numbers indexed by N. Postulating the weak ultrafilter
theorem,4 there exists a free ultrafilter F over N. The set of non-standard reals is then simply
the ultrapower RN/F . Let us however elaborate some more on this construction. The following
proposition is derived trivially from Definition A.5.

Proposition A.19 Let F be an non-trivial ultrafilter over N. A relation ∼F , defined by setting

(xn) ∼F (yn)
def⇐⇒ {n ∈ N |xn = yn} ∈ F ,

is then an equivalence relation on the set {(xn)∞n=1 | ∀n ∈ N (xn ∈ R)} of sequences of (standard)
real numbers.

4 I.e. the weakest of the assertions in Figure A.1.
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We are now in position to define the set of non-standard reals or hyperreals by factoring the
set of (standard) real sequences by the relation ∼F :

∗
R

def
=
{

(xn)∞n=1

∣∣∣∀n ∈ N (xn ∈ R)
}/
∼F .

Denoting by [xn] the equivalence class of the sequence (xn), we can define addition and multi-
plication in ∗R by setting

[xn] + [yn] = [xn + yn] ; [xn] · [yn] = [xn · yn]

and order it accordingly by

[xn] < [yn]
def⇐⇒ {n ∈ N |xn < yn} ∈ F . (A.1)

It is easy to verify that these definitions are independent of the representatives (xn) and
(yn) of the equivalence classes [xn] and [yn] correspondingly.

The standard reals can be embedded in ∗R by identifying each x ∈ R with the equivalence
class [x] of the corresponding constant sequence.

Observe that this definition of non-standard real numbers bears a significant resemblance
to the construction of standard reals from the rationals using Cauchy sequences. Indeed, if we
denote by C the set of such sequences, and by ∼ the equivalence relation defined by

(pn) ∼ (qn)
def⇐⇒ lim

n→∞
(pn − qn) = 0 ,

then the standard reals are just the set R = C/∼ with the operations defined in the same manner
as in (A.1).

When we construct, in this manner, the reals from the rationals, we are interested in con-
structing limit points for all “naturally” convergent sequences. Since the limit is all we care
about, it is convenient to identify as many sequences as possible; i.e. all those that converge to
the same “point”. No attention is paid to the rate of convergence; hence the two sequences (1/n)
and (1/

√
n) are identified with the same number 0 although they converge at quite different

rates. In creating ∗R from R, we want to construct a rich and well-organised algebraic structure
that encodes not only the limit of a sequence but also its mode of convergence. To achieve this,
we reverse the strategy and identify as few sequences as possible. The construction presented
above allows to achive this goal preserving, however, some nice algebraic properties of R.

Example A.20
Consider two sequences (pn) = (1, 0, 1, 0, 1, . . .) and (qn) = (0, 1, 0, 1, 0, . . .). Thus (pn) ·(qn) = 0,
and if none of these two sequences is identified with zero, we obtain a structure with zero divisors.

To see that this problem does not appear in our construction, assume that [pn] · [qn] =
[0, 0, . . .], i.e. {n | pn · qn = 0} ∈ F . This implies immediately that

{n | pn 6= 0} ∩ {n | qn 6= 0} = {n | pn · qn 6= 0} 6∈ F , (A.2)

and, consequently (by the property 2 in the Definition A.5 of filters), at least one of the sets in
the left-hand side of (A.2) does not belong to F . Therefore either {n | pn = 0} ∈ F or {n | qn =
0} ∈ F , which translates to the statement that either [pn] = [0, 0, . . .] or [qn] = [0, 0, . . .].
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Although the constructions of R and ∗R are very similar, there is an important difference
between the two sets: the dependence on the ultrafilter F makes ∗R “less canonical” than
R. Indeed, looking back at Example A.20, one observes that in ∗R one of the two sequences
(1, 0, 1, 0, 1, . . .) and (0, 1, 0, 1, 0, . . .) is identified with 0 and the other one with 1; and which
is which depends on the ultrafilter F . If we stick to the philosophy above and consider R and
∗R as structures constructed to reflect the asymptotic behaviour of sequences, this is not too
disconcerting: the difference between the two sets is just that in creating R from the rational
Cauchy sequences we throw out the sequences that do not have a decent asymptotic behaviour
at the very beginning, whereas in creating ∗R we keep them and treat them in an arbitrary but
coherent way instead.

Mathematically, this point of view is supported by the fact that hyperreals arising from
different non-principal ultrafilters have the same analytic properties, even though they can
only be shown to be algebraically isomorphic under extra set-theoretic assumptions
such as the continuum hypothesis.

Note A.21 Observe that for any x ∈ N the factor space {(xn)∞n=1 | ∀n ∈ N , xn ∈ R}/∼Fx
,

where Fx is the trivial filter introduced in the Example A.6, is algebraically isomorphic to R.

A.3.2 Some properties of ∗R

For any non-standard real x ∈ ∗R, such that x = [xn], we denote by |x| the absolute value of x
defined by |x| = [|xn|] ∈ ∗R. Thus, we are in position to give the following definition.

Definition A.22 All elements of ∗R are classified in three groups:

• An element x ∈ ∗R is infinitesimal if |x| < a for all positive real numbers a (denoted
x ≈ 0).

• An element x ∈ ∗R is finite if |x| < a for some positive real number a.

• An element in ∗R that is not finite is infinite.

Three examples of infinitesimals are 0, δ1 = [1/n], and δ2 = [1/
√

n]. To check that, say,
δ1 is infinitesimal, note that for any positive a ∈ R, the set {n | − a < 1/n < a} contains all
but a finite number of n’s and hence belongs to the free ultrafilter F used in the construction
of ∗R. Observe also that since δ1 6= δ2, the two sequences [1/n] and [1/

√
n] converging to zero

at different rates are represented by different infinitesimals. Finally, note that zero is the only
infinitesimal real number. Examples of infinite numbers are [n] (positive) and [−n2] (negative).

It is easy to check that the intuitive arithmetic rules do hold in ∗R. For instance, the sum of
two infinitesimals is infinitesimal, and so is the product of a finite number and an infinitesimal
one.

Proposition A.23 Any finite x ∈ ∗R can be written uniquely as a sum x = a + ε, where a ∈ R

and ε ≈ 0.

Proof. The uniqueness is obvious since, if x = a1 + ε1 = a2 + ε2, then a1− a2 = ε2 − ε1, which
is both real and infinitesimal, and therefore zero.

To prove the existence of such decomposition, let a = sup{b ∈ R | b < x}. Since x is finite a
exists, and we have to show that x−a ≈ 0. Suppose that this is not so. Then there exists r ∈ R

such that 0 < r < |x− a|, and therefore either we have a + r < x (if x− a > 0) or x < a− r (if
x− a < 0), both contradicting the choice of a.
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We shall write x ≈ y for x and y are infinitely close, i.e. x−y ≈ 0. Moreover, this proposition
allows us to define the standard part of finite non-standard reals.

Definition A.24 For each finite x ∈ ∗R, the unique real number a such that x ≈ a is called the
standard part of x and denoted st(x). Conversely, for each real a ∈ R the set {x ∈ ∗R | st(x) = a}
is called the monad of a.

Finally, observe that ∗R also contains the non-standard versions of natural ∗N = NN/F ,

integer ∗Z = ZN/F , and rational ∗Q = QN/F numbers. These sets extend their standard
counterparts in the same sense as ∗R extends R, and similar elementary equivalences hold. It is
important to observe, however, that neither of ∗N, ∗Z, and ∗Q is countable, i.e. the cardinality
of all three of these sets is continuum.

− o −
Applying Corollary A.18 to the pair R and ∗R, we obtain what is called the transfer principle.

Proposition A.25 (Transfer Principle) A first order sentence in the language of fields is
true in ∗R if and only if it is true in R.

The transfer priciple allows us, in particular, to use the Archimedean property in connection
with ∗R and ∗N.

Proposition A.26 (Archimedean property) For each x ∈ ∗R there exists a non-standard
natural N ∈ ∗N, such that N < x ≤ N + 1.

Corollary A.27 Consider an infinitesimal τ ∈ ∗R. There exists, for any standard real x ∈ R,
a non-standard natural N ∈ ∗N such that Nτ ≈ x.

Proof. The non-standard version of Archimedean property implies that there exists a non-
standard integer N ∈ ∗N (here necessarily infinitely great) such that N < x/τ ≤ N + 1. Hence,
we have Nτ < x ≤ (N + 1)τ and consequently 0 < x−Nτ ≤ τ ≈ 0.

A.3.3 Internal sets and functions

One of the first things one does having introduced a new mathematical structure is to look
for the classes of “nice” subsets and functions (such as open sets and continuous functions in
topology or measurable sets and functions in measure theory). In non-standard analysis the
“nice” sets and functions are called internal, and they arise in the following way.

Definition A.28 A sequence {An} of subsets of R defines a subset [An] of ∗R such that

[xn] ∈ [An] iff {n |xn ∈ An} ∈ F .

A subset of ∗R which can be obtained in this way is called an internal set.

Internal functions are defined in similar manner.

Definition A.29 A sequence {fn} of functions fn : R→ R defines a function[fn] : ∗R→ ∗R by
setting

[fn]([xn]) = [fn(xn)] .

A function on ∗R which can be obtained in this way is called an internal function.
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A.3. The set ∗R of non-standard reals

Example A.30
1. If a = [an] and b = [bn] are two elements of ∗R, then the interval

[a, b] = {x ∈ ∗
R | a ≤ x ≤ b}

is internal as it is obtained as
[
[an, bn]

]
.

2. Consider c = [cn] ∈ ∗R. The function sin(cx) is an internal function defined by

sin(cx) = [sin(cnxn)] .

Note, for instance, that two internal sets [An] and [Bn] are equal if and only if An = Bn for
F -almost all n (and similarly for functions).

The importance of the internal sets and functions consists in their product-like structure,
which allows to lift operations and properties componentwise from R to ∗R. As an example, we
can define the non-standard integral

∫
A fdx (where A = [An] is an internal set and f = [fn] an

internal function) by setting ∫

A
fdx =

[ ∫

An

fndx
]
.

This new integral inherits most of the properties of the standard one. It is easy to check that
both general statements such as

∫

A
(f + g)dx =

∫

A
fdx +

∫

A
gdx

and more specific ones such as

∫ b

a
sin(cx)dx =

1

c
cos(ca) − 1

c
cos(cb)

for all a, b, c ∈ ∗R (with c 6= 0) remain true.
The simplest way to obtain internal objects are the so-called non-standard versions of stan-

dard sets and functions.

Definition A.31 For each A ⊂ R, the internal set ∗A = [A,A,A, . . .] is called the non-standard
version of A. In the same way, for any function f : R → R, the internal function ∗f =
[f, f, f, . . .] is called the non-standard version of f . An internal set or function is called standard
if it is of the form ∗A or ∗f correspondingly.

Note that, similarly to R and ∗R, the set ∗A is much richer than A; e.g. the non-standard
interval ∗(a, b) contains not only all real numbers between a and b, but also all non-standard
ones with the same property. More generally speaking, holds the following proposition.

Proposition A.32 For any A ⊂ R, we have A ⊆ ∗A, with equality if and only if A is finite.

An interesting example of internal sets are the hyperfinite sets; they are infinite sets with all
the combinatorial structure of finite ones.

Definition A.33 An internal set A = [An] is called hyperfinite if F-almost all the An’s are
finite. The internal cardinality of A is the non-standard integer |A| = [|An|], where |An| is the
number of elements in An.
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Example A.34
Consider an infinite number N ∈ ∗N and a set

T =

{
0,

1

N
,

2

N
, . . . ,

N − 1

N
, 1

}
,

Observing that if N = [Nn] then T = [Tn] with

Tn =

{
0,

1

Nn
,

2

Nn
, . . . ,

Nn − 1

Nn
, 1

}
.

Hence |T | = [|Tn|] = [Nn + 1] = N + 1.

Consider an internal function f = [fn] and a hyperfinite set A = [An]. We can then define
the sum of f over A by

∑

a∈A

f(a) =


 ∑

a∈An

fn(a)


 .

If T is as in the example above and g : R→ R is a function, we obtain

∑

t∈T

∗g(t)
1

N
=


∑

t∈Tn

g(t)
1

Nn


 .

If g is continuous, the sequence on the right converges to
∫ 1
0 g(t)dt, and thus

∫ 1

0
g(t)dt = st

(
∑

t∈T

∗g(t)
1

N

)
.

A.4 Some applications of NSA

A.4.1 Continuity and differentiability of standard functions

Let us now present two basic properties of functions translated in the non-standard language.
By doing this we pursue a double goal: firstly, these two examples illustrate the simplicity that
some classical notions acquire when exposed in these terms, and, secondly, we will implicitly
refer to them in the concluding sections of this appendix.

Proposition A.35 A function f : R → R is continuous in the point a ∈ R if and only if
∗f(x) ≈ f(a) for all x ≈ a.

Proof. Assume that f is continuous in a and that x = [xn] is infinitely close to a. Given ε ∈ R∗
+

we must show that |∗f(x)−f(a)| < ε. Choose δ ∈ R∗
+ such that for all y ∈ R, |y−a| < δ implies

|f(y)− f(a)| < ε. We then have
{
n
∣∣∣ |f(xn)− f(a)| < ε

}
⊃
{
n
∣∣∣ |xn − a| < δ

}

and, since x ≈ a, the set on the right belongs to the ultrafilter used in the construction of ∗R.
Consequently that on the left also belongs there, which means by definition of order on ∗R (cf.
(A.1)) that |∗f(x)− f(a)| < ε.

If f is not continuous in a, there exist an ε ∈ R∗
+ and a sequence {xn} of reals converging

to a such that |f(xn) − f(a)| > ε for all n. But then x = [xn] is infinitely close to a and
|∗f(x)− f(a)| > ε.
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Proposition A.36 A function f : R→ R is differentiable in a ∈ R if and only if there exists a
number b ∈ R such that

∗f(x)− ∗f(a)

x− a
≈ b

for all x satisfying both x ≈ a and x 6= a. Moreover, if such b exists, it equals f ′(a).

The proof of this second proposition is almost identical to the proof of Proposition A.35
above.

Corollary A.37 If g is differentiable in a and f in g(a), then f ◦ g is differentiable in a, and
(f ◦ g)′(a) = f ′(g(a))g′(a).

Proof. Let x ≈ a. All we have to prove is that

∗f
(
∗g(x)

)
− ∗f

(
∗g(a)

)

x− a
≈ f ′

(
g(a)

)
g′(a) .

But if ∗g(x) = ∗g(a), then both sides of this equation are zero, since g ′(a) =
(
∗g(x)−∗g(a)

)
/(x−

a), whereas if ∗g(x) 6= ∗g(a), we can write

∗f
(
∗g(x)

)
− ∗f

(
∗g(a)

)

x− a
=

∗f
(
∗g(x)

)
− ∗f

(
∗g(a)

)

∗g(x)− ∗g(a)
·
∗g(x) − ∗g(a)

x− a
≈ f ′

(
g(a)

)
g′(a)

by Proposition A.36.

A.4.2 Differential equations

Theorem A.38 (Peano) Let f : R × [0, 1] → R be a bounded continuous function. Then the
initial value problem {

y′(t) = f(y(t), t)
y(0) = y0

has a solution for all y0 ∈ R.

Proof. Let the set T be defined as in Example A.34, and consider a function Y : T → ∗R such
that Y = [Yn] with functions Yn : R→ R defined inductively by setting

Yn

(
k/Nn

)
= y0 +

k−1∑

i=0

f
(
Yn(i/Nn), i/Nn

) 1

Nn
.

Similar equality then holds for Y :

Y
(
k/N

)
= y0 +

k−1∑

i=0

∗f
(
Y (i/N), i/N

) 1

N
. (A.3)

Next, observe that since f is bounded by some real number M , for all s, t ∈ T we have
|Y (t)−Y (s)| ≤M |t−s|. Consequently, Y is continuous in the sense that Y (s) ≈ Y (t) whenever
s ≈ t, and a function y : [0, 1]→ R, defined by setting y(t) = st(Y (t̃)) with t̃ being the element
of T to the immediate left of t, is so in the sense of Proposition A.35.
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Appendix A. Non-standard analysis

An argument similar to that after the Example A.34 in the end of Section A.3.3 allows us
to conclude that

∫ t

0
f(y(s), s)ds ≈

t̃N∑

i=0

∗f
(
∗y(i/N), i/N

) 1

N
. (A.4)

Finally, observe also that f , y, and Y all being continuous entails

∗f
(
∗y(i/N), i/N

)
≈ ∗f

(
Y (i/N), i/N

)
, (A.5)

and therefore, combining (A.3), (A.4), and (A.5) we obtain

y(t) = y0 +

∫ t

0
f
(
y(s), s

)
ds ,

which proves the theorem.

The proof of this theorem provides a technique of solving differential equations by reducing
them to hyperfinite difference equations, which happens to be quite powerfull. In the following
section we apply it to a much more complicated theory of stochastic differential equations, but
before doing this let us give the following simple example.

Example A.39
Consider the following differential equation on R

{
y′(t) = y(t) + 2
y(0) = a .

To solve it, let us take an infinite number N ∈ ∗N. For any given x ∈ R, we then have the
following chain of equations

∗y
(

x

N

)
≈ ∗y(0) + (∗y(0) + 2)

x

N
= a

(
1 +

x

N

)
+

2x

N
;

∗y
(

2x

N

)
≈ ∗y

(
x

N

)(
1 +

x

N

)
+

2x

N
≈ a

(
1 +

x

N

)2

+
2x

N

(
1 +

x

N

)
+

2x

N
;

...
...

∗y
(

kx

N

)
≈ ∗y

(
(k − 1)x

N

)(
1 +

x

N

)
+

2x

N
≈ a

(
1 +

x

N

)k

+
2x

N

k−1∑

i=0

(
1 +

x

N

)i

;

...
...

∗y(x) ≈ ∗y
(

(N − 1)x

N

)(
1 +

x

N

)
+

2x

N
≈ a

(
1 +

x

N

)N

+
2x

N

N−1∑

i=0

(
1 +

x

N

)i

= a

(
1 +

x

N

)N

+
2x

N
·
(
1 + x

N

)N − 1

(1 + x
N )− 1

= a

(
1 +

x

N

)N

+ 2

(
1 +

x

N

)N

− 2

= (a + 2)

(
1 +

x

N

)N

− 2

≈ (a + 2)ex − 2 .

In a general case, to finalise this derivation we should apply the standard part operator; in
this particular example this happens to be trivial. The solution of our differential equation is
therefore the function y : R→ R defined by y(x) = (a + 2)ex − 2.
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A.4.3 Brownian motion

Definition A.40 A Brownian motion is a stochastic process b : Ω × [0,∞) → R such that
b(ω, 0) = 0 for all ω and

1. if s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sn < tn, then the random variables b(·, t1)−b(·, s1), . . . b(·, tn)−
b(·, sn) are independent;

2. if s < t, the random variable b(·, t) − b(·, s) is Gaussian distributed with mean zero and
variance t− s;

3. for almost all ω, the path t→ b(w, t) is continuous.

The definition above introduces a one-dimensional Brownian motion. Higher dimensional
versions are obtained by combining independent one-dimensional copies for each of the orthog-
onal axes.

The non-standard version of Brownian motion is quite easy and intuitive to construct.
Choose an infinite integer N ∈ ∗N, and let T be the hyperfinite time-line

T =

{
0,

1

N
,

2

N
, . . . ,

N2 − 1

N
,N

}
.

The collection Ω of all internal maps ω : T → {−1, 1} is a hyperfinite set with 2N2+1 elements.
Considering each ω ∈ Ω as a sequence ω(0), ω( 1

N ), ω( 2
N ), . . . of coin tosses, where the value 1

means a step to the right and −1 a step to the left, we can define the hyperfinite random walk
B : Ω× T → ∗R by setting

B

(
ω,

k

N

)
=

k−1∑

j=0

ω(j/N)√
N

.

This walk starts at the origin and walks along the hyperreal axis with steps of length 1√
N

.

The set Ω, with the algebra A of all its internal subsets and the normalised counting measure
defined by setting

P (A) =
|N |

2N2+1

for all A ∈ A, can be transformed into a proper measure space (Ω, L(A), L(P )) by applying the
so-called Loeb construction (see [65] for more details).

We can now define a standard map b : Ω× [0,∞)→ R by setting

b(ω, t) = st(B(ω, t̃ )) ,

where t̃, as in the previous section, is the element of T to the immediate left of t.

Theorem A.41 b is a Brownian motion on (Ω, L(A), L(P )).

One particular application of this model of Brownian motion concerns stochastic differential
equations. Let f, g : R × [0,∞) → R be bounded, continuous functions, and define an internal
process X : Ω× T → ∗R inductively by

X(ω, t) =
t∑

s=0

∗f(X(ω, s), s)∆t +
t∑

s=0

∗g(X(ω, s), s)∆B(ω, s) .
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Then the standard process x(ω, t) = st(X(ω, t̃)) is a solution of the stochastic differential
equation

x(ω, t) =

∫ t

0
f(x(ω, s), s)ds +

∫ t

0
g(x(ω, s), s)db(ω, s) .

This is proved by checking that

∫ t

0
f(x(ω, s), s)ds = st




t̃∑

s=0

∗f(X(ω, s), s)∆t




and
∫ t

0
g(x(ω, s), s)db(ω, s) = st




t̃∑

s=0

∗g(X(ω, s), s)∆B(ω, s)


 .

The proof of the first equality is very similar to the proof of Peano’s existence theorem in the
previous section, whereas the proof of the second one is a little more technical as it involves a
stochastic integral.

This method for proving existence results is due to Keisler [50], and can be extended to
more complicated situations where f and g are no longer continuous and where the processes
take values in higher dimensional spaces. In this paper, Keisler obtained, in particular, new,
strong existence results for stochastic differential equations of the Itô type. In a series of
papers [23, 24, 25, 26, 27], Cutland mixed Keisler’s ideas with innovations of his own to study
optimal controls in both deterministic and stochastic settings. Hoover & Perkins [45], Lindstrøm
[62, 63, 64], and Stoll [88] extended the non-standard theory of stochastic integration to include
integration with respect to semi-martingales, infinite dimensional Brownian motion, and white
noise.
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Appendix B
A note on inter-symbol interference

In this appendix, we explain the effect of inter-symbol interference (also called auto-interference)
that we have mentioned in Chapter 4. We refer to this effect in the discussion related to the
Outer Loop Power Control (OLPC).

The goal of OLPC, as we have explained in Section 4.3.3, is to adapt the target SIR, used
by the Inner Loop, to the changes in the radio environment. The question is why would this
target ever change? Indeed, the signal to interference ratio reflects the power of the received
signal as compared to the interference level, and thus it is measured at reception, that is after
the channel. The naive assumption would be that, as long as this ratio is sufficiently great, this
should be sufficient to decode the signal with the constant error rate, and there should be no
reason to modify it. This would be the case if there were no multiple propagation paths. These
multiple paths introduce an interference between different copies of the user’s signal, which
results in additional errors in the decoding process. Thus, changes in the environment, i.e. in
the delays and number of different trajectories, affects the signal to interference ratio necessary
to guarantee a constant error rate, which gives the main reason for the Outer Loop’s existence.

Therefore, to demonstrate the auto-interference effect, we place ourselves in the context of
a transmission over a multipath channel using a simplified (without loss of generality) coding
chain, and we observe the interference of the transmitted data on itself, which occurs due to
the difference of delays on various trajectories.

Assume that we have to transmit a chain of symbols s0 , s1 , . . . , sM−1
. We spread every

symbol with a spreading sequence c0 , c1 , . . . , cQ−1
to obtain a sequence u0 , u1 , . . . , uN−1

defined
by

uk = sbk/Qcck mod Q , (B.1)

where Q is the spreading factor such that M Q = N is the length of the actual sequence of chips
that will be transmitted over the channel.

Before transmitting, this sequence is scrambled with a scrambling code that we shall denote
a0 , a1 , . . . , aN−1

. Thus the final transmitted signal can be expressed as

u(t) = A
N−1∑

n=0

an un p(t− nTc) , (B.2)

where A is the constant transmit power, Tc is the chip duration, and p(t) is the pulse shape
such that (p ? p)(nTc) = δn (i.e. it equals 1 if n = 0 and 0 otherwise).
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The received signal can then be expressed by

s(t) =

Np−1∑

k=0

αk u(t− dkTc) + n(t) = A

Np−1∑

k=0

[
αk

N−1∑

n=0

an un p
(
t− (n + dk)Tc

)]
+ n(t) , (B.3)

where Np is the number of paths, αk and dkTc are correspondingly the attenuation and the
delay 1 of the path number k, and n(t) is the additive white noise component. For our purposes,
we can either assume that there is no interference from other users or, otherwise, also model it
as a Gaussian noise included in this case into n(t). Whatever the choice, it does not affect the
subsequent calculations.

At the receiver, the estimated symbols are then obtained by taking a convolution of the
recieved signal with the pulse shape, multiplying by the conjugated scrambling code, and de-
spreading:

ŝm =
Q−1∑

i=0

ci a∗m Q+i(s ? p)
(

(mQ + i) Tc

)
. (B.4)

Substituting (B.3), and noticing once again that (p?p)(nTc) = δn, we can express the right-hand
part as follows.

ŝm =
Q−1∑

i=0

ci a∗m Q+i


A

Np−1∑

k=0

αk a
m Q+i−dk

um Q+i−dk
+

∫ +∞

−∞
p
(
t− (mQ + i) Tc

)
n(t)dt


 (B.5)

Substituting here the expression (B.1) for u
m Q+i−dk

provides

ŝm = A
Q−1∑

i=0

ci a∗m Q+i

Np−1∑

k=0

αk a
m Q+i−dk

s
m+b i−dk

Q
cc(i−dk) mod Q

+

∫ +∞

−∞
n(t)




Q−1∑

i=0

ci a∗m Q+i p
(
t− (mQ + i) Tc

)

 dt . (B.6)

Without loss of generality we can suppose now that the receiver is synchornised with the path
number 0 (i.e. d0 = 0). This allows us to further develop expression (B.6) (we denote the
integral in the right-hand side by N(t)):

ŝm = A
Q−1∑

i=0

ci a∗m Q+i


α0 a

m Q+i
sm ci +

Np−1∑

k=1

αk a
m Q+i−dk

s
m+b i−dk

Q
cc(i−dk) mod Q


+N(t) , (B.7)

which is transformed by opening the parenthesis into

ŝm = Aα0 sm + A
Q−1∑

i=0

ci a∗m Q+i

Np−1∑

k=1

αk a
m Q+i−dk

s
m+b i−dk

Q
cc(i−dk) mod Q + N(t) . (B.8)

The first component in the right-hand part of equation (B.8) is the original transmitted symbol
multiplied by the transmit power and the attenuation of the first path; the third one corresponds
to the white noise and is accounted for in the SIR estimation; the second — not necessarily
zero — component, however, only appears at the channel decoding stage, and represents exactly
the inter-symbol interference.

1 We follow here the common practice by assuming that the delays on all paths are multiples of chip duration.
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Probabilistic background

In this appendix, we present two elementary facts from the probability theory, namely the
notion of stochastic processes and the De Moivre-Laplace theorem. The former is referred to in
Section 4.6 of Chapter 4, where it serves to establish the relations between parameters of two
algorithms for the outer loop power control that guarantee [close to] optimal performances of
these algorithms. The latter allows us to determine, in the discussion of Section 4.6.3 of the
same chapter, the number of bits or blocks necessary to estimate the corresponding error rates.

C.1 Discussion of stochastic processes

Definition C.1 A discrete stochastic process is a map X : Ω × N → R on some probability
space (Ω,A, P ), such that ω → X(ω, n) is measurable for each n. This last map, which we
denote by Xn, is said to represent the state of the process at the moment n.

Theorem C.2 Let {Xn} be a stochastic process on R defined by setting Xn+1 = F (Xn), where

F (X) =





X + a, with probability p(X)
X − b, with probability q(X)
X, with probability 1− p(X)− q(X) ,

(C.1)

with a, b > 0 and p(x) + q(x) ≤ 1 for all x ∈ R. Suppose also that this process converges to a
stationary distribution π. Then, denoting by Eπ[p(x)] and Eπ[q(x)] the expectations in stationary
distribution of the probabilities of an upwards and downwards steps correspondingly, we have
the following relation

a Eπ[p(x)] = b Eπ[q(x)] . (C.2)

Proof. First of all observe that, as π is the stationary distribution, it satisfies the following
equation

π(x) = π(x + b)q(x + b) + π(x− a)p(x− a) + π(x)(1− p(x)− q(x)) , (C.3)

which means basically that the probability of the process’ being in in a given point x is equal
to the sum over each point, from where one can get to x, of probabilities of the process’ being
there in the first place multiplied by the probability of the corresponding transition.
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Let us now compute the expectation of x in the stationary distribution

Eπ[x] =

∫ +∞

−∞
xπ(x)dx.

Substituting (C.3) into this equation we obtain

Eπ[x] =

=

∫ +∞

−∞
xπ(x + b)q(x + b)dx +

∫ +∞

−∞
xπ(x− a)p(x− a)dx +

∫ +∞

−∞
xπ(x)(1 − p(x)− q(x))dx

=

∫ +∞

−∞
(x− b)π(x)q(x)dx +

∫ +∞

−∞
(x + a)π(x)p(x)dx +

∫ +∞

−∞
xπ(x)(1 − p(x)− q(x))dx

=

∫ +∞

−∞
xπ(x)q(x)dx − b

∫ +∞

−∞
π(x)q(x)dx +

∫ +∞

−∞
xπ(x)p(x)dx + a

∫ +∞

−∞
π(x)p(x)dx

+

∫ +∞

−∞
xπ(x)(1− p(x)− q(x))dx

= a

∫ +∞

−∞
π(x)p(x)dx − b

∫ +∞

−∞
π(x)q(x)dx +

∫ +∞

−∞
xπ(x)dx

= a Eπ[p(x)]− b Eπ[q(x)] + Eπ[x] .

Finally, eliminating Eπ[x] in both left- and right-hand side of the equation above, we obtain the
desired relation.

Lemma C.3 Consider a differentiable function f ∈ C 1(R), such that its first derivative satisfies
the Lipschitz condition: for all x, y ∈ R we have |f ′(x)− f ′(y)| ≤ c|x− y|, where c is a constant
real number. Let X be a random variable on R with probability density π, and finite expectation
E[X] = m and variation E[(X −m)2] = σ2. Then one has

∣∣∣E[f(X)]− f(m)
∣∣∣ ≤ c σ2 .

Proof. First of all observe that in the conditions of the lemma

f(x) = f(m) +

∫ x

m
f ′(x)dx .

Denote by Ix the interval [m,x] for x ≥ m, and [x,m] for x ≤ m. As f ′ is Lipschitz it is also
continuous, and therefore for any x there exists x′ ∈ Ix such that the integral in the right-hand
part of the equation above equals f ′(x′)(x−m). We can now write

∣∣∣E[f(X)]− f(m)
∣∣∣ =

=

∣∣∣∣
∫

R

(
f(x)− f(m)

)
π(x)dx

∣∣∣∣

=

∣∣∣∣
∫

R
f ′(x′)(x−m)π(x)dx

∣∣∣∣

=

∣∣∣∣
∫

R

(
f ′(x′)− f ′(m) + f ′(m)

)
(x−m)π(x)dx

∣∣∣∣

=

∣∣∣∣
∫

R

(
f ′(x′)− f ′(m)

)
(x−m)π(x)dx + f ′(m)

∫

R
(x−m)π(x)dx

∣∣∣∣
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=

∣∣∣∣
∫

R

(
f ′(x′)− f ′(m)

)
(x−m)π(x)dx

∣∣∣∣

≤
∫

R

∣∣∣
(
f ′(x′)− f ′(m)

)
(x−m)

∣∣∣π(x)dx

≤ c

∫

R
(x−m)2π(x)dx = c σ2 ,

which proves the lemma.

Note C.4 Lemma C.3 implies that, provided the probabilities p(x) and q(x) in (C.1) satisfy the
appropriate conditions, a and b can always be chosen in such a way, as to obtain an arbitrarily
small error in the following approximation of (C.2)

a p(m) = b q(m) , (C.4)

where m = Eπ[x]. This is also confirmed by the intuition that the mean value of the process
defined by (C.1) in the stationary distribution is the one where the conditional expectation of
the next step is zero, i.e.

E

[
∆X

∣∣∣X = m
]

= a p(m)− b q(m) = 0 .

C.2 Theorem of De Moivre-Laplace

The following theorem is a special case of the central limit theorem. It states that the binomial
distribution of the number of “successes” in a series of independent identically distributed
Bernoulli trials with probability p of success on each trial is approximately a normal distribution
if n is large, or, more precisely, that after standardizing, the probabilities converge to those
assigned by the standard normal distribution.

Theorem C.5 (De Moivre-Laplace) Let {Xk}k∈N be a series of independent identically
distributed Bernoulli trials, i.e. for all k one has Xk ∈ {0, 1} and P (Xk = 1) = p. Let
Nn =

∑n
k=1 Xk be the number of occurences of 1 in {Xk} up to the moment n. Then the

following limit equation holds for all a, b ∈ R.

lim
n→∞

P

(
a <

Nn − np√
np(1− p)

< b

)
=

∫ b

a
g(y)dy , (C.5)

where g() is the density of the standardized normal probability distribution on R with zero mean
and variance 1.

Let us denote by G(b) the integral in the right part of (C.5) with an assumtion that a = −b
and b > 0. The following corollary then provides an estimate of the number of trials necessary
to obtain a good approximation of p.

Corollary C.6 Consider {Xk}k∈N and Nn defined as in Theorem C.5, and take

n =

⌈(
b

ε

)2

p(1− p)

⌉
, (C.6)
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where ε and b are two positive integers, and dxe is the smallest integer greater than x. If ε is
sufficientely small, then with probability close to G(b) the proportion Nn/n of successes among
the first n trials approximates p with precision ε, i.e.

P

(∣∣∣∣
Nn

n
− p

∣∣∣∣ < ε

)
≈ G(b) . (C.7)

Proof (corollary). Using the notations introduced above, one can rewrite (C.5) as

lim
n→∞P

(
−b <

Nn − np√
np(1− p)

< b

)
= G(b) .

Dividing both inegalities by
√

n
p(1−p) , we obtain

lim
n→∞

P



∣∣∣∣
Nn

n
− p

∣∣∣∣ < b

√
p(1− p)

n


 = G(b) .

Thus, to obtain (C.7) we have to take n such that

ε ≥ b

√
p(1− p)

n
,

and therefore

n ≥
(

b

ε

)2

p(1− p) .
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Appendix D
Combinatorial background

In this appendix, we present the combinatorial background related to the notions that we use
in Chapter 6, i.e. partitions, Young tableaux, symmetric functions, and plactic monoid, as well
as some operations on them.

D.1 Partitions and Young tableaux

A partition is a finite non-decreasing sequence λ = (λ1, λ2, . . . , λm) of positive integers. The
number m of elements of λ is called the length of the partition λ. One can represent each such
partition λ by a Ferrers diagram of shape λ, that is to say by a diagram of λ1 + . . . + λm boxes
whose i-th row contains exactly λi boxes for every 1 ≤ i ≤ m. The Ferrers diagram associated
with the partition λ = (2, 2, 4) is given below.

The conjugate partition λ˜of a given partition λ is the partition obtained by reading the heights
of the columns of the Ferrers diagram associated with λ. For instance, the conjugate partition
of λ = (2, 2, 4) is λ˜= (1, 1, 3, 3).

When λ is a partition whose Ferrers diagram is contained in the square represented by the
partition NN = (N, . . . , N) with N rows of length N , one can also define the complementary
partition λ of λ which is the conjugate of the partition ν whose Ferrers diagram is the comple-
ment (read from bottom to top) of the Ferrers diagram of λ in the square (N N ). Note that
this definition is relative to a given size N and that the square does not have to be the smallest
one containing λ. For instance, for N = 6 and λ = (1, 1, 2, 3), we have ν = (3, 4, 5, 5, 6, 6) and
λ = (2, 4, 5, 6, 6, 6) (see Figure D.1).

Let A be a totally ordered alphabet. A tabloid of shape λ over A is a filling of the boxes
of a Ferrers diagram of shape λ with letters of A. A tabloid is called a Young tableau when its
rows and its columns consist respectively of non-decreasing and strictly increasing sequences of
letters of A. One can see below a Young tableau of shape (2, 2, 4) over A = { a1 < . . . < a5 }.

a3 a5

a2 a2

a1 a1 a1 a4
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Figure D.1: Two complementary partitions : λ = (1, 1, 2, 3) and λ = (2, 4, 5, 6, 6, 6).

One associates with any Young tableau T over A the monomial AT which is the product of all
letters of A that occur in the different boxes of T . One has for instance AT = a3

1 a2
2 a3 a4 a5 for T

the Young tableau of the last example. The Schur function sλ(A) associated with the partition
λ is then defined as the sum of all monomials AT for T running over all Young tableaux of
shape λ. We recall that the Schur functions are symmetric polynomials that form a linear basis
of the algebra of symmetric polynomials over A (see Section D.2).

D.1.1 Knuth’s bijection

Knuth’s bijection is a famous one-to-one correspondence between {0, 1}-matrices and pairs of
Young tableaux of conjugate shapes (cf. [51]). It is based on the column insertion process which
is a classical combinatorial construction that we shall present now. Let A be a totally ordered
alphabet. The fundamental step of the column insertion process associates with a letter a ∈ A
and a Young tableau T over A a new Young tableau T (a) over A defined as follows.

1. If a is strictly larger than all the entries of the first column of T , the tableau T (a) is
obtained by putting a in a new box at the top of the first column of T .

2. Otherwise, one can consider the smallest entry b of the first column of T which is greater
than or equal to a. The tableau T (a) is then obtained by replacing b by a and by applying
recursively our insertion scheme, starting now by trying to insert b in the second column
of T . Our process continues until a replaced entry can go at the top of the next column
or until it becomes the only entry of a new column.

One can easily check that T (a) is always a Young tableau. Moreover, each step of our process
can be reversed if one knows which new box it has created. Let now w = a1 . . . aN be a word
over A. The result of the column insertion process applied to w is the Young tableau obtained
by column inserting successively a1, . . . , aN as described above, starting from the empty Young
tableau.

Note D.1 The Young tableau which is obtained by applying the column insertion process to
a word w = a1 . . . aN over A is the same as the tableau obtained by applying the row insertion
process (i.e. Schensted’s algorithm) to its mirror image w̃ = aN . . . a1 (see [34] for more details).

We are now in the position to present Knuth’s construction. Let M be a matrix from the
set MN×N ({0, 1}) of square {0, 1}-matrices of order N . Knuth’s bijection associates with M
a pair (P,Q) of Young tableaux with conjugate shapes over the alphabet [1, N ] as described
below.
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1. Construct the 2-row array AN which results by listing the N 2 pairs (i, j) of [1, N ]× [1, N ]
in lexicographic order, i.e.

AN =

(
1 . . . 1 2 . . . 2 . . . . . . N . . . N
1 . . . N 1 . . . N . . . . . . 1 . . . N

)
.

2. Take in this array all the entries corresponding to the 1’s of M in order to get an array

A(M) =

(
u1 u2 . . . . . . ur

v1 v2 . . . . . . vr

)
.

3. Form the word w1(M) = v1 . . . vr obtained by reading from left to right the bottom entries
(the entries of the second row) of A(M). The column insertion process applied to w1(M)
gives the Young tableau P .

4. Form finally the second Young tableau Q by placing for every i ∈ [1, r] the i-th element
ui of the first row of A(M) in the box which is conjugate to the i-th box created during
the column insertion process that led to P .

By reversing the steps of the described construction, we can recover the array A(M) (and hence
our matrix M) from the pair (P,Q). We find the box in which Q has the largest entry; if there
are several equal entries, the box that is farthest to the right is selected. Then we perform
the reverse column insertion to P starting with the conjugate of the selected box and remove
the selected box from Q. We obtain a new pair of Young tableaux with conjugate shapes and
perform the same procedure up to the moment when we get two empty Young tableaux.

Example D.2
Let us consider the matrix

M =




0 0 1
1 0 0
0 1 1


 .

Then the arrays A3 and A(M) are respectively equal to

A3 =

(
1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

)
and A(M) =

(
1 2 3 3
3 1 2 3

)
,

where in A3 we boxed the entries corresponding to the 1’s of M . Thus w1(M) = (3, 1, 2, 3).
Knuth’s bijection associates with M the following pair of Young tableaux of conjugate shapes:

(P,Q) =




3
2
1 3 ,

2
1 3 3


 .

Let us now present an extension of this bijection, presented in [54], that allows us to obtain
a square tabloid of shape NN over two alphabets ∆ = {δ1, . . . , δN} and X = {χ1, . . . , χN} from
the pair of Young tableaux of conjugated form obtained by Knuth’s bijection from a N × N
square {0,1}-matrix. The additional transformation consists then in the following two simple
steps.

135



Appendix D. Combinatorial background

1. Construct a Young tableau Q from Q column by column, by taking for each i = 1, . . . , N
all numbers from [1, . . . , N ] that do not belong to the column N−i+1 of Q (if this column
is empty then that implies all numbers 1, . . . , N), and placing them into column i of Q.

2. Replace all entries i in P by δi, and in Q by χi.

3. Observe now, that the shape of Q is complementary to that of Q in the square N N , and
therefore to finalise our construction it is sufficient to place Q in such a way that its corner
is in the upper right-hand corner of NN .

Example D.3
Let us continue with the pair (P,Q) of the previous example. Applying the first step of the
procedure described above, we obtain, indeed, the following tableau Q of shape (2, 3) comple-
mentary to that of P (i.e. (1, 1, 2)) in the 3 by 3 square.

Q = 2 2
1 1 3 .

Replacing now numbers by letters from ∆ and X and combining P and Q we obtain the following
square tabloid.

δ3 χ2 χ1

δ2 χ2 χ1

δ1 δ3 χ3 .

It is clear that this procedure can be inversed, and therefore, by combining it with the
Knuth’s bijection, we obtain a bijection between N × N square {0,1}-matrices and square
tabloids of shape NN over alphabets ∆ and X.

D.1.2 Plactic equivalence

The column insertion process can also be described algebraically by the plactic formalism devel-
oped by Lascoux and Schützenberger (cf. [58]). Let A be a totally ordered alphabet. The plactic
monoid is the monoid constructed over A and subject to the following relations (discovered by
Knuth (cf. [51])): {

acb ≡ cab , for every a ≤ b < c in A
bca ≡ bac , for every a < b ≤ c in A .

Two words over A are identified under the plactic relations if and only if the Young tableaux
obtained by applying the column insertion process to their mirror images are equal (cf. [34, 58]).

One can associate with a Young tableau T a word w(T ) over A by reading the columns of
T from top to bottom and left to right. The words associated with Young tableaux in such a
way are called tableau words.

Example D.4
The tableau word associatied with the Young tableau

T =

a3 a5

a2 a2

a1 a1 a1 a4

is w(T ) = a3 a2 a1 a5 a2 a1 a1 a4 .
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Note that applying the column insertion to the mirror image of a tableau word w(T ) yields
the tableau T . Observe also (see [34, 58]) that a word over A is equivalent with respect to the
plactic relations to a unique tableau word (which is therefore associated with the Young tableau
given by the column insertion process applied to the mirror image of w). In other words, we
can state the following proposition.

Proposition D.5 If u is a word over a totally ordered alphabet A, and u is its mirror image,
then

w(Tu) ≡ u ,

where Tu is the Young tableau obtained by applying column insertion to u.

Note D.6 If u and v are two words over A such that u ≡ v then by the previous proposition
we have

w(Tu) ≡ u ≡ v ≡ w(Tv) ,

and therefore Tu = Tv.

Denoting by R(w, k) the maximum total length of k increasing subsequences of w, we can
state the following theorem, which is a consequence of Green’s theorem (see [37]).

Theorem D.7 If u and v are two words over a totally ordered alphabet A, such that u ≡ v,
then for any k ≥ 0 we have

R(u, k) = R(v, k) .

Finally, we shall mention another important property of plactic equivalence. Let w =
w1 w2 . . . wn be a word over a totally ordered alphabet A, and let a < b be two letters of A. We
shall denote by wa,b the subword of w consisting of all its letters wi, such that a ≤ wi ≤ b. In
other words, wa,b is the projection of w on the interval [a, b] ⊂ A.

Theorem D.8 Let u and v be two words over a totally ordered alphabet A. Let a < b be two
letters of A. Then u ≡ v implies ua,b ≡ va,b.

D.2 Symmetric functions background

In this section, we briefly present the notion of symmetric functions and a number of related
concepts. For a more comprehensive study we refer the reader to the classical textbook [66] by
I. G. MacDonald.

Definition D.9 A function of multiple variables is said to be symmetric if it is invariant under
any permutation of its variables.

Let X be a set of indeterminates. Symmetric functions over X form an algebra that is
denoted by Sym(X). We define the complete symmetric functions Sk(X) by their generating
series

σz(X) =
+∞∑

n=0

Sn(X) zn =
∏

x∈X

1

1− x z
. (D.1)
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We also define in the same way the elementary symmetric functions Λk(X) by their generating
series (which is a polynomial when X is finite)

λz(X) =
+∞∑

n=0

Λn(X) zn =
∏

x∈X

(1 + x z) . (D.2)

In order to use complete and elementary symmetric functions indexed by any integer k ∈ Z,
we also set Sk(X) = Λk(X) = 0 for every k < 0. Every symmetric function can be expressed
in a unique way as a product of complete or elementary symmetric functions. For every n-uple
I = (i1, . . . , in) ∈ Zn, we now define the Schur function sI(X) as the minor taken over the rows
1, 2, . . . , n and the columns i1+1, i2+2, . . . , in+n of the infinite matrix S = (Sj−i(X))i,j∈Z, i.e.

sI(X) =

∣∣∣∣∣∣∣∣∣

Si1(X) Si2+1(X) . . . Sin+n−1(X)
Si1−1(X) Si2(X) . . . Sin+n−2(X)

...
...

...
...

Si1−n+1(X) Si2−n+2(X) . . . Sin(X)

∣∣∣∣∣∣∣∣∣
. (D.3)

We also define more generally for every I = (i1, . . . , in) ∈ Zn and J = (j1, . . . , jn) ∈ Zn, the
skew Schur function sJ/I(X) as the minor of S taken over the rows i1 + 1, i2 + 2, . . . , in + n
and the columns j1 + 1, j2 + 2, . . . , jn + n. The importance of Schur functions comes from the
fact that the family of the Schur functions that are indexed by partitions form a classical linear
basis of the algebra of symmetric functions.

Let us finally introduce the notion of multi-Schur function (see [59]) which is another natural
generalization of usual Schur functions. Let (Xi)1≤i≤n be a family of n sets of indeterminates.
For every n-uple I = (i1, . . . , in) ∈ Zn, one defines then the multi-Schur function SI(X1, . . . , Xn)
by the determinantal formula

sI(X1, . . . , XN ) =

∣∣∣∣∣∣∣∣∣

Si1(X1) Si2+1(X2) . . . Sin+n−1(Xn)
Si1−1(X1) Si2(X2) . . . Sin+n−2(Xn)

...
...

...
...

Si1−n+1(X1) Si2−n+2(X2) . . . Sin(Xn)

∣∣∣∣∣∣∣∣∣
. (D.4)

Hence the usual Schur function sI(X) is exactly the multi-Schur function sI(X, . . . ,X).

D.2.1 Transformations of alphabets

Let X and Y be two sets of indeterminates. The complete symmetric functions of the formal
set X+Y are then defined by their generating series

σz(X+Y ) =
+∞∑

n=0

Sn(X+Y ) zn = σz(X) σz(Y ) . (D.5)

One also defines the complete symmetric functions of the formal set X−Y by setting

σz(X−Y ) =
+∞∑

n=0

Sn(X−Y ) zn = σz(X) λ−z(Y ) . (D.6)

A symmetric function F of the alphabet X+Y or X−Y is then an element of Sym(X)⊗Sym(Y )
whose expression in this last algebra can be obtained by developping F as a product of complete
symmetric functions of X +Y or X−Y that are elements of Sym(X) ⊗ Sym(Y ) according to
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the two defining relations (D.5) and (D.6). Note also that the complete symmetric functions of
the formal set −X are in particular defined by setting

σz(−X) =
+∞∑

n=0

Sn(−X) zn = λ−z(X) . (D.7)

In other words, if F (X) is a symmetric function of the set X, the symmetric function F (−X) is
obtained by applying to F the algebra morphism that replaces Sn(X) by (−1)n Λn(X) for every
n ≥ 0. Observe that the formal set X−Y can also be defined by setting X−Y = X+(−Y ).

The expression of a Schur function of a formal sum of sets of indeterminates is in particular
given by the Cauchy formula, which states that one has

sλ(X + Y ) =
∑

µ⊂λ

sµ(X) sλ/µ(Y ) (D.8)

for every partition λ. One must also point out that, for all partitions µ and λ such that µ ⊂ λ,
one has

sλ/µ(−X) = sλ /̃µ ˜(X) (D.9)

where λ˜and µ˜are the conjugate partitions of λ and µ correspondingly. Note finally that the
resultant of two polynomials can in particular be expressed as a rectangular Schur function of
a difference of alphabets. Let X and Y be two sets of respectively N and M indeterminates.
The expression

R(X,Y ) =
∏

x∈X,y∈Y

(x− y)

is then the resultant of the polynomials that have X and Y as sets of roots and one can prove
that one has R(X,Y ) = SNM (X − Y ) (see [59]).

D.2.2 Vertex operators

The vertex operator Γz(X) transforms every symmetric function of Sym(X) into a series of
Sym(X)[[z, z−1]]. As the Schur functions indexed by partitions form a linear basis in Sym(X),
it is sufficient to define Γz(X) only on the elements of the latter. We put

Γz(X)(sλ(X)) =
∞∑

m=−∞
s(λ,m)(X) zm

for every partition λ = (λ1, . . . , λn), with (λ,m) = (λ1, . . . , λn,m) ∈ Zn+1 for every m ∈ Z. The
following formula due to Thibon (cf. [89]) gives then another explicit expression of the action
of a vertex operator on a Schur function.

Proposition D.10 (Thibon; [89]) Let λ be a partition. Then one has

Γz(X)(sλ(X)) = σz(X) sλ(X−1/z) . (D.10)

D.2.3 Lagrange’s operators

Let X = {x1, . . . , xN } be a finite alphabet of N indeterminates. The Lagrange interpolating
operator L is the operator that maps every polynomial f of C[X] symmetric in the last N−1
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indeterminates, i.e. every element f(x1, X\x1) of Sym(x1)⊗ Sym(X\x1), onto the symmetric
polynomial L(f) of Sym(X) defined by setting

L(f) =
N∑

k=1

f(xk, X\xk)

R(xk, X\xk)

where R(A,B) stands again for the resultant of the two polynomials that have respectively the
two sets of indeterminates A and B as sets of roots (cf. Section D.2.1). The following result,
corresponding to the special case of Bott’s formula for fibrations in projective lines (see [57, 58]
for more details), gives then an interesting property of the Lagrange interpolation operator.

Theorem D.11 (Lascoux; [57]) Let X = {x1, . . . , xN } be an alphabet of N indeterminates
and let λ = (λ1, . . . , λn) be a partition that contains ρN−1 = (N−2, . . . , 2, 1, 0). Then one has

L(xk
1 sλ(X\x1)) = s(λ,k−N+1)(X) (D.11)

for every k ≥ 0, where the Schur function involved in the right hand side of relation (D.11) is
indexed by the sequence (λ, k−N +1) = (λ1, . . . , λn, k−N +1) of Zn+1.
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[57] A. Lascoux. Inversion des matrices de Henkel. Lin. Alg. and its Appl., 129:77–102, 1990.

[58] A. Lascoux and M.-P. Schützenberger. Le monöıde plaxique. Quaderni de la Ricerca
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[70] K. R. Meyer and G. R. Hall. Introduction to Hamiltonian Dynamical Systems and the
N-Body Problem. Number 90 in Applied Mathematical Sciences. Springer Verlag, 1992.

[71] V. Mitlin. Optimal selection of ARQ parameters in QAM channels. Wireless Communi-
cations and Mobile Computing, to appear. DOI 10.1002/wcm.206.

[72] D. Mitra. An asynchronous distributed algorithm for power control in cellular radio
systems. In J. M. Holtzman, editor, Proceedings of 4th WINLAB Workshop on Third
Generation Wireless Networks, Kluwer International Series in Engineering and Computer
Science, pages 249–259, New Brunswick, NJ, Oct. 1993.

[73] P. J. Mosterman. An overview of hybrid simulation phenomena and their support by
simulation packages. In Hybrid Systems: Computation and Control, Lectures Notes in
Computer Science, pages 165–177. Springer Verlag, 1999.

[74] J. Nasreddine, L. Nuaymi, and X. Lagrange. Adaptive power control algorithm for 3G
cellular CDMA networks. In Proceedings of the IEEE Vehicular Technology Conference,
volume 2, pages 984–988, May 2004.

[75] J. G. Proakis. Digital Communications. McGraw-Hill, 3rd edition edition, 1995.

[76] J. G. Proakis, editor. Wiley Encyclopedia of Telecommunications. John Wiley & Sons,
Ltd, Jan. 2003.
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